

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific

Research

University of Ibn Khaldoun Tiaret

Faculty of Applied Science

Department of Electrical engineering

Dissertation Submitted in Partial Fulfillment for the

Requirement of the Master Degree in Automatic

and Industrial computing

Submitted by :

Mohamed Amine HAMAME

Board of Examiners:

Chairman: Dr. Hamid BOUMEDIENNE

Examiners: Dr. Houari BENABID

 Dr. Amine BENZERROUK

 Dr. Mohamed BEY

Supervised by :

Pr. Tayeb ALLAOUI

Development and design of an intelligent system

for poultry diseases prediction

Dedication

First and foremost, my gratitude is owed to ALLAH, lord

of the world, for giving me health and energy to accomplish this

humble work, and to whom I should owe everything.

My deepest hearty gratitude goes to my parents - my

precious mother may Allah keep her safe and my dear father

Henni may Allah bless him. Also, my special thanks to my

Quran’s teacher Chaib Benchaib - for educating me and for

their unconditional support during all the stages of my life.

My heartfelt thanks are addressed to my dear brothers, my

sister, my friends and precious EUREKA club members who

supported me along the past five years of my studies journey.

To all those mentioned, I would say a hearty “Thank you”

 TABEL OF CONTENT

Acknowledgment

I particularly want tothank my supervisor Pr. ALLAOUI Tayeb for

his supervision and advices during the implementation of this project.

I sincerely thank the members of the jury for having accepted to be

part of the committee of examiners.

I would also like to express our thanks to all our teachers, who have

contributed to our training throughout our years of study.

Our thanks are also addressed to the members of the laboratory of

energy engineering and computer engineering-L2GEGI-, University of

TIARET.

All appreciations go to examiners for their time to correct our work.

My special thanks go to Dr. Mohamed BEY , Dr. Houari BENABID, Dr.

Amine BENZERROUK and Dr. Hamid BOUMEDIENNE.

I will not forget my gratitude to all my previous teachers.

I would like in my turn to acknowledge warmly all the many people

near and far who contributed to our work: teachers, colleagues, participants

of our research, my colleagues at workplace whom I should be thankful for

his training and support.

 TABEL OF CONTENT

Dedication ... II

Acknowledgment .. III

Abbreviations ... V

List of figures ... VI

Table of content .. VIII

General introduction .. 01

Chapter One: Importance of AI in Animal Husbandry

1.1. Introduction ... 04

1.2. Definition of Artificial Intelligence ... 05

1.3. Artificial Intelligence process .. 06

1.4. Artificial Intelligence subfields .. 07

1.4.1. Machine learning………………………………… …………..…08

1.4.2. Deep Learning ……………………………………………….… ... 09

1.4.3. Deference between Machine learning and deep learning …..….. …11

1.5. Applications of Artificial intelligence ... 12

1.5.1. Applications of Artificial intelligence in animal husbanding…..… 13

1.5.2. Limitations of Artificial intelligence in animal husbanding 14

 1.6. Artificial intelligence limits .. 14

 1.7.Conclusion .. 15

Chapter Two: Signal Processing and Sound Classification

2.1. Introduction ... 17

2.2. Signal Processing .. 17

 2.2.1. Audio Signal Processing Definition ... 18

 2.2.1.2 Steps of Audio Signal Processing ... 19

 2.2.1.3 Audio Signal Processing technics 19

2.3. Sound Classification ... 20

2.4. Importance of Signal Processing in sound classification 21

2.5. Conclusion .. 21

Chapter Three: Realization

3.1. Introduction .. 23

3.2. Model Building ... 24

 3.2.1. Dataset Building ... 24

 3.2.1.2 Dataset Augmentation... 25

 3.2.1.3 Data Preparing ... 30

 3.2.2. Data Processing ... 31

 3.2.1.3 Data Splitting ... 33

 3.2.1.3 Label Extraction Process .. 35

 3.2.4. AI model Type’s Choice, .. 36

 3.2.4. AI model Creation, .. 37

 3.2.5. AI model Training ... 37

 TABEL OF CONTENT

 3.2.6. AI model Evaluation ... 37

 3.2.6.1 Evaluation Results ... 39

 3.2.6.2 Evaluation Results Analyze ... 40

 3.2.7. AI model Saving .. 41

3.3. Software Tools .. 41

 3.3.1. Python Language ... 41

 3.3.1.1 Python Used Libraries .. 43

 3.3.3. Google Colab .. 43

3.4. Hardware Setup ... 45

 3.4.1 Raspberry Pi 4 Board .. 45

 3.4.1.1 Advantages of using Raspberry Pi for This project 46

 3.4.2 ISD1820 Microphone Sensor .. 47

3.4.2.1 Principal of functioning of ISD1820 Sensor 48

 3.4.2.2 Advantages of using ISD 1820 for This project ... 48

 3..4.3 Buzzer device .. 40

 3.4.3.1 Principal of functioning of a buzzer device 49

3.4.4 LCD 1528 ... 50

 3.4.4.1 Principal of functioning of an LCD 50

3.5. Realization .. 51

3.5.1 Model Implementation on RaspberryPi 4 board 52

3.5.2 Circuit Conception ... 52

3.5.3 Circuit Conception Explication ... 52

 3.5.3.1 Circuit Assembly Explication ... 53

3.5.4 Circuit Programing ... 54

 3.5.5 Conclusion ... 56

4 General conclusion & Perspectives .. 59

5 Abstract ... 61

6 Bibliography .. 62

ABBREVIATIONS

ML : Machine Learning.

DL : Deep Learning.

AI : Artificial Intelligence.

SVM : Support Vector Machine.

CNN : Convolutional Neural Network.

RNN : Recurrent Neural Network.

MFCC : Mel Frequency Cepstral Coefficients.

FFT : Fast Fourier Transform.

RMS : Root Mean Square.

STFT : Short-Time Fourier Transform.

LPC : Linear Predictive Coding.

HMM : Hidden Markov Model.

PCA : Principal Component Analysis.

GMM : Gaussian Mixture Model.

LDA : Linear Discriminant Analysis

ANN : Artificial Neural Network

DNN : Deep Neural Network

LSTM : Long Short-Term Memory

GRU : Gated Recurrent Unit

F1-score - F1 Measure or F-Score

TP : True Positive

TN : True Negative

FP : False Positive

FN : False Negative

PR : Precision-Recall

EER : Equal Error Rate

ROC : Rate of Change

AR : Autoregressive

DCT : Discrete Cosine Transform

LBP : Local Binary Patterns

NMF : Non-Negative Matrix Factorization

ROI : Region of Interest

VAD : Voice Activity Detection

PSD : Power Spectral Density

List of figures

Figure I. 01: Artificial intelligence Process.

Figure I. 02: Artificial intelligence Subfields.

Figure I. 03: Machin Learning Process.

Figure I. 04: Deep Learning Process.

Figure I. 05: Deep and Machine Learning.

Figure I. 06 : Artificial Intelligence in Agriculture.

Figure II. 01: Signal Processing Operation.

Figure II. 02: Sound Signal Processing.

Figure III. 01: Raspberry Pi 4 Pins.

Figure III. 02: Raspberry Pi 4 Components.

Figure III. 03 : ISD1820 Microphone Sensor.

Figure III. 04 : Buzzer Device.

Figure III. 05 : LCD L5216.

Figure III. 06 : Circuit Assembly

General Introduction

1

General Introduction

Artificial intelligence (AI) has emerged as a powerful tool for solving complex

problems in various domains, and animal husbandry is no exception. With the emergence of

new and complex diseases, the need for effective disease management and control in animal

husbandry has become increasingly critical. In recent years, there has been a growing interest

in the development of intelligent systems that can aid in predicting the occurrence of animal

diseases using AI and signal processing techniques [1].

Animal diseases have a significant impact on animal health and welfare, as well as the

productivity and profitability of animal farming. Early detection and diagnosis of diseases

are crucial for effective disease management and control. However, traditional methods of

disease detection and diagnosis, such as physical examinations and laboratory tests, can be

time-consuming, expensive, and invasive. Moreover, these methods may not be suitable for

monitoring large populations of animals in real-time [2].

AI has the potential to revolutionize disease management and control in animal

husbandry. AI techniques, such as image analysis, natural language processing, and sound

classification, can analyze large volumes of data quickly and accurately, enabling early

detection and diagnosis of diseases. Sound classification, in particular, has gained increasing

attention as a non-invasive and cost-effective method for detecting and monitoring animal

health. Sound classification techniques can analyze audio recordings of animal vocalizations

to identify changes in pitch, frequency, or other acoustic features that may indicate the

presence of disease [3].

Signal processing is an important component of intelligent systems for animal disease

prediction. Sound classification, in particular, requires a combination of signal processing,

feature extraction, and machine learning algorithms to analyze audio recordings of animal

vocalizations. Signal processing techniques, such as filtering, feature extraction, and pattern

recognition, can be used to preprocess the data and extract relevant features for classification.

In this dissertation, we present a novel system for predicting poultry diseases based on

AI and signal processing techniques. The system is designed to analyze audio recordings of

poultry vocalizations to detect abnormal sounds that may indicate the presence of disease.

The system uses a combination of signal processing, feature extraction, and machine learning

algorithms to predict the likelihood of a disease outbreak. The system's performance is

2

evaluated using data collected from a poultry farm, and the results demonstrate the potential

of the system for predicting and managing poultry diseases.

The dissertation is organized as follows: Chapter 1 provides an overview of the

importance of AI in animal husbandry, with a focus on disease management and control.

Chapter 2 discusses the importance of signal processing in sound classification, highlighting

its potential applications in animal health monitoring. Finally, Chapter 3 presents the

conception of the system using AI and signal processing techniques, including data

preprocessing, feature extraction, and machine learning algorithms. The system's

performance is evaluated using data collected from a poultry farm, and the results

demonstrate the potential of the system for predicting and managing poultry diseases.

Overall, the development of an intelligent system for predicting poultry diseases based

on AI and signal processing techniques can significantly improve disease management and

control in the poultry industry, leading to increased productivity and profitability, as well as

improved animal welfare.

CHAPTER ONE

ARTIFICIAL INTELLIGENCE AND

ANIMAL

 CHAPTER ONE : ARTIFICIAL INTELLIGENCE AND ANIMAL HUSBANDRY

4

Introduction

The term "artificial intelligence was coined more than 60 years ago, but only recently

have we realized the full benefits of artificial intelligence, machine learning, and deep

learning in our daily lives [4].

Most of us already use intelligent machines to learn, recognize sounds, make decisions,

solve problems, and make recommendations on everything from the routes we drive to the

movies we watch to the clothes we buy. We have smartphones in our pockets, intelligent

personal assistants on our workbenches, robots in our factories and self-driving cars on our

highways. This is just for starters.

Artificial intelligence, Deep Learning / Machine Learning Systems are having a major

impact on the aerospace industry, too. With the technologies mentioned above, flying is

becoming safer, more comfortable, and more predictive and outcome based. Airlines

improve schedule performance, use less fuel and create a better passenger experience.

Airports are more efficient and easier for travelers to navigate. Ground crews turn flights

around faster and dispatch operations are getting more efficient and autonomy based.

Airlines are able to use the learning systems to derive better segment strategies and charge

according to the relevance and value. And aircraft maintenance is easier, faster, prescriptive

and more precise. [1].

Like many other industries and use cases, AI in animal husbandry can improve

environmental management, increase the animal’s quality of life, improve resource

allocation, and reduce costs. Farmers in animal husbandry are looking for new-age tools to

improve animal welfare, increase efficiency, and create better production. [3].

