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General Introduction 

 

Artificial intelligence (AI) has emerged as a powerful tool for solving complex 

problems in various domains, and animal husbandry is no exception. With the emergence of 

new and complex diseases, the need for effective disease management and control in animal 

husbandry has become increasingly critical. In recent years, there has been a growing interest 

in the development of intelligent systems that can aid in predicting the occurrence of animal 

diseases using AI and signal processing techniques [1]. 

Animal diseases have a significant impact on animal health and welfare, as well as the 

productivity and profitability of animal farming. Early detection and diagnosis of diseases 

are crucial for effective disease management and control. However, traditional methods of 

disease detection and diagnosis, such as physical examinations and laboratory tests, can be 

time-consuming, expensive, and invasive. Moreover, these methods may not be suitable for 

monitoring large populations of animals in real-time [2]. 

AI has the potential to revolutionize disease management and control in animal 

husbandry. AI techniques, such as image analysis, natural language processing, and sound 

classification, can analyze large volumes of data quickly and accurately, enabling early 

detection and diagnosis of diseases. Sound classification, in particular, has gained increasing 

attention as a non-invasive and cost-effective method for detecting and monitoring animal 

health. Sound classification techniques can analyze audio recordings of animal vocalizations 

to identify changes in pitch, frequency, or other acoustic features that may indicate the 

presence of disease [3]. 

Signal processing is an important component of intelligent systems for animal disease 

prediction. Sound classification, in particular, requires a combination of signal processing, 

feature extraction, and machine learning algorithms to analyze audio recordings of animal 

vocalizations. Signal processing techniques, such as filtering, feature extraction, and pattern 

recognition, can be used to preprocess the data and extract relevant features for classification. 

In this dissertation, we present a novel system for predicting poultry diseases based on 

AI and signal processing techniques. The system is designed to analyze audio recordings of 

poultry vocalizations to detect abnormal sounds that may indicate the presence of disease. 

The system uses a combination of signal processing, feature extraction, and machine learning 

algorithms to predict the likelihood of a disease outbreak. The system's performance is 
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evaluated using data collected from a poultry farm, and the results demonstrate the potential 

of the system for predicting and managing poultry diseases. 

The dissertation is organized as follows: Chapter 1 provides an overview of the 

importance of AI in animal husbandry, with a focus on disease management and control. 

Chapter 2 discusses the importance of signal processing in sound classification, highlighting 

its potential applications in animal health monitoring. Finally, Chapter 3 presents the 

conception of the system using AI and signal processing techniques, including data 

preprocessing, feature extraction, and machine learning algorithms. The system's 

performance is evaluated using data collected from a poultry farm, and the results 

demonstrate the potential of the system for predicting and managing poultry diseases.  

Overall, the development of an intelligent system for predicting poultry diseases based 

on AI and signal processing techniques can significantly improve disease management and 

control in the poultry industry, leading to increased productivity and profitability, as well as 

improved animal welfare. 
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Introduction  

 

The term "artificial intelligence was coined more than 60 years ago, but only recently 

have we realized the full benefits of artificial intelligence, machine learning, and deep 

learning in our daily lives [4]. 

Most of us already use intelligent machines to learn, recognize sounds, make decisions, 

solve problems, and make recommendations on everything from the routes we drive to the 

movies we watch to the clothes we buy. We have smartphones in our pockets, intelligent 

personal assistants on our workbenches, robots in our factories and self-driving cars on our 

highways. This is just for starters. 

Artificial intelligence, Deep Learning / Machine Learning Systems are having a major 

impact on the aerospace industry, too. With the technologies mentioned above, flying is 

becoming safer, more comfortable, and more predictive and outcome based. Airlines 

improve schedule performance, use less fuel and create a better passenger experience. 

Airports are more efficient and easier for travelers to navigate. Ground crews turn flights 

around faster and dispatch operations are getting more efficient and autonomy based. 

Airlines are able to use the learning systems to derive better segment strategies and charge 

according to the relevance and value. And aircraft maintenance is easier, faster, prescriptive 

and more precise. [1]. 

Like many other industries and use cases, AI in animal husbandry can improve 

environmental management, increase the animal’s quality of life, improve resource 

allocation, and reduce costs. Farmers in animal husbandry are looking for new-age tools to 

improve animal welfare, increase efficiency, and create better production. [3]. 

AI can also be used in poultry farms, where poultry drones can detect nutritional 

deficiencies and mitigate bird diseases. Robots can help feed birds, collect eggs and remove 

droppings. AI-driven sound recognition systems, as what we are trying to do on this research, 

use machine learning to decipher vocalizations and identify warning signs of distress. AI 

monitoring can also detect patterns of poultry weight gain, allowing farmers to pinpoint 

unhealthy livestock. [5]. 