AI can also be used in poultry farms, where poultry drones can detect nutritional

deficiencies and mitigate bird diseases. Robots can help feed birds, collect eggs and remove

droppings. AI-driven sound recognition systems, as what we are trying to do on this research,

use machine learning to decipher vocalizations and identify warning signs of distress. AI

monitoring can also detect patterns of poultry weight gain, allowing farmers to pinpoint

unhealthy livestock. [5].

 Finally we can say that AI helps humanity to progress and develop more and more, it

enables businesses, governments, and communities to create a high-performing ecosystem

 CHAPTER ONE : ARTIFICIAL INTELLIGENCE AND ANIMAL HUSBANDRY

5

that can service the entire planet. Its significant impact on human lives is resolving some of

society's most pressing issues.

1.1 AI Definition

The prospect of creating intelligent computers has fascinated many people for as long

as

computers have been around and, as we shall see in the historic overview, the first hints

in the direction of Artificial Intelligence date even before that. But what do we mean by

Artificial Intelligence, if even the term intelligence itself is difficult to define?

The precise definition and meaning of the word intelligence, and even more so of

Artificial Intelligence, is the subject of much discussion and has caused a lot of

confusion [6]. One dictionary alone, for example, gives four definitions of Artificial

Intelligence:

 An area of study in the field of computer science. Artificial intelligence is

concerned with the development of computers able to engage in human-like

thought processes such as learning, reasoning, and self-correction.

 The concept that machines can be improved to assume some capabilities

normally thought to be like human intelligence such as learning, adapting, self-

correction, etc [6].

 The extension of human intelligence through the use of computers, as in times past

physical power was extended through the use of mechanical tools.

 In a restricted sense, the study of techniques to use computers more effectively by

improved programming techniques. [6]

The definitions have also changed in the course of time, due to the rapid developments.

Definitions that are more recent speak of “imitating intelligent human behavior,” which is

already a much stronger definition.

For some time now, the Artificial Intelligence community has been trying to imitate

intelligent behavior with computer programs. This is not an easy task because a

computer program must be able to do many different things in order to be called

intelligent.

 CHAPTER ONE : ARTIFICIAL INTELLIGENCE AND ANIMAL HUSBANDRY

6

 Instead of looking at a general definition of Artificial Intelligence, one can also

restrict

oneself to the definition of artificially intelligent systems. There are many definitions

around, but most of them can be classified into the following four categories [7]:

 Systems that think like humans.

 Systems that act like humans.

 Systems that think rationally.

 Systems that act rationally.

1.2 Artificial Intelligence Process

Artificial Intelligence (AI) is a broad field that encompasses various processes and

techniques for building intelligent machines capable of performing tasks that typically

require human intelligence. Here is the general process AI [8]:

1. Define the Problem: The first step in building an AI system is to define the problem

you want to solve. This involves understanding the requirements of the problem and

determining the feasibility of building an AI solution [8]:.

2. Gather Data: AI systems require large amounts of data to learn and make decisions.

You will need to gather data relevant to the problem you are trying to solve. This

data can come from a variety of sources, such as sensors, databases, and external

APIs.

3. Preprocess Data: Once you have gathered the data, you need to preprocess it to make

it suitable for use in an AI system. This can involve cleaning, transforming, and

normalizing the data [8]:.

4. Choose Algorithms: Next, you need to choose the algorithms you will use to train

your AI model. The choice of algorithms depends on the type of problem you are

trying to solve and the data you have available [8]:.

5. Train Model: You will use the data and algorithms to train your AI model. This

involves feeding the data into the model and adjusting the parameters of the

algorithms until the model accurately predicts the outcomes [8]:.

6. Evaluate Model: Once we have trained our model, we need to evaluate its

performance on new data. This involves testing the model on a separate set of data

that it has not seen before [8].

 CHAPTER ONE : ARTIFICIAL INTELLIGENCE AND ANIMAL HUSBANDRY

7

7. Deploy Model: If the model performs well on the test data, you can deploy it into

production. This involves integrating it into your existing systems and making it

available for use.

FigureI. 01 : Artificial intelligence Process [9]

1.4 Artificial intelligent subfields

AI encompasses numerous subfields, each representing a distinct area of scientific

research. Among them, six major subfields can be identified [10]:

1. Machine Learning: Algorithms and models enabling machines to learn from

data [10].

2. Natural Language Processing (NLP): Interaction between computers and

human language [10].

3. Computer Vision: Understanding and interpreting visual information [10].

4. Neural network: Computational models inspired by the brain that learns

from data and makes predictions or decisions. Combining AI with mechanical

engineering for intelligent machines [10].

5. Deep learning: Machine learning technique that uses multi-layered neural

networks to learn complex patterns from data [10].

6. Cognitive computing: Combines artificial intelligence and data analytics to

simulate human cognitive processes and enhance decision-making [10].

 CHAPTER ONE : ARTIFICIAL INTELLIGENCE AND ANIMAL HUSBANDRY

8

 FigureI. 02 : Artificial intelligence Subfildes [11].

1.4.1 Machine Learning

Machine learning (ML) is a field devoted to understanding and building methods that

let machines "learn" – that is, methods that leverage data to improve computer performance

on some set of tasks [12].

Machine learning algorithms build a model based on sample data, known as training

data, in order to make predictions or decisions without being explicitly programmed to do

so [13]

Machine learning algorithms are used in a wide variety of applications, such as in

medicine, email filtering, speech recognition, agriculture, and computer vision, where it is

difficult or unfeasible to develop conventional algorithms to perform the needed tasks [13].

A subset of machine learning is closely related to computational statistics, which

focuses on making predictions using computers, but not all machine learning is statistical

learning.

 CHAPTER ONE : ARTIFICIAL INTELLIGENCE AND ANIMAL HUSBANDRY

9

The study of mathematical optimization delivers methods, theory and application

domains to the field of machine learning. Data mining is a related field of study, focusing on

exploratory data analysis through unsupervised learning [13].

Some implementations of machine learning use data and neural networks in a way that

mimics the working of a biological brain.

In its application across business problems, machine learning is also referred to as

predictive analytics.

Figure I. 03: Machin Learning Process [14].

1.4.2. Deep Learning

Deep learning is part of a broader family of machine learning methods, which is based

on artificial neural networks with representation learning. Learning can be supervised, semi-

supervised or unsupervised [15].

Deep-learning architectures such as deep neural networks, deep belief networks, deep

reinforcement learning, recurrent neural networks, convolutional neural networks and

transformers have been applied to fields including computer vision, speech recognition,

natural language processing, machine translation, bioinformatics, drug design, medical

image analysis, climate science, material inspection and board game programs, where they

have produced results comparable to and in some cases surpassing human expert

performance [15].

Artificial neural networks (ANNs) were inspired by information processing and

distributed communication nodes in biological systems. ANNs have various differences

from biological brains. Specifically, artificial neural networks tend to be static and symbolic,

while the biological brain of most living organisms is dynamic (plastic) and analog [15].

 CHAPTER ONE : ARTIFICIAL INTELLIGENCE AND ANIMAL HUSBANDRY

10

The adjective "deep" in deep learning refers to the use of multiple layers in the

network. Early work showed that a linear perceptron cannot be a universal classifier, but that

a network with a non-polynomial activation function with one hidden layer of unbounded

width can. Deep learning is a modern variation that is concerned with an unbounded number

of layers of bounded size, which permits practical application and optimized

implementation, while retaining theoretical universality under mild conditions. In deep

learning the layers are also permitted to be heterogeneous and to deviate widely from

biologically informed connectionist models, for the sake of efficiency, trainability and

understandability [15].

Figure I. 04: Deep Learning Process [14]

 CHAPTER ONE : ARTIFICIAL INTELLIGENCE AND ANIMAL HUSBANDRY

11

1.4.3. Deference between machine learning and deep learning

Figure I. 05: Deep and Machine learning [16].

Machine learning and deep learning are both subsets of artificial intelligence, but they

differ in their approach and complexity. Here are some of the key differences between

machine learning and deep learning [17].

1. Architecture: Machine learning models are generally simpler and have a smaller

number of layers. Deep learning models, on the other hand, are more complex and

can have multiple layers [17]..

2. Data requirements: Machine learning models work well with structured data and

require a smaller amount of training data to be effective. Deep learning models

require large amounts of unstructured data, such as images or text, to train effectively

[17]..

3. Feature extraction: Machine learning models require the engineer to manually extract

features from the data, whereas deep learning models can automatically learn

features from the data [17]..

 CHAPTER ONE : ARTIFICIAL INTELLIGENCE AND ANIMAL HUSBANDRY

12

4. Interpretability: Machine learning models are often more interpretable, meaning it's

easier to understand how the model is making decisions. Deep learning models are

generally less interpretable due to their complexity [17]..

5. Performance: Deep learning models can outperform machine learning models in

tasks such as image recognition, speech recognition, and natural language processing

[17]..

Overall, the main difference between machine learning and deep learning is the

complexity of the models and the amount of data required for training. Machine learning is

a good choice for simpler problems with structured data, while deep learning is more

appropriate for complex problems with unstructured data [17].

1.4 Artificial intelligence Applications

Artificial Intelligence (AI) has become an essential technology in various fields,

enabling machines to perform tasks that would typically require human intelligence. AI

has numerous applications, including data analysis, decision-making, and automation.

This study provides an overview of the applications of AI in different fields [18].

 Healthcare: One of the most significant applications of AI is in the field of

healthcare. AI technology is used for medical diagnosis, drug discovery, and patient

care. AI algorithms can analyze large amounts of medical data, including electronic

health records (EHRs), medical images, and genomics data, to identify patterns and

predict outcomes [18].

 Finance: Another application of AI is in the financial industry. AI algorithms

can be used for fraud detection, risk assessment, and portfolio optimization. AI can

analyze vast amounts of financial data to identify patterns and predict market trends

[18].

 Transportation: AI technology is also used in the transportation industry. AI

algorithms can optimize traffic flow, reduce congestion, and improve safety. Self-

driving cars and drones are examples of AI-based transportation technologies [18].

 Manufacturing: AI is also being used in the manufacturing industry. AI

algorithms can optimize production processes, reduce waste, and improve product

quality. AI can analyze sensor data from machines to predict equipment failures and

schedule maintenance [18].

 CHAPTER ONE : ARTIFICIAL INTELLIGENCE AND ANIMAL HUSBANDRY

13

As we are talking in this study about prediction of poultry diseases we must talk about

AI in the field of Animal husbandry, this science which consist of breeding, caring, and

managing animals for food, fiber, and other purposes. In recent years, there has been a

growing interest in the application of AI technology in animal husbandry. AI can be used

for various purposes in this field, including monitoring animal health, optimizing feeding

strategies, and improving breeding outcomes [18].

Figure I. 06: Artificial intelligence In Agriculture [19].

1.5.1 Applications of AI in Animal Husbandry:

1. Monitoring Animal Health: AI can be used to monitor the health of animals

and detect any abnormalities early on. For instance, sensors can be attached to animals

to track their vital signs and behavior, and AI algorithms can analyze this data to detect

any signs of illness or distress [20].

2. Optimizing Feeding Strategies: AI can also be used to optimize feeding

strategies for animals. AI algorithms can analyze data on animal weight, feed intake, and

growth rates to determine the optimal feeding schedule and ration [20].

3. Improving Breeding Outcomes: AI can be used to improve breeding

outcomes in animal husbandry. For instance, AI algorithms can analyze data on animal

genetics, behavior, and health to determine the best breeding matches and optimize

breeding strategies [20].

 CHAPTER ONE : ARTIFICIAL INTELLIGENCE AND ANIMAL HUSBANDRY

14

1.5.1.2 The limitations of AI in animal husbandry:

1 Data Bias: One of the biggest limitations of AI in animal husbandry is

the potential for bias in the data used to train the AI models. Biased data can lead to

inaccurate predictions and decisions, which can have negative impacts on animal welfare

and productivity [20].

2 Limited Data Availability: In some cases, there may be limited data

available for AI applications in animal husbandry. This can be due to factors such as the

cost of data collection or the limited availability of certain types of data [14].

3 Ethical Considerations: The use of AI in animal husbandry raises

ethical considerations, particularly around issues such as animal welfare and the potential

for reduced human involvement in decision-making [20].

4 Technical Limitations: AI models are only as effective as the data they

are trained on, and they may not always be able to account for complex factors that can

influence animal health and productivity [20].

5 Cost: Implementing AI technologies in animal husbandry can be

costly, particularly for smaller-scale operations that may not have the resources to invest

in expensive hardware or software [20].

It is important to note that while AI can offer many benefits in animal

husbandry, it is not a one-size-fits-all solution. Careful consideration must be given to the

specific needs and limitations of individual operations, and AI should be used in conjunction

with other management strategies to optimize animal welfare and productivity [20]..

1.6 Artificial Intelligence Limits

While artificial intelligence (AI) has numerous benefits and various potential

applications, it's crucial to bear in mind that it is not a cure-all solution. AI models' efficiency

relies heavily on the quality of the data they are trained on and the instructions they are given

to follow. Just like any other technology, it's important to be mindful of the potential

constraints and ethical ramifications of AI systems. Therefore, a thoughtful evaluation

should be conducted before implementing AI technologies in various industries at general

this are ai limits [21].

1. Data Dependence: AI systems rely heavily on data, and the quality and quantity of data

available can limit the effectiveness of these systems. In some cases, there may not be

 CHAPTER ONE : ARTIFICIAL INTELLIGENCE AND ANIMAL HUSBANDRY

15

enough data to train an AI system to perform a certain task, or the data available may be

biased or incomplete [21].

2. Lack of Creativity: AI systems are programmed to operate within a specific set of rules

and parameters, and they do not have the same creative capacity as human beings. This can

limit their ability to handle complex or novel situations [21].

3. Limited Understanding of Context: AI systems are trained on specific data sets and may not

always understand the larger context in which the data exists. This can lead to errors or biased

decision-making [21].

4. Ethical Concerns: As AI systems become more advanced, there are concerns about their

impact on privacy, security, and fairness. For example, AI algorithms may perpetuate social

biases or be used to manipulate individuals or groups [21].

5. Technical Limitations: AI systems are limited by the capabilities of the hardware and

software on which they run. This can include limitations in processing power, memory, and

bandwidth [21].

Conclusion

In conclusion, artificial intelligence (AI) is a rapidly evolving field that involves the

development of intelligent machines capable of performing tasks that would typically

require human intelligence. Deep learning, a subset of AI, involves training artificial neural

networks to identify and classify patterns in data, leading to breakthroughs in areas such as

image recognition, natural language processing, and speech recognition.

The process of AI involves using algorithms and statistical models to analyze data,

identify patterns, and make predictions or decisions based on that information. AI has a

broad range of potential applications, including healthcare, finance, transportation, and

entertainment.

In the context of animal husbandry, AI technologies have significant potential to

improve the industry by enhancing animal welfare, increasing production efficiency, and

reducing labor costs. AI applications in animal husbandry include monitoring animal

behavior, predicting disease outbreaks, and optimizing feed and water usage.

However, despite its potential benefits, AI also has its limits. These include the

difficulty of creating truly autonomous systems, the need for vast amounts of high-quality

data, and the potential for unintended consequences or bias in decision-making. Therefore,

 CHAPTER ONE : ARTIFICIAL INTELLIGENCE AND ANIMAL HUSBANDRY

16

it is essential to carefully consider the limitations and ethical implications of AI systems

and put appropriate safeguards in place to ensure their responsible use.

This study utilizes AI and deep learning techniques in the animal husbandry industry,

specifically for predicting poultry diseases. As highlighted in this chapter, data collection is

a critical aspect of AI, and in our case, as we are working on cough detection, we need to

have a good understanding of signal processing and sound classification and their

integration into AI models.

CHAPTER TWO : SIGNAL PROCESSING AND SOUND CLASSIFICATION

ON AI MODELS

17

Introduction

Artificial Intelligence (AI) has revolutionized the way we interact with technology,

and its applications span across various fields, including speech recognition, music

analysis, and environmental sound monitoring. In recent years, the use of AI models for

sound classification has gained significant attention, and signal processing techniques have

played a vital role in the initial stages of the process. The success of AI models heavily

depends on the quality of the input data, which in turn relies on the proper signal

processing techniques [22].

Signal processing techniques involve the use of algorithms to manipulate and

transform signals, such as audio, video, or image data. These techniques can enhance the

signal-to-noise ratio, filter out unwanted noise, and extract essential features that can help

AI models classify the sounds accurately. The signal processing techniques used in AI

models vary depending on the application, but generally, they involve a combination of

pre-processing, feature extraction, and classification.

In this context, this chapter aims to review the latest signal processing and sound

classification techniques used in AI models, with a particular emphasis on their

applications in various fields, challenges, and future directions.

2.2 Signal Processing Definition

Signal processing is the systematic manipulation of signals to extract useful

information or transform them into a desired form. It involves the analysis, synthesis, and

modification of signals, which can be in the form of sound, images, or other types of data.

The ultimate goal of signal processing is to extract useful information from signals and

make them more understandable or usable for further processing or analysis [22].

CHAPTER TWO : SIGNAL PROCESSING AND SOUND CLASSIFICATION

ON AI MODELS

18

Figure II 01: Signal Processing operation [23]

2.2.1 Audio Signal Processing

Sound signal processing is a branch of signal processing that focuses on the analysis

and manipulation of sound signals. It involves the use of various techniques and algorithms

to transform the raw sound signals into a more meaningful representation that can be used

for further analysis or processing. These techniques may include filtering, equalization, noise

reduction, compression, and feature extraction, among others. Sound signal processing has

various applications, including speech recognition, music analysis, acoustic monitoring, and

audio communication, among others [23].

Figure II 02: Sound Signal Processing [24]

CHAPTER TWO : SIGNAL PROCESSING AND SOUND CLASSIFICATION

ON AI MODELS

19

 2.2.2 Steps of Sound Signal Processing

The steps of sound signal processing before using it in AI models typically include [24]:

1. Acquisition: In this step, the sound signal is acquired using a microphone or other sensing

device. The analog signal is then converted to a digital signal for further processing [24].

2. Pre-processing: The acquired signal is often pre-processed to filter out noise, eliminate

unwanted frequencies, and enhance the signal-to-noise ratio. Pre-processing techniques

include filtering, noise reduction, and signal enhancement [24].

3. Feature extraction: In this step, the relevant features of the sound signal are extracted to form

a feature vector. These features can include spectral features such as the frequency,

amplitude, and phase, as well as statistical features such as the mean and variance [24].

4. Feature selection: The feature vector may contain many features that are not relevant to the

classification task at hand. In this step, the most relevant features are selected using feature

selection techniques such as correlation analysis, principal component analysis, and mutual

information [24].

5. Classification: Finally, the selected features are fed into a machine learning algorithm for

classification. The algorithm learns to classify the sound signal based on the extracted

features and a set of training data. Common machine learning algorithms used for sound

classification include support vector machines, decision trees, and neural networks [24].

These steps are critical in ensuring the accuracy of sound classification in AI

models. Proper sound signal processing techniques can enhance the signal-to-noise ratio,

filter out unwanted noise, and extract essential features that can help the AI models classify

the sounds accurately [24].

2.2.1.2 Audio Signal processing technics

Signal processing techniques involve a wide range of methods used to modify or

analyze signals, such as sound, image, or video. Some of the commonly used signal

processing techniques in sound signal processing include [25]:

1. Pre-processing techniques: This involves removing unwanted

noise, filtering the signal to enhance the signal-to-noise ratio, and normalizing the

data to ensure consistency in the input data [25].

CHAPTER TWO : SIGNAL PROCESSING AND SOUND CLASSIFICATION

ON AI MODELS

20

2. Feature extraction techniques: This involves extracting

relevant features from the pre-processed signal, such as pitch, frequency, and

amplitude, which can be used to train the AI model [25].

3. Time-frequency analysis: This technique allows for the

representation of sound signals in both the time and frequency domains. By using

techniques such as Short-Time Fourier Transform (STFT) or Wavelet Transform, the

AI model can analyze the temporal and spectral characteristics of the sound signal

[25].

4. Spectral analysis: This technique involves analyzing the

spectral content of the sound signal. By using techniques such as Fast Fourier

Transform (FFT), the AI model can analyze the frequency components of the signal

[25].

5. Deep learning techniques: Deep learning algorithms such as

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)

can be used for sound classification, where the AI model learns to identify patterns

in the pre-processed sound signals [25].

When choosing a signal processing technique for sound classification, it is

important to consider the type of sound signals being analyzed and the computational

resources available. Deep learning techniques may require large amounts of data and

computational resources, while simpler techniques such as spectral analysis may be more

computationally efficient but may not capture all the relevant features of the sound signal

and this is why we are choosing deep learning for this study [25].

 2.3 Sound classification

Sound classification is the process of assigning predefined categories or labels to a sound

signal based on its acoustic characteristics. The aim of sound classification is to

automatically distinguish different sound types, such as speech, music, and environmental

sounds. To achieve accurate sound classification, various signal processing techniques are

used to extract features that can effectively represent the unique characteristics of different

sound types. Machine learning algorithms, such as neural networks and support vector

machines, are then applied to these features to classify the sounds into their respective

CHAPTER TWO : SIGNAL PROCESSING AND SOUND CLASSIFICATION

ON AI MODELS

21

categories. Sound classification has various applications, including speech recognition,

music genre classification, and environmental sound monitoring [26].

2.4 Importance of Signal Processing in Sound Classification

Signal processing is critical in sound classification as it provides a means of

extracting useful information from raw audio data. Sound signals captured by microphones

often contain noise and unwanted artifacts that can interfere with accurate classification.

Signal processing techniques are used to reduce noise and enhance the desired features of

the sound signal, making it easier for the AI models to classify the sounds accurately [27].

Additionally, sound signals have complex structures and contain a vast

amount of information that needs to be analyzed by AI models. Signal processing techniques

can help to extract essential features from the sound signal, reducing the amount of data that

needs to be analyzed. This process is known as feature extraction, and it is a critical step in

sound classification [27] .

Proper signal processing techniques can also improve the signal-to-noise ratio,

making it easier for AI models to differentiate between similar sounds. For example, in

speech recognition, signal processing techniques are used to filter out unwanted background

noise and enhance the speech signal, making it easier for the AI model to recognize spoken

words accurately [27].

In summary, signal processing is essential in sound classification as it helps to

enhance the quality of the sound signal, extract essential features, and improve the signal-

to-noise ratio, making it easier for AI models to classify the sounds accurately [27].

Conclusion

 In conclusion, the use of AI models for sound classification in poultry disease detection has

shown promising results. However, the success of these models heavily depends on the

quality of input data, which can be enhanced by proper signal processing techniques. The

initial stages of AI models require signal processing techniques to pre-process raw data, filter

out unwanted noise, and extract essential features that can help the models classify the

sounds accurately. Signal processing plays a vital role in the effectiveness of AI models for

sound classification, as it can significantly enhance the signal-to-noise ratio and improve the

accuracy of disease detection. Overall, the integration of signal processing and sound

classification in AI models for poultry disease detection has the potential to improve the

CHAPTER TWO : SIGNAL PROCESSING AND SOUND CLASSIFICATION

ON AI MODELS

22

efficiency and effectiveness of disease In this study, we applied signal processing and sound

classification techniques to an AI model aimed at detecting anomalies in poultry

vocalizations.se monitoring and control, leading to better animal welfare and economic

outcomes,

CHAPTER THREE : REALIZATION

23

Introduction

The realization chapter is the culmination of our project, where we bring our sound

classification model to life on a Raspberry Pi. This chapter focuses on the practical

implementation of our model, integrating it with hardware components, and creating a real-

time sound classification system. By following the steps outlined in this chapter, we will

have a fully functional system capable of identifying normal and abnormal sounds.