 Finally we can say that AI helps humanity to progress and develop more and more, it 

enables businesses, governments, and communities to create a high-performing ecosystem 
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that can service the entire planet. Its significant impact on human lives is resolving some of 

society's most pressing issues. 

 

1.1 AI Definition 

 

The prospect of creating intelligent computers has fascinated many people for as long 

as 

computers have been around and, as we shall see in the historic overview, the first hints 

in the direction of Artificial Intelligence date even before that. But what do we mean by 

Artificial Intelligence, if even the term intelligence itself is difficult to define?  

The precise definition and meaning of the word intelligence, and even more so of 

Artificial Intelligence, is the subject of much discussion and has caused a lot of 

confusion [6]. One dictionary alone, for example, gives four definitions of Artificial 

Intelligence: 

 An area of study in the field of computer science. Artificial intelligence is 

concerned with the development of computers able to engage in human-like 

thought processes such as learning, reasoning, and self-correction. 

 The concept that machines can be improved to assume some capabilities 

normally thought to be like human intelligence such as learning, adapting, self-

correction, etc  [6]. 

 The extension of human intelligence through the use of computers, as in times past 

physical power was extended through the use of mechanical tools. 

 In a restricted sense, the study of techniques to use computers more effectively by 

improved programming techniques. [6] 

The definitions have also changed in the course of time, due to the rapid developments. 

Definitions that are more recent speak of “imitating intelligent human behavior,” which is 

already a much stronger definition. 

For some time now, the Artificial Intelligence community has been trying to imitate 

intelligent behavior with computer programs. This is not an easy task because a 

computer program must be able to do many different things in order to be called 

intelligent. 
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 Instead of looking at a general definition of Artificial Intelligence, one can also 

restrict 

oneself to the definition of artificially intelligent systems. There are many definitions 

around, but most of them can be classified into the following four categories [7]:  

 Systems that think like humans. 

 Systems that act like humans. 

 Systems that think rationally. 

 Systems that act rationally. 

1.2 Artificial Intelligence Process  

Artificial Intelligence (AI) is a broad field that encompasses various processes and 

techniques for building intelligent machines capable of performing tasks that typically 

require human intelligence. Here is the general process AI [8]: 

1. Define the Problem: The first step in building an AI system is to define the problem 

you want to solve. This involves understanding the requirements of the problem and 

determining the feasibility of building an AI solution [8]:. 

2. Gather Data: AI systems require large amounts of data to learn and make decisions. 

You will need to gather data relevant to the problem you are trying to solve. This 

data can come from a variety of sources, such as sensors, databases, and external 

APIs. 

3. Preprocess Data: Once you have gathered the data, you need to preprocess it to make 

it suitable for use in an AI system. This can involve cleaning, transforming, and 

normalizing the data [8]:. 

4. Choose Algorithms: Next, you need to choose the algorithms you will use to train 

your AI model. The choice of algorithms depends on the type of problem you are 

trying to solve and the data you have available [8]:. 

5. Train Model: You will use the data and algorithms to train your AI model. This 

involves feeding the data into the model and adjusting the parameters of the 

algorithms until the model accurately predicts the outcomes [8]:. 

6. Evaluate Model: Once we have trained our model, we need to evaluate its 

performance on new data. This involves testing the model on a separate set of data 

that it has not seen before [8]. 
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7. Deploy Model: If the model performs well on the test data, you can deploy it into 

production. This involves integrating it into your existing systems and making it 

available for use. 

 

FigureI. 01 : Artificial intelligence Process [9] 

1.4 Artificial intelligent subfields 

AI encompasses numerous subfields, each representing a distinct area of scientific 

research. Among them, six major subfields can be identified [10]: 

1. Machine Learning: Algorithms and models enabling machines to learn from 

data [10]. 

2. Natural Language Processing (NLP): Interaction between computers and 

human language [10]. 

3. Computer Vision: Understanding and interpreting visual information [10]. 

4. Neural network: Computational models inspired by the brain that learns 

from data and makes predictions or decisions. Combining AI with mechanical 

engineering for intelligent machines [10]. 

5. Deep learning: Machine learning technique that uses multi-layered neural 

networks to learn complex patterns from data [10]. 

6. Cognitive computing: Combines artificial intelligence and data analytics to 

simulate human cognitive processes and enhance decision-making [10]. 
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                 FigureI. 02 : Artificial intelligence Subfildes [11]. 