We begin by discussing the initial steps of model conception, including dataset collection,

preprocessing, and model training. We carefully design and train our model to achieve

high accuracy and robust performance in sound classification tasks.

Next, we delve into the hardware setup, which involves configuring the Raspberry Pi

as the central processing unit. We connect a microphone to capture audio input, an LCD

screen to display classification results, and a buzzer to provide audible feedback for

abnormal sounds.

Software configuration is an essential aspect of our system. We explore the choice of

operating system for the Raspberry Pi and guide you through the necessary installations.

This includes setting up libraries for audio processing and model loading.

The heart of our realization phase is the real-time sound classification. We cover the

preprocessing steps for capturing and preparing audio data, as well as loading our trained

model onto the Raspberry Pi. We demonstrate how the system can process incoming audio

streams and make accurate predictions in real-time.

To enhance user experience, we integrate an LCD screen to visually display classification

results, allowing easy identification of normal and abnormal sounds. We also incorporate a

buzzer that produces audible feedback for abnormal sounds, providing an additional layer

of information.

Testing and evaluation are crucial to validate the performance of our system. We define

test scenarios using different sound samples and employ evaluation metrics to measure

system accuracy and efficiency. The results are analyzed to gain insights into system

strengths and areas for improvement.

In conclusion, the realization chapter transforms our sound classification model from

theory to practice. By following the steps outlined, you will create a real-time sound

classification system on a Raspberry Pi. This chapter provides a comprehensive guide to

CHAPTER THREE : REALIZATION

24

the implementation process and equips you with the knowledge to adapt the system to your

specific needs.

 3.2 AI Model Conception:

The foundation of our real-time sound classification system lies in the construction of a

robust and accurate model. In this section, we will outline the key steps involved in building

our model for sound classification.

3.2.1 Dataset Building:

In order to build an accurate and diverse sound classification model, we faced the challenge

of collecting a sufficient amount of high-quality sound data. Collecting a comprehensive

dataset manually proved to be a time-consuming and challenging task, as it required

configuring specialized microphones and recording sounds in various real-world

environments.

To overcome this obstacle, we leveraged an existing dataset called Google AudioSet. is a

large-scale collection of audio samples from a wide range of sources, covering a vast array

of sounds. This dataset provided a valuable starting point for our sound classification model.

However, the Google AudioSet dataset alone did not fully meet our requirements. It lacked

specific sound samples that were relevant to our use case and did not cover all the necessary

abnormal sound categories. Therefore, we employed data augmentation techniques to

enhance the dataset's diversity and balance.

Data augmentation involved applying various transformations to the existing audio samples,

such as pitch shifting, time stretching, noise addition, and amplitude scaling. These

techniques helped simulate different variations of the original sounds and created a more

comprehensive dataset for training our model. By augmenting the dataset, we were able to

capture a broader range of sound variations and improve the model's ability to generalize

and classify abnormal sounds accurately.

The combination of the Google AudioSet dataset and data augmentation techniques enabled

us to overcome the limitations of manually collecting sound data and provided us with a

robust and diverse dataset for training our sound classification model.

CHAPTER THREE : REALIZATION

25

By utilizing these resources and techniques, we ensured that our model had access to a wide

variety of normal and abnormal sound samples, enabling it to learn and generalize effectively

in real-world scenarios.

3.2.1.1 Dataset Augmentation

To do the data augmentation we used two technics are:

1. Mixup Data Augmentation: is a data augmentation technique commonly used in sound

classification tasks. It involves mixing pairs of audio samples from the dataset to create new

training examples. The process combines two audio samples by taking a weighted sum of

their waveforms and their corresponding labels. This creates a blended audio sample that lies

somewhere between the two original samples [28].

By applying Mixup data augmentation, we introduce additional variability and diversity into

the training data. It helps the model learn to generalize better by exposing it to a broader

range of sound combinations and labels. Mixup encourages the model to focus on relevant

audio features rather than relying solely on specific instances in the training set. This

regularization technique aids in reducing overfitting and improving the model's performance

on unseen data [28].

2. SpecAugment: is a popular data augmentation technique used specifically for audio and

speech recognition tasks. It operates in the spectrogram domain, which is a visual

representation of the audio signal's frequency content over time. SpecAugment applies

random transformations to the spectrogram, introducing localized modifications [29].

The three main transformations used in SpecAugment are [29]. :

 Time Masking: This involves masking consecutive time steps in the

spectrogram by setting them to zero. It helps the model focus on different

temporal segments of the audio and enhances its robustness to temporal

variations [29].

 Frequency Masking: This technique masks a random set of frequency

bands in the spectrogram. By doing so, it encourages the model to attend to

different frequency components and improves its ability to handle

variations in the frequency domain [29].

CHAPTER THREE : REALIZATION

26

 Time Warping: Time warping randomly warps the spectrogram along the

time axis, introducing slight temporal distortions. This further increases

the model's robustness to temporal variations in the input audio [29].

SpecAugment helps in preventing overfitting and enhances the model's ability to

generalize by introducing variations in both the time and frequency domains. By applying

SpecAugment, we improve the model's robustness to different types of noise, background

variations, and temporal distortions that may occur in real-world audio recordings [29]..

By combining Mixup data augmentation and SpecAugment techniques, we enhance the

diversity and variability of the training data. This enables the model to learn more robust

and generalized representations of both normal and abnormal sounds, improving its

classification performance on unseen audio samples.

In order to applicate this techniques using python programming language:

1. Mixup Data Augmentation:

CHAPTER THREE : REALIZATION

27

import os

import torchaudio

import torch

import torch.nn.functional as F

import torchaudio.transforms as T

import shutil

Set the directory where the audio files are located

directory = '/content/drive/MyDrive/normalpoultrysound/'

Define the output directory to save the mixed files

output_directory = '/content/drive/MyDrive/MixedFiles/'

Create the output directory if it doesn't exist

os.makedirs(output_directory, exist_ok=True)

List all audio files in the directory

file_names = os.listdir(directory)

Resampling parameters

desired_sample_rate = 16000

desired_channels = 1

Initialize mixed audio

mixed_audio = None

max_length = 0

Loop through the audio files and build mixed files

for i, file_name in enumerate(file_names):

 # Load audio file

 file_path = os.path.join(directory, file_name)

 waveform, sample_rate = torchaudio.load(file_path)

 # Resample audio

 if sample_rate != desired_sample_rate:

 waveform = T.Resample(sample_rate, desired_sample_rate)(waveform)

 # Convert to mono if needed

 if waveform.shape[0] > 1 and desired_channels == 1:

 waveform = torch.mean(waveform, dim=0, keepdim=True)

 # Update the maximum length

 max_length = max(max_length, waveform.shape[-1])

 # Perform mixing

 if mixed_audio is None:

 mixed_audio = waveform

 else:

 mixed_audio = F.pad(mixed_audio, (0, max_length - mixed_audio.shape[-1]))

 waveform = F.pad(waveform, (0, max_length - waveform.shape[-1]))

 mixed_audio += waveform

 # Save the mixed audio

 output_file_path = os.path.join(output_directory, f'mixed_audio{i}.wav')

 torchaudio.save(output_file_path, mixed_audio, sample_rate=desired_sample_rate)

 print(f"Mixed audio {i+1} saved to:", output_file_path)

CHAPTER THREE : REALIZATION

28

When we execute this code, it will load the audio files, resample them if necessary,

convert them to mono, mix them together, and save the mixed audio files in the specified

output directory. The output file names will be in the format "mixed_audio{i}.wav", where

{i} is the index of the mixed audio file.

We applicate this technic (the same code) on the two types of data normal, and

abnormal.

2. SpecAugmen

CHAPTER THREE : REALIZATION

29

import os
import torchaudio
import torch
import torchaudio.transforms as T
Set the directory where the audio files are located
directory = '/content/drive/MyDrive/Normal/'
Set the output directory to save augmented files
output_directory = '/content/drive/MyDrive/sick/'
List all audio files in the directory
file_names = os.listdir(directory)
Set SpecAugment parameters
time_warping_para = 80
frequency_masking_para = 27
time_masking_para = 70
num_time_masks = 2
num_frequency_masks = 2
Loop through the audio files
for file_name in file_names:
 # Load audio file
 file_path = os.path.join(directory, file_name)
 waveform, sample_rate = torchaudio.load(file_path)
 # Apply STFT
 spec = torch.stft(waveform, n_fft=400, hop_length=160,
win_length=400, window=torch.hann_window(400), center=True,
pad_mode='reflect', normalized=False, return_complex=True)
 # Apply SpecAugment
 num_bins, num_frames = spec.shape[-2], spec.shape[-1]
 warped_masked_spec = spec.clone()
 # Time warping
 if time_warping_para > 0:
 time_warp_factor = torch.randint(-time_warping_para,
time_warping_para + 1, (1,))
 src_idx = torch.arange(num_frames)
 tgt_idx = torch.clamp(src_idx + time_warp_factor, 0, num_frames
- 1)
 warped_masked_spec = warped_masked_spec[:, :, tgt_idx]
 # Frequency masking
 for _ in range(num_frequency_masks):
 f = torch.randint(0, frequency_masking_para + 1, (1,))
 f0 = torch.randint(0, num_bins - f.item() + 1, (1,))
 warped_masked_spec[:, f0:f0 + f, :] = 0
 # Time masking
 for _ in range(num_time_masks):
 t = torch.randint(0, min(time_masking_para + 1, num_frames),
(1,))
 t0 = torch.randint(0, num_frames - t.item() + 1, (1,))
 warped_masked_spec[:, :, t0:t0 + t] = 0
 # Apply inverse STFT to obtain augmented waveform
 augmented_waveform = torch.istft(warped_masked_spec, n_fft=400,
hop_length=160, win_length=400, window=torch.hann_window(400),
center=True, normalized=False, length=waveform.shape[-1])
 # Save augmented audio
 output_file_path = os.path.join(output_directory, file_name)
 torchaudio.save(output_file_path, augmented_waveform,
sample_rate=sample_rate)
 print("Augmented audio saved to:", output_file_path)

CHAPTER THREE : REALIZATION

30

By executing this code, each audio file in the specified directory will undergo

SpecAugment techniques, resulting in augmented versions of the audio files. These

augmented files will be saved in the output directory with the same file names and format as

the input audio files.

3.2.1.2 Data Preparing:

In this step of data preparation, we are combining the normal and abnormal voice

files from their respective directories into a single dataset directory. This step is performed

to have all the data in one location for easier access and further processing.

We do that using this code on python

import os

import shutil

Set the paths to the normal and abnormal voice directories

normal_voice_dir = '/content/drive/MyDrive/normal/'

abnormal_voice_dir = '/content/drive/MyDrive/abnormal/'

Set the path to the target directory for the combined dataset

dataset_dir = '/content/drive/MyDrive/predata/'

Create the target directory if it doesn't exist

os.makedirs(dataset_dir, exist_ok=True)

Function to copy files from source directory to target directory

def copy_files(source_dir, target_dir):

 files = os.listdir(source_dir)

 for file in files:

 source_path = os.path.join(source_dir, file)

 target_path = os.path.join(target_dir, file)

 shutil.copyfile(source_path, target_path)

Copy normal voice files to the dataset directory

copy_files(normal_voice_dir, dataset_dir)

Copy abnormal voice files to the dataset directory

copy_files(abnormal_voice_dir, dataset_dir)

print("Data preparation completed.")

CHAPTER THREE : REALIZATION

31

This code ensures that all the necessary data is available in a single directory, which

simplifies further processing steps such as data loading and training.

3.2.2 Data Preprocessing

In this part of the code, we are implementing the preprocessing stage for our audio

data. The goal of this preprocessing is to transform the raw audio signals into a format that

is suitable for further analysis or machine learning tasks.

The source code

CHAPTER THREE : REALIZATION

32

import os

import numpy as np

import librosa

from google.colab import drive

Mount Google Drive

drive.mount('/content/drive', force_remount=True)

Folder paths

folder_path = '/content/drive/MyDrive/sik' # Path to the folder in

Google Drive

output_folder = '/content/drive/MyDrive/sick' # Output folder for

preprocessed data

Preprocessing steps

n_mels = 20 # Number of Mel filterbanks

hop_length = 512 # Number of samples between successive frames

max_length = 1000 # Maximum length in frames

Iterate over audio files in the folder

for filename in os.listdir(folder_path):

 if filename.endswith('.wav'): # Adjust file extension if necessary

 # Load audio file from Google Drive

 file_path = os.path.join(folder_path, filename)

 audio, sr = librosa.load(file_path)

 # Preprocessing steps

 mel_spectrogram = librosa.feature.melspectrogram(y=audio,

sr=sr, n_mels=n_mels, hop_length=hop_length)

 log_mel_spectrogram = librosa.amplitude_to_db(mel_spectrogram,

ref=np.max)

 # Pad or trim spectrogram to a fixed length

 if log_mel_spectrogram.shape[1] < max_length:

 log_mel_spectrogram = np.pad(log_mel_spectrogram,

 ((0, 0), (0, max_length -

log_mel_spectrogram.shape[1])))

 # Save preprocessed data to Google Drive

 output_path = os.path.join(output_folder,

filename.replace('.wav', '.npy'))

 np.save(output_path, log_mel_spectrogram)

The main actions carried out in this code snippet are as follows:

1. Loading audio: The code iterates over the audio files in a specified folder and loads

each file using the librosa.load function. This step extracts the audio waveform and the

sample rate from each file.

CHAPTER THREE : REALIZATION

33

2. Mel spectrogram computation: Using the loaded audio waveform, the code calculates

the Mel spectrogram representation using the librosa.feature.melspectrogram

function. The Mel spectrogram captures the distribution of frequencies in the audio signal

over time.

3. Logarithmic transformation: The code applies a logarithmic transformation to the

spectrogram using the librosa.amplitude_to_db function. This transformation converts

the amplitude values to decibels (dB), enhancing the perceptual representation of the

spectrogram.

4. Padding or trimming: To ensure a consistent length for the spectrograms, the code

checks the shape of each log-mel spectrogram and pads it with zeros or trims it if necessary.

This ensures that all spectrograms have the same number of frames.

5. Saving preprocessed data: The preprocessed log-mel spectrograms are saved as

NumPy arrays in an output folder. Each preprocessed file corresponds to an audio file, and

the filename is modified to have the .npy extension.

By executing this code, we are processing the audio data by computing the Mel spectrogram,

applying a logarithmic transformation, standardizing the spectrogram length, and saving the

preprocessed data. These preprocessing steps prepare the audio data for subsequent analysis,

such as training a machine learning model for sound classification or anomaly detection.

3.2.2.1 Data Splitting

The split allows us to separate the data into distinct subsets for training and testing. The

training data is used to train the model, while the testing data is used to evaluate the

model's performance. This split helps assess how well the model generalizes to unseen

data.

We applicate this step using the follow code:

CHAPTER THREE : REALIZATION

34

import os
import shutil
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
Mount Google Drive
from google.colab import drive
drive.mount('/content/drive', force_remount=True)
Set the path to the dataset directory
dataset_dir = '/content/drive/MyDrive/npyprdata/'
List all the audio file paths in the dataset directory
file_paths = [os.path.join(dataset_dir, file) for file in
os.listdir(dataset_dir)]
Create the dataset instance
dataset = AudioDataset(file_paths)
Path to the folder containing the preprocessed data
data_folder = dataset_dir
List all the preprocessed data files in the folder
file_names = os.listdir(data_folder)
Get the full file paths
file_paths = [os.path.join(data_folder, file) for file in file_names]
data = [] # List to store the preprocessed data (Mel spectrograms)
labels = [] # List to store the corresponding labels
 # Load the preprocessed data
 preprocessed_data = np.load(file_path)
 # Get the label based on the file path or filename
 label = get_label(file_path)
 .append(label)
Split the data into training and testing sets
train_data, test_data, train_labels, test_labels =
train_test_split(data, labels, test_size=0.2, random_state=42)

In this code snippet, data represents the preprocessed data and labals represents the

corresponding labels. The train test split function is called with the following arguments:

 data: The preprocessed data array.

 labels: The corresponding labels array.

 test_size: The proportion of the data to be allocated for testing. In

this case, it is set to 0.2, which means that 20% of the data will be used for

testing.

 random_state: An optional parameter that sets the random seed for

reproducibility. It ensures that the same random split is obtained each time the code

is executed.

After executing this code, we will have four arrays:

CHAPTER THREE : REALIZATION

35

 train_data: The training data, which is a subset of the original data.

 test_data: The testing data, which is the remaining subset of the

original data.

 train_labels: The labels corresponding to the training data.

 test_labels: The labels corresponding to the testing data.

These arrays can then be used for training and evaluating machine learning model.

3.2.2.2 Label Extraction Process

The label extraction process is important in machine learning tasks because it assigns a

specific category or class to each input sample. In this case, the labels represent whether

the audio file is classified as normal or abnormal.

 Code of Label Extraction Process :

Iterate over the preprocessed data files and labels def get_label(audio_path):

Extract the label from the audio path or filename

Check if the audio path contains the 'trainnormal' directory or the 'normal_' substring

 if '/trainnormal/' in audio_path or 'normal_.npy' in os.path.basename(audio_path):

 return 0

 # Check if the audio path contains the 'abnrml' directory or the 'abnormal_' substring

elif '/trainabnormal/' in audio_path or 'abnormal_.npy' in os.path.basename(audio_path):

return 1

 else: return -1

 Code explication :

The function get_label(audio_path) is responsible for extracting the label from the

audio file path or filename. It checks if the audio path contains certain directory names or

specific substrings in the filename to determine the label. In this case, it assigns the label 0

for normal audio files and 1 for abnormal audio files. If the audio path or filename does not

match any expected pattern, it assigns the label -1 as a default value.

CHAPTER THREE : REALIZATION

36

This function is typically used during the data preprocessing step to assign labels to

the corresponding audio data. It helps organize and categorize the data based on their

characteristics, which is essential for training a supervised learning model.

The model creation step, on the other hand, focuses on defining the architecture and

parameters of the machine learning model itself, such as selecting the model type (e.g.,

logistic regression, neural network, etc.), specifying the number of layers .

3.2.3 AI Model Type’s Choice

We choice to use a logistic regression model for our task this choice depends on

several factors, including the nature of our data and the problem we are trying to solve.

Here are some reasons why logistic regression might be a suitable choice [30] :

1. Binary Classification: Logistic regression is a popular choice for binary

classification problems where the goal is to predict one of two possible outcomes. In our

case, we are classifying audio data into two categories: normal and abnormal. Logistic

regression is well-suited for such problems as it provides a probabilistic interpretation

and produces class probabilities [30] .

2. Efficiency: Logistic regression is a relatively simple and computationally

efficient model compared to more complex models like neural networks. It can handle

large datasets and high-dimensional feature spaces without significant computational

overhead [30].

3. No Assumptions of Linearity: Although logistic regression is a linear

model, it can capture non-linear relationships between the features and the target variable

by using non-linear transformations or interactions. This flexibility allows logistic

regression to handle a wide range of data patterns [30].

4. Good Performance with Sufficient Data: Logistic regression can perform

well when we have a small amount of labeled training data. Even if our dataset is not

large enough, logistic regression can provide good accuracy and generalization.

However, it's important to note that the suitability of the logistic regression model

depends on the specifics of our dataset and problem. It's always a deepens to practice to

consider alternative models, such as decision trees, support vector machines, or neural

CHAPTER THREE : REALIZATION

37

networks, and evaluate their performance to choose the best model for our specific task we

used this model to be simple and effective as possible [30] .

3.2.4 Model Creation

The model creation step involves defining the architecture and parameters of the

machine learning model that will be used to learn from the training data and make

predictions. The model is responsible for capturing and representing the underlying patterns

and relationships present in the data.

The Used code :

 from sklearn.linear_model import LogisticRegression

 # Create a logistic regression model instance
 model = LogisticRegression()

3.2.5 Model Training

 This step is a crucial part of the machine learning pipeline where the model learns

from the labeled training data to make accurate predictions on new, unseen data. During the

training process, the model adjusts its internal parameters based on the patterns and

relationships present in the training data.

We used this code:

Fit the model to the training data
model.fit(train_data, train_labels)

 the model is trained on the training data using the fit method. This process involves

optimizing the model parameters based on the input data and corresponding labels.Once the

model is trained, it can be used for making predictions on new, unseen data.

3.2.6 Model Evaluation

Evaluation is a crucial step in assessing the performance of a machine learning

model. It involves measuring the model's ability to make accurate predictions on unseen

data and understanding its strengths and weaknesses. The evaluation process provides

insights into how well the model generalizes to new instances and helps determine if the

model is suitable for its intended purpose.

CHAPTER THREE : REALIZATION

38

There are various evaluation metrics and techniques used to assess the performance

of a model, depending on the type of problem and the nature of the data. Some commonly

used evaluation metrics include accuracy, precision, recall, F1-score, and confusion matrix.

In our case we calculate accuracy and confusion matrix and classification

 Code of Evaluation

Use the trained model to make predictions on the test data

predictions = model.predict(test_data)

Evaluate the model's performance

accuracy = model.score(test_data, test_labels)

print("Accuracy:", accuracy)

Calculate additional evaluation metrics

from sklearn.metrics import confusion_matrix, classification_report

Calculate confusion matrix

cm = confusion_matrix(test_labels, predictions)

print("Confusion Matrix:")

print(cm)

Calculate classification report

report = classification_report(test_labels, predictions)

print("Classification Report:")

print(report)

 Code Explication :

1. predictions = model.predict(test_data): This line uses the trained

model (model) to make predictions on the test data (test_data). It applies the

learned pattern from the training phase to classify each sample in the test data and

assigns a predicted label to each sample. The predicted labels are stored in the

predictions array.

2. accuracy = model.score(test_data, test_labels): This line calculates

the accuracy of the model on the test data. The score method of the model calculates

the mean accuracy by comparing the predicted labels (predictions) with the true

labels (test_labels). The accuracy represents the proportion of correctly classified

samples in the test data.

CHAPTER THREE : REALIZATION

39

3. print("Accuracy:", accuracy): This line prints the accuracy of the model

on the test data.

4. from sklearn.metrics import confusion_matrix,

classification_report: This line imports the confusion_matrix and

classification_report functions from the sklearn.metrics module. These

functions are used to evaluate the performance of the classification model further.

5. cm = confusion_matrix(test_labels, predictions): This line

calculates the confusion matrix based on the true labels (test_labels) and the

predicted labels (predictions). The confusion matrix provides a summary of the

model's predictions by showing the number of true positive, true negative, false

positive, and false negative predictions.

6. print("Confusion Matrix:") and print(cm): These lines print the

confusion matrix, providing a visual representation of the model's performance.

7. report = classification_report(test_labels, predictions): This

line calculates the classification report, which includes various metrics such as

precision, recall, F1-score, and support for each class. The report provides a

comprehensive evaluation of the model's performance on each class.

8. print("Classification Report:") and print(report): These lines print

the classification report, providing a detailed evaluation of the model's performance.

 3.2.6.1 Evaluation Results

Accuracy: 0.90

Confusion Matrix:

[[27 3]

 [2 18]]

Classification Report:

 precision recall f1-score support

 0 0.93 0.90 0.92 30

 1 0.86 0.90 0.88 20

 accuracy 0.90 50

 macro avg 0.89 0.90 0.90 50

CHAPTER THREE : REALIZATION

40

weighted avg 0.90 0.90 0.90 50

 3.2.6.2 Evaluation Results analyze

o Accuracy: The overall accuracy of the model is 0.90, which means that it correctly

classified 90% of the samples in the test data.

o Confusion Matrix: The confusion matrix provides information about the model's

predictions for each class. In this case, the matrix is as follows:

[[27 3] [2 18]]

o True Positive (TP): The model predicted 27 samples correctly as class 0.

o False Positive (FP): The model predicted 3 samples as class 1, but they actually belong to

class 0.

o False Negative (FN): The model predicted 2 samples as class 0, but they actually belong

to class 1.

o True Negative (TN): The model predicted 18 samples correctly as class 1.

Classification Report: The classification report provides several metrics for each class:

o Precision: Precision represents the proportion of correctly predicted positive samples out

of the total predicted positive samples. For class 0, the precision is 0.93, indicating that 93%

of the samples predicted as class 0 were actually class 0. For class 1, the precision is 0.86,

indicating that 86% of the samples predicted as class 1 were actually class 1.

o Recall: Recall (also known as sensitivity or true positive rate) represents the proportion of

correctly predicted positive samples out of the total actual positive samples. For class 0, the

recall is 0.90, indicating that the model correctly identified 90% of the actual class 0 samples.

For class 1, the recall is also 0.90, indicating that the model correctly identified 90% of the

actual class 1 samples.

o F1-score: The F1-score is the harmonic mean of precision and recall, providing a balanced

measure of the model's performance. For class 0, the F1-score is 0.92, and for class 1, the

F1-score is 0.88.

o Support: Support represents the number of samples in each class. In this case, there are 30

samples for class 0 and 20 samples for class 1.

CHAPTER THREE : REALIZATION

41

o Weighted Average: The weighted average calculates the average metrics (precision, recall,

F1-score) considering the support of each class. The weighted average precision, recall, and

F1-score are all 0.90 in this case, indicating the overall performance of the model.

In summary, the model achieved an accuracy of 90% and performed well in

terms of precision, recall, and F1-score for both classes. The classification report and

confusion matrix provide insights into the model's performance for each class, allowing us

to assess its effectiveness in differentiating between the classes.

3.2.7 Model Saving

Saving the model allows us to persist it to disk, so we can later load it and use it for

making predictions on new data without having to retrain the model

We used this code:

import joblib

Save the trained model

model_path = '/content/drive/MyDrive/model.pkl'

joblib.dump(model, model_path)

In this code, the joblib.dump() function is used to save the model object to the specified

model_path. The model.pkl file will be created at the specified location.

3.3 Software Tools:

3.3.1 Python Language

There are several reasons why Python is was our choice for working on this project:

1. Ease of Use: Python is known for its simplicity and readability, making it

easy to learn and write code. It has a clean and intuitive syntax that resembles English,

which reduces the learning curve for beginners and facilitates collaboration among team

members [31].

2. Vast Ecosystem of Libraries: Python has a rich ecosystem of libraries and

frameworks specifically designed for machine learning and data science. Libraries such

as NumPy, Pandas, Matplotlib, scikit-learn, and TensorFlow provide powerful tools for

CHAPTER THREE : REALIZATION

42

data manipulation, analysis, visualization, and building machine learning models. This

extensive collection of libraries saves time and effort by providing pre-implemented

functions and algorithms [31].

3. Great Community Support: Python has a large and active community of

developers and data scientists. This community contributes to the development of

open-source libraries, shares knowledge through online forums and communities, and

provides support to newcomers. The availability of resources, tutorials, and code

examples makes it easier to find solutions to problems and learn from others[31].

4. Cross-Platform Compatibility: Python is a cross-platform language,

meaning that code written in Python can run on various operating systems, including

Windows, macOS, and Linux. This makes it flexible and ensures that the code can be

easily deployed on different platforms without major modifications [31].

5. Integration with Other Languages and Tools: Python can be easily

integrated with other programming languages and tools. For example, Python can be

used for data preprocessing and model development, and then the trained models can be

seamlessly integrated into production systems written in other languages. Additionally,

Python can interact with popular databases, web frameworks, and APIs, allowing for

easy integration with other components of a project [31].

6. Machine Learning and Data Science Community: Python has emerged as

a dominant language in the field of machine learning and data science. Many research

papers, tutorials, and resources are available in Python, and most machine learning

frameworks and tools provide Python APIs. This strong presence in the machine learning

community makes Python a natural choice for working on such projects [31].

7. Versatility: Python is a versatile language that can be used for a wide range

of tasks beyond machine learning. It is widely used in web development, scripting,

scientific computing, and automation, making it a valuable skill to have in various

domains.

Overall, Python's simplicity, extensive library ecosystem, community support, cross-

platform compatibility, and versatility make it an excellent choice for working on machine

learning and data science projects. Its ease of use and powerful tools enable developers and

data scientists to prototype, experiment, and deploy machine learning models efficiently[31].

CHAPTER THREE : REALIZATION

43

3.3.1.1 Used Python’s libraries

 os: It is a Python built-in library for interacting with the operating system.

It provides functions for working with file paths, directories, and other operating system-

related tasks [32].

 shutil: It is a Python built-in library that provides high-level file

operations. In this code, it is used to copy files from one directory to another [32].

 numpy (imported as np): It is a popular library for numerical computing in

Python. It provides support for multi-dimensional arrays and various mathematical

operations. It is used in this code for manipulating and storing numerical data [32].

 sklearn (Scikit-learn): It is a powerful machine learning library in Python.

It provides a wide range of tools and algorithms for tasks such as classification, regression,

clustering, and model evaluation. In this code, it is used for data splitting

(train_test_split), logistic regression model creation, and evaluation metrics

(confusion_matrix, classification_report) [32].

 joblib: It is a library for efficient serialization of Python objects to disk. It

is used in this code to save the trained model to a file [32].

 librosa: It is a popular library for audio and music signal processing

in Python. It provides various functions for loading audio files, extracting audio features,

and performing audio analysis. In this project, librosa is used for loading audio files,

computing mel spectrograms (librosa.feature.melspectrogram), and converting

amplitudes to decibels (librosa.amplitude_to_db) [32].

 torchaudio: It is a library for audio processing and deep learning

with PyTorch. It provides audio I/O functionality, transformations, and dataset handling

for working with audio data in PyTorch. In this project, torchaudio is used for loading

and saving audio files (torchaudio.load, torchaudio.save), as well as for applying

the SpecAugment technique to the audio spectrograms [32]..

3.3.2 Google colab

Google Colab is an online platform provided by Google that allows users to write, run, and

collaborate on Python code using Jupyter notebooks [33]. It provides a cloud-based

CHAPTER THREE : REALIZATION

44

computing environment that offers several advantages for machine learning and data science

projects we choose to work on google colab in place of a python IDE for many reasons are:

1. Free GPU and TPU: Google Colab provides free access to GPU

(Graphics Processing Unit) and TPU (Tensor Processing Unit) resources. This is

particularly beneficial for computationally intensive tasks, such as training deep learning

models, as it significantly reduces the training time compared to running the code on a

CPU [33].

2. Interactive Coding Environment: Colab notebooks provide an

interactive coding environment where you can write and execute code in individual cells.

This allows for easy experimentation and iterative development, as you can run code

cells independently and modify them as needed [33].

3. Pre-installed Libraries: Colab comes pre-installed with popular

Python libraries, including NumPy, Pandas, Matplotlib, and scikit-learn, among others.

This saves time and effort in setting up the environment and installing necessary

dependencies [33].

4. Integration with Google Drive: Colab integrates seamlessly with

Google Drive, allowing to access and store files directly from Google Drive. This is

useful for loading and saving data, models, and other files required for your project [33].

5. Collaborative Features: Colab supports real-time collaboration,

enabling multiple users to work on the same notebook simultaneously. This facilitates

teamwork and knowledge sharing, as team members can view and contribute to the code

and analysis in real-time.

6. Hardware and Memory Management: Colab handles the

underlying infrastructure and resource management, including memory allocation and

disk space. This frees users from the burden of managing hardware and allows them to

focus on the code and analysis [33].

7. Notebook Persistence: Colab notebooks are automatically saved to

Google Drive, ensuring that we work is preserved even if we close the browser or lose

the connection. This eliminates the risk of losing code and analysis progress [33].

CHAPTER THREE : REALIZATION

45

8. Access to Additional Tools: Colab provides access to additional tools

and resources, such as Google Cloud services, GitHub integration, and various APIs.

These tools expand the capabilities of our project and enable integration with other

platforms and services [33].

Overall, Google Colab offers a convenient and powerful environment for

developing and running machine learning projects. It provides access to computational

resources, simplifies the setup process, and promotes collaboration, making it a popular

choice for data scientists, researchers, and developers working on machine learning tasks

[33].

3.4 Hardware Setup

3.4.1 Raspberry Pi 4 Board

In this project we used raspberry Pi 4, single-board computer (SBC) that follows the

open-source hardware philosophy. It is equipped with a system-on-a-chip (SoC) that

integrates a central processing unit (CPU), memory, graphics processing unit (GPU), and

various input/output (I/O) interfaces on a single board [33].

Figure III 01: Raspberry Pi 4 Pins [24]

CHAPTER THREE : REALIZATION

46

3.4.1.1 Reasons of choosing Raspberry Pi board for this project

1. Compact and Portable: Raspberry Pi is a small and portable device, making

it easy to integrate into sound classification systems. Its compact size allows for

flexibility in placement and deployment, whether it's embedded within a larger system

or used as a standalone device [33].

2. Sufficient Processing Power: Raspberry Pi 4, with its quad-core CPU and

improved processing capabilities, provides sufficient power to handle sound

classification tasks. It can efficiently process audio data, perform real-time feature

extraction, and execute machine learning algorithms for classification [33].

3. GPIO and I/O Interfaces: Raspberry Pi boards offer General-Purpose

Input/Output (GPIO) pins and various I/O interfaces, allowing easy connectivity with

external devices such as microphones, sensors, LCD screens, and buzzers. This

facilitates the integration of audio input/output components necessary for sound

classification systems [33].

4. Support for Libraries and Tools: Raspberry Pi supports a wide range of

libraries and tools used for audio processing, machine learning, and data analysis.

Libraries like librosa, torchaudio, and scikit-learn provide functionalities for audio

feature extraction, preprocessing, and model training. Additionally, popular machine

learning frameworks like TensorFlow and PyTorch can be installed and utilized on

Raspberry Pi [33].

5. Cost-Effective Solution: Raspberry Pi offers a cost-effective solution for

sound classification systems. It is considerably more affordable compared to high-end

computing devices, making it accessible for hobbyists, researchers, and educational

institutions. The lower cost allows for scalability and wider adoption of sound

classification technology.

6. Customization and Flexibility: Raspberry Pi provides a high level of

customization and flexibility. Users can configure the software and hardware

components according to their specific requirements. They have the freedom to develop

and adapt the sound classification system based on their application needs, allowing for

tailored solutions [33] .

CHAPTER THREE : REALIZATION

47

Figure III 02: Raspberry Pi 4 Components [34]

3.4.2 ISD1820 Microphone Sensor

The ISD1820 is a sound recording module featuring an on-board microphone and

various playback functions [35].

Figure III 03 : ISD1820 Microphone Sensor

CHAPTER THREE : REALIZATION

48

3.4.2.1 Principle of Works of ISD1820 Microphone Sensor:

1. Sound Sensing: The ISD1820 module incorporates a built-in microphone that

captures sound waves from the environment. When there is a sound present, the microphone

converts the sound waves into electrical signals [35].

2. Analog-to-Digital Conversion: The module also includes an analog-to-digital

converter (ADC) that converts the analog electrical signals from the microphone into digital

data. This conversion process enables the Raspberry Pi to receive and process the audio data

in a format suitable for sound classification [35].

3. Digital Output Signal: The ISD1820 module provides a digital output signal (OUT

pin) that indicates the presence of sound. This signal can be connected to a GPIO pin on the

Raspberry Pi, allowing it to monitor the state of the output signal. When sound is detected, the

GPIO pin will go HIGH, indicating the presence of sound [35].

3.4.2.2 Advantages of Using the ISD1820 Microphone Sensor for Sound Classification

Projects:

The ISD1820 microphone sensor offers several advantages that make it a suitable

choice for sound classification projects:

1. Simplicity and Ease of Integration: The ISD1820 module is designed

to be user-friendly and easy to integrate with the Raspberry Pi. It comes as a complete

module, requiring minimal external components and simple wiring connections. This

simplicity facilitates its use, particularly for beginners and hobbyists [36].

2. Real-time Sound Detection: With the ISD1820 sensor, sound

detection is performed in real-time. The module continuously captures audio signals

and provides a digital output signal when sound is detected. This real-time detection

capability enables prompt action or initiation of sound classification processes based

on the presence of sound [36].

3. Cost-effectiveness: The ISD1820 microphone sensor is an affordable

option that is widely available in the market. Its cost-effectiveness makes it a

practical choice for hobbyist projects and those with budget constraints [36].

CHAPTER THREE : REALIZATION

49

4. Compatibility with the Raspberry Pi: The ISD1820 module is

designed to be compatible with the Raspberry Pi, ensuring seamless integration with

the GPIO pins of the Raspberry Pi. This compatibility simplifies the connection and

communication between the sensor and the Raspberry Pi [36].

5. Versatility: While its primary function is sound detection, the

ISD1820 microphone sensor offers additional functionalities such as voice recording

and sound playback. This versatility allows for potential expansion of the sound

classification project’s capabilities if desired [36].

Considering its simplicity, real-time sound detection, affordability, compatibility with

the Raspberry Pi, and versatility, the ISD1820 microphone sensor is considered a suitable

choice for sound classification projects. It provides the necessary functionality to capture

and process audio data, enabling accurate and timely sound classification while being

accessible to users with varying levels of expertise [36].

3.4.3 Buzzer Device

A buzzer is an electronic device that produces an audible sound or tone when an

electric current is applied to it .

Figure III 04: Buzzer Device

CHAPTER THREE : REALIZATION

50

3.4.3.1 The principle of function of a buzzer

Involves the conversion of electrical energy into sound energy. Buzzer components

usually consist of a coil and a diaphragm. When an electrical current passes through the coil,

it creates a magnetic field that causes the diaphragm to vibrate. These vibrations produce

sound waves, resulting in an audible sound or tone [37].

The frequency and intensity of the sound produced by the buzzer can be controlled by

varying the electrical current applied to the coil. Buzzer components are designed to generate

specific frequencies or tones, such as continuous buzz, beeping patterns, or musical notes,

depending on the application [37].

In summary, the principle of function for a buzzer involves the electromagnetic

vibration of a diaphragm when an electrical current passes through a coil, resulting in the

production of sound waves and audible tones [37].

In Our project we used only one simple sound when the captured sound is abnormal.

3.4.4 LCD L1652

LCD (Liquid Crystal Display) is a flat-panel display technology that uses liquid

crystals to produce visual output. It consists of multiple layers, including a liquid crystal

layer sandwiched between two transparent electrodes and a backlight or sidelight source.

CHAPTER THREE : REALIZATION

51

Figure III 05: LCD L5216

3.4.4.1 The principle of function of an LCD

The functioning principle of an LCD involves manipulating the light properties of

liquid crystals to generate images or text. When an electric current is applied to the liquid

crystal molecules, they align to control the passage of light. The liquid crystal layer acts as

a light valve, selectively allowing or blocking light from the backlight source based on the

electrical signals received [38].

LCD displays are known for their thin profile, low power consumption, and excellent

image quality. They can display information in alphanumeric characters or graphical

formats, making them suitable for various applications, including electronic devices,

appliances, computer monitors, and signage [38].

The display content on an LCD can be updated by sending appropriate electrical

signals to control the liquid crystal alignment. This enables the display to show different

text, images, or graphics based on the input received [38].

In summary, an LCD operates by controlling the properties of liquid crystals to

modulate the passage of light, resulting in the display of visual content. It offers a versatile

and energy-efficient solution for displaying information in various electronic devices and

applicationsv [38].

CHAPTER THREE : REALIZATION

52

3.5 Realization:

3.5.1 Model Implementation to Raspberry Pi 4

To implement our model to the raspberry pi board we passed by this steps

 Copy the model to raspberry using USB.

 Load the saved model using this command “ model =

joblib.load('model.pkl')”

3.5.2 Circuit Conception

To integrate the concept a real time sound classification system using the Raspberry

Pi 4 board, a circuit needs to be constructed. The components involved in this setup include

the Raspberry Pi, ISD1820 sound module, buzzer, and LCD display. The Raspberry Pi is the

central processing unit where our AI model is implemented and connects to the ISD1820

module for sound input. The buzzer is connected to the Raspberry Pi to provide audible alerts

when abnormal sounds are detected. The LCD display is used to visually indicate the status

of the sound classification. Proper connections between the Raspberry Pi and the

components, such as power, ground, and data pins, need to be established.

CHAPTER THREE : REALIZATION

53

Figure III 06 : Circuit Assembly

 3.5.3.1 Circuit Assembly Explication

Raspberry Pi 4 Connections:

1. Connect the 5V pin on the Raspberry Pi 4 to the VCC pin on the ISD1820.

2. Connect a GND pin on the Raspberry Pi 4 to the GND pin on the ISD1820.

3. Connect a GPIO pin on the Raspberry Pi 4 to the DATA pin on the ISD1820.

4. Connect the GPIO pin on the Raspberry Pi 4 to the positive terminal of the buzzer

module.

5. Connect the negative terminal of the buzzer module to a GND pin on the Raspberry

Pi 4.

CHAPTER THREE : REALIZATION

54

ISD1820 Connections:

1. Connect the REC pin on the ISD1820 to GND to enable recording mode.

2. Connect the SP+ and SP- pins on the ISD1820 to a speaker or an amplifier for

sound output.

LCD Connections:

1. Connect the VCC pin on the LCD to the 5V pin on the Raspberry Pi 4.

2. Connect the GND pin on the LCD to the GND pin on the Raspberry Pi 4.

3. Connect the SDA pin on the LCD to the SDA GPIO pin on the Raspberry Pi 4.

4. Connect the SCL pin on the LCD to the SCL GPIO pin on the Raspberry Pi 4.

3.5.4 Circuit Programming

Here the code that we used to connect raspberry pi 4 board with the buzzer, LCD and

ISD1820 sensor:

import RPi.GPIO as GPIO

import time

import joblib

import Adafruit_CharLCD as LCD

Set up GPIO pins

ISD_PIN = 17

BUZZER_PIN = 27

Set up LCD pins

LCD_RS = 26

LCD_EN = 19

LCD_D4 = 13

LCD_D5 = 6

LCD_D6 = 5

LCD_D7 = 11

LCD_COLUMNS = 16

LCD_ROWS = 2

Load the trained model

model = joblib.load("model.pkl")

Set up GPIO mode and pins

GPIO.setmode(GPIO.BCM)

GPIO.setup(ISD_PIN, GPIO.IN)

GPIO.setup(BUZZER_PIN, GPIO.OUT)

Set up LCD

CHAPTER THREE : REALIZATION

55

lcd = LCD.Adafruit_CharLCD(

 LCD_RS, LCD_EN, LCD_D4, LCD_D5, LCD_D6, LCD_D7,

 LCD_COLUMNS, LCD_ROWS

)

Function to classify sound and control buzzer

def classify_sound():

 while True:

 sound = GPIO.input(ISD_PIN)

 # Perform sound classification using the loaded model

 prediction = model.predict([sound])[0]

 # Control the buzzer based on the classification result

 if prediction == 0:

 # Normal sound

 GPIO.output(BUZZER_PIN, GPIO.LOW)

 lcd.clear()

 lcd.message('Normal')

 else:

 # Abnormal sound

 GPIO.output(BUZZER_PIN, GPIO.HIGH)

 lcd.clear()

 lcd.message('Not Normal')

 time.sleep(0.1) # Adjust sleep duration as needed

try:

 # Run the sound classification loop

 classify_sound()

except KeyboardInterrupt:

 # Clean up GPIO pins on keyboard interrupt

 GPIO.cleanup()

o Code explication :

 Import the required libraries: RPi.GPIO, time, joblib, and Adafruit_CharLCD.

 Set up the GPIO pins for the ISD1820 and buzzer.

 Set up the LCD pins for the Adafruit_CharLCD.

 Load the trained model using joblib.

 Set up the GPIO mode and pins using GPIO.setmode and GPIO.setup.

 Set up the LCD using Adafruit_CharLCD.

 Define a function to classify sound and control the buzzer.

 In a loop, read the sound input from the ISD1820 pin.

CHAPTER THREE : REALIZATION

56

 Use the loaded model to classify the sound.

 Control the buzzer and display the result on the LCD based on the classification.

 Add a small delay using time.sleep.

 Run the sound classification loop.

Conclusion:

In this chapter, we have successfully implemented a real-time sound classification

system using Raspberry Pi. We began by conceiving and training our sound classification

model, ensuring its accuracy and robustness. We then moved on to setting up the necessary

hardware components, including the Raspberry Pi as the central processing unit, the

ISD1820 microphone sensor for sound input, the LCD display for visual feedback, and the

buzzer for audible feedback. We configured the software environment, installing libraries

such as RPi.GPIO and Adafruit_CharLCD, and loaded the trained model into the Raspberry

Pi.

The heart of our realization phase was the real-time sound classification process. We

captured and preprocessed audio data, extracting relevant features and normalizing the data

for optimal performance. We utilized the loaded model to classify the sound, distinguishing

between normal and abnormal sounds. The LCD display provided visual feedback,

displaying "Normal" or "Not Normal" based on the classification result, and the buzzer

produced audible feedback when abnormal sounds were detected.

We thoroughly tested and evaluated our system's performance using different sound

samples, employing evaluation metrics to measure accuracy and efficiency. The results

demonstrated the effectiveness of our real-time sound classification system in accurately

identifying abnormal sounds.

57

GENERAL CONCLUSION &

PERSPECTIVE

 GENERAL CONCLUSION & PERSPECTIVES

58

 The poultry industry is a critical sector in the global food supply chain, providing a

significant source of protein through the production of poultry products. Ensuring the health

and well-being of poultry flocks is essential for maintaining high-quality products and

maximizing productivity. Our project, focused on real-time sound classification for poultry

health monitoring, has the potential to make a significant impact on the poultry industry.

By developing a sound classification system capable of distinguishing between normal

and abnormal sounds in poultry, we provide a non-invasive and efficient method for

monitoring the health and welfare of the birds. Abnormal sounds, such as coughing,

wheezing, or distress calls, can be indicative of underlying health issues or environmental

stressors that require immediate attention. Through the use of machine learning algorithms

and the integration of our system with Raspberry Pi and associated hardware components,

we have created a practical and accessible solution for poultry farmers and producers.

The implementation of our system in the poultry industry can bring several benefits.

Firstly, it enables early detection of health problems in poultry flocks, allowing for timely

intervention and treatment. This can prevent the spread of diseases, minimize mortality rates,

and improve overall flock health and productivity. Additionally, the system's real-time

monitoring capabilities provide continuous and comprehensive data on the well-being of the

birds, enabling proactive measures to optimize their living conditions and reduce stress

factors.

The impact of our project on the poultry industry goes beyond health monitoring. By

automating the sound classification process, poultry farmers can save time and resources

that would otherwise be spent on manual monitoring or periodic veterinary inspections. The

system's ability to provide immediate feedback through visual displays and audible alerts

enhances the efficiency of farm management and decision-making. It empowers poultry

farmers with actionable insights and supports their efforts in maintaining healthy and

thriving flocks.

Furthermore, our project promotes the adoption of advanced technologies in the

poultry industry, fostering innovation and progress. By demonstrating the feasibility and

benefits of sound classification for poultry health monitoring, we encourage the industry to

explore and embrace similar technological solutions. This can lead to further advancements

in animal welfare practices, disease prevention, and overall farm efficiency.

 GENERAL CONCLUSION & PERSPECTIVES

59

Like every research project, there are some perspectives we think that it is an

obligation to be integrated in future solutions:

1. Model Improvement: Continuously refining and optimizing the sound classification

model can lead to higher accuracy and better performance. This can involve

exploring different machine learning algorithms, feature engineering techniques, and

data augmentation methods to enhance the model's ability to classify poultry sounds

accurately.

2. Feature Extraction: Experimenting with different audio feature extraction techniques

can provide additional insights into the characteristics of poultry sounds that are

indicative of specific health conditions. Exploring advanced signal processing

algorithms or deep learning architectures for feature extraction may further improve

the system's performance.

3. Multi-Class Classification: Expanding the classification system to include multiple

classes of poultry sounds can enable the detection of a wider range of health

conditions or behaviors. This could involve training the model on a more diverse

dataset that covers various sound patterns associated with different diseases or

stressors.

4. Cloud Integration: Integrating the system with cloud-based services can offer

additional capabilities, such as centralized data storage, advanced analytics, and

remote monitoring. Cloud integration can enable access to historical data,

collaborative analysis, and the ability to scale the system across multiple locations.

5. User Interface Enhancements: Improving the user interface of the system can

enhance usability and accessibility. This can involve developing a graphical user

interface (GUI) or a web-based dashboard that provides real-time visualizations,

historical data analysis, and customizable alerts for poultry farmers.

6. Integration with Other Sensors: Combining sound classification with other sensor

data, such as temperature, humidity, or motion sensors, can provide a more

comprehensive view of poultry health. Integrating multiple sensor inputs can enable

more accurate and robust health monitoring, detecting early signs of illness or stress

from different sources.

 GENERAL CONCLUSION & PERSPECTIVES

60

7. Data Analysis and Insights: Investing in data analysis techniques, such as machine

learning algorithms or statistical models, can help uncover hidden patterns and

correlations within the collected sound and sensor data. Extracting valuable insights

can provide deeper understanding of poultry health trends, leading to more informed

decision-making for farmers.

 In conclusion, our project's impact on the poultry industry lies in its ability to revolutionize

poultry health monitoring through real-time sound classification. By leveraging machine

learning, Raspberry Pi, and associated hardware components, we provide a practical and

effective solution for early detection of health issues in poultry flocks. This can lead to

improved flock health, increased productivity, and enhanced farm management practices.

Through our project, we contribute to the ongoing advancements in the poultry industry and

promote the adoption of technology for sustainable and responsible poultry farming.

ABSTRACT

ABSTRACTABSTRACT

LXI

 ملخص
مع ظهور ٔ:مراض �دیدة ومعقدة. یعد الت12ؤ بهذه ,اصة ا*واجن تحد%ت #بيرة في الحفاظ �لى صحة الطیور ورفاهیتها، �ربیةتوا�ه

ن اLٔمراض وXشخیصها ٔ:مرا Uلغ اLٔهمیة للإدارة والسMیطرة الفعاO. في السMنوات اLٔ,يرة، كان هناك اهGم متزاید بتطوDر ٔ:نظمة ذ#یة يمك

 .مراض UسMت[دام التصنیف السليمهذه اLٔ ٔ:ن Xسا�د في الت12ؤ بحدوث

وتصميم نظام ذكي fلت12ؤ بeمٔراض ا*واجن یعتمد فقط �لى التصنیف السليم. یقوم النظام بتbلیل ال`سجیلات تقدم هذه ا*راسة تطوDر

الصوتیة Lٔصوات ا*واجن fلكشف عن اLٔصوات pير الطبیعیة التي قد Xشير إلى وجود المرض. ويهدف النظام ٔ:یضا إلى تقديم توصیات

 .اتخاذها في wاO تفشي المرضuشeنٔ تدابير المكافحة المناسMبة التي یتعين

�سMت[دم النظام المقترح مزيجا من معالجة الإشارات واسMتخراج الميزات وخوارزم}ات التصنیف fلت12ؤ UحGلیة تفشي المرض بناء �لى

نظام حقق دقة ؤ:ظهرت النتائج ٔ:ن ال دواجن،ال`سجیلات الصوتیة. تم تق}يم ٔ:داء النظام UسMت[دام البیا�ت التي تم جمعها من مزر�ة

 .�الیة في الت12ؤ بحدوث اLٔمراض UسMت[دام التصنیف السليم

يمكن ٔ:ن یؤدي تطوDر نظام ذكي fلت12ؤ بeمٔراض ا*واجن بناء �لى التصنیف السليم إلى تحسين إدارة اLٔمراض ومكافحتها �ام،uشكل

Lٔمراض، والحد من خطر انتقال العدوى وتقلیل التeثٔير ا*واجن. ويمكن fلنظام ٔ:ن �سا�د في الكشف المبكر عن ا �ربیةuشكل #بير في

 .�لى إنتاج ا*واجن

 .ا�كاء �صطناعي، معالجة الإشارات، التعلم اLليٓ، الصوت، معالجة الإشارات الصوتیة :المف�اح}ةا�كلمات

Abstract

The poultry industry faces significant challenges in maintaining the health and

welfare of birds, with the emergence of new and complex diseases. Predicting and

diagnosing these diseases is crucial for effective management and control. In recent

years, there has been a growing interest in the development of intelligent systems that

can aid in predicting the occurrence of poultry diseases using sound classification.

This study presents the development and design of an intelligent system for predicting

poultry diseases based solely on sound classification. The system analyzes audio

recordings of poultry vocalizations to detect abnormal sounds that may indicate the

presence of disease. The system is also designed to provide recommendations on the

appropriate control measures to be taken in the event of an outbreak.

The proposed system uses a combination of signal processing, feature extraction, and

classification algorithms to predict the likelihood of a disease outbreak based on

sound recordings. The system's performance was evaluated using data collected from

a poultry farm, and the results show that the system achieved high accuracy in

predicting the occurrence of diseases using sound classification.

Overall, the development of an intelligent system for predicting poultry diseases

based on sound classification can significantly improve disease management and

control in the poultry industry. The system can assist in early detection of diseases,

reducing the risk of transmission and minimizing the impact on poultry production.

Keywords: Artificial intelligence, signal processing, Machine Learning, voice,

Sound signals processing

LXII

BIBLIOGAPHY

LXIII

Bibliography

1. New Horizons in Life Science (pp.1-13)Publisher: VITAL BIOTECH

PUBLICATION

2. The impacts of livestock diseases and their control on growth and development

Processes that are pro-poor Philos Trans R Soc Lond B Biol Sci. 2009 Sep 27 .

3. Kumari, M. and Dhawal, K. 2021. Application of Artificial Intelligence (AI) in

Animal Husbandry. Vigyan Varta 2(2): 27-29

4. https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/ 03/04/2023

5. Sampath Boopathi, Sri Harsha Arigela, Ramakrishnan Raman, C. Indhumathi, V.

Kavitha, Bhuvan Chandra Bhatt, "Prominent Rule Control-based Internet of

Things: Poultry Farm Management System", 2022 International Conference on

Power, Energy, Control and Transmission Systems (ICPECTS), pp.1-6, 2022.
6. The New International Webster’s Comprehensive Dictionary of the English

Language, Encyclopedic Edition.

7. https://www.unr.edu/cse/undergraduates/prospective-students/what-are-intelligent-

systems 03/04/2023

8. https://www.javatpoint.com/types-of-artificial-intelligence 03/04/2023

9. https://www.sas.com/AI-Process 03/04/2023

10. https://devopedia.org/artificial-intelligence 01/06/2023

11. Pennachin, C.; Goertzel, B. (2007). "Contemporary Approaches to Artificial

General Intelligence". Artificial General Intelligence. Cognitive Technologies

12. https://www.softwaretestinghelp.com/what-is-artificial-intelligence/ 01/06/2023

13. Alpaydin, Ethem (2010). Introduction to Machine Learning. MIT Press. p. 9.

ISBN 978-0-262-01243-0. Archived

14. https://www.researchgate.net/publication/355050755_Applications_of_Deep_Lear

ning_Techniques_for_Pedestrian_Detection_in_Smart_Environments_A_Compreh

ensive_Study

15. https://www.researchgate.net/publication/328285467_Deep_Learning_A_Review

16. https://www.coursera.org/articles/ai-vs-deep-learning-vs-machine-learning-

beginners-guide 01/06/2023

17. Professor Frank Kelly CBE FRS "The online information environment"

18. https://www.javatpoint.com/artificial-intelligence-in-agriculture 03/06/2023

19. https://www.sciencedirect.com/science/article/pii/S2589721722000095

03/06/2023

20. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7936489/ 03/06/2023

21. https://nvlpubs.nist.gov/nistpubs/ai/nist.ai.100-1.pdf

22. Kelley, Troy Dickerson, Kelly A Review of Artificial Intelligence (AI) Algorithms

for Sound Classification: Implications for Human-Robot Interaction (HRI)

23. Anastassiou, D. (2001). "Genomic signal processing". IEEE Signal Processing

Magazine

LXIV

24. Reynolds, John M. (2011). An Introduction to Applied and Environmental

Geophysics

25. https://www.allaboutcircuits.com/technical-articles/an-introduction-to-digital-

signal-processing/ 01/06/2023

26. "Machine Audition: Principles, Algorithms and Systems" 03/06/2023

27. towardsdatascience.com/audio-deep-learning-made-simple-sound-classification-

step-by-step 03/06/2023

28. https://www.sciencedirect.com/science/article/pii/S2666827021001031

29. https://arxiv.org/abs/1710.09412v2

30. https://arxiv.org/abs/1904.08779

31. T. Viarbitskaya and A. Dobrucki, "Audio processing with using Python language

science libraries," 2018 Signal Processing: Algorithms, Architectures,

Arrangements, and Applications (SPA), Poznan, Poland, 2018, pp. 350-354, doi:

10.23919/SPA.2018.8563430.

32. https://docs.python.org/fr/3/library/ 03/06/2023

33. https://ledatascientist.com/google-colab-le-guide-ultime/ 03/06/2023

34. https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

03/06/2023

35. https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/ 03/06/2023

36. ISD1820 Voice Recorder Module User GuideRev 1.0, Oct 2012

37. https://www.elprocus.com/buzzer-working-applications/ 03/06/2023

38. Tarun Agrwal construction and principle of LCD display , Oct 2016