1.4.1 Machine Learning  

Machine learning (ML) is a field devoted to understanding and building methods that 

let machines "learn" – that is, methods that leverage data to improve computer performance 

on some set of tasks [12].  

Machine learning algorithms build a model based on sample data, known as training 

data, in order to make predictions or decisions without being explicitly programmed to do 

so [13] 

Machine learning algorithms are used in a wide variety of applications, such as in 

medicine, email filtering, speech recognition, agriculture, and computer vision, where it is 

difficult or unfeasible to develop conventional algorithms to perform the needed tasks [13].  

A subset of machine learning is closely related to computational statistics, which 

focuses on making predictions using computers, but not all machine learning is statistical 

learning.  
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The study of mathematical optimization delivers methods, theory and application 

domains to the field of machine learning. Data mining is a related field of study, focusing on 

exploratory data analysis through unsupervised learning [13]. 

Some implementations of machine learning use data and neural networks in a way that 

mimics the working of a biological brain.  

In its application across business problems, machine learning is also referred to as 

predictive analytics.  

 

 

 

Figure I. 03: Machin Learning Process [14]. 

1.4.2. Deep Learning  

Deep learning is part of a broader family of machine learning methods, which is based 

on artificial neural networks with representation learning. Learning can be supervised, semi-

supervised or unsupervised [15]. 

Deep-learning architectures such as deep neural networks, deep belief networks, deep 

reinforcement learning, recurrent neural networks, convolutional neural networks and 

transformers have been applied to fields including computer vision, speech recognition, 

natural language processing, machine translation, bioinformatics, drug design, medical 

image analysis, climate science, material inspection and board game programs, where they 

have produced results comparable to and in some cases surpassing human expert 

performance [15]. 

Artificial neural networks (ANNs) were inspired by information processing and 

distributed communication nodes in biological systems. ANNs have various differences 

from biological brains. Specifically, artificial neural networks tend to be static and symbolic, 

while the biological brain of most living organisms is dynamic (plastic) and analog [15]. 
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The adjective "deep" in deep learning refers to the use of multiple layers in the 

network. Early work showed that a linear perceptron cannot be a universal classifier, but that 

a network with a non-polynomial activation function with one hidden layer of unbounded 

width can. Deep learning is a modern variation that is concerned with an unbounded number 

of layers of bounded size, which permits practical application and optimized 

implementation, while retaining theoretical universality under mild conditions. In deep 

learning the layers are also permitted to be heterogeneous and to deviate widely from 

biologically informed connectionist models, for the sake of efficiency, trainability and 

understandability [15]. 

 

Figure I. 04: Deep Learning Process [14] 
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1.4.3. Deference between machine learning and deep learning  

 

Figure I. 05: Deep and Machine learning [16]. 

 

Machine learning and deep learning are both subsets of artificial intelligence, but they 

differ in their approach and complexity. Here are some of the key differences between 

machine learning and deep learning [17]. 

1. Architecture: Machine learning models are generally simpler and have a smaller 

number of layers. Deep learning models, on the other hand, are more complex and 

can have multiple layers [17].. 

2. Data requirements: Machine learning models work well with structured data and 

require a smaller amount of training data to be effective. Deep learning models 

require large amounts of unstructured data, such as images or text, to train effectively 

[17].. 

3. Feature extraction: Machine learning models require the engineer to manually extract 

features from the data, whereas deep learning models can automatically learn 

features from the data [17].. 
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4. Interpretability: Machine learning models are often more interpretable, meaning it's 

easier to understand how the model is making decisions. Deep learning models are 

generally less interpretable due to their complexity [17].. 

5. Performance: Deep learning models can outperform machine learning models in 

tasks such as image recognition, speech recognition, and natural language processing 

[17].. 

Overall, the main difference between machine learning and deep learning is the 

complexity of the models and the amount of data required for training. Machine learning is 

a good choice for simpler problems with structured data, while deep learning is more 

appropriate for complex problems with unstructured data [17]. 

1.4 Artificial intelligence Applications   

Artificial Intelligence (AI) has become an essential technology in various fields, 

enabling machines to perform tasks that would typically require human intelligence. AI 

has numerous applications, including data analysis, decision-making, and automation. 

This study provides an overview of the applications of AI in different fields  [18]. 

 Healthcare: One of the most significant applications of AI is in the field of 

healthcare. AI technology is used for medical diagnosis, drug discovery, and patient 

care. AI algorithms can analyze large amounts of medical data, including electronic 

health records (EHRs), medical images, and genomics data, to identify patterns and 

predict outcomes [18]. 

 Finance: Another application of AI is in the financial industry. AI algorithms 

can be used for fraud detection, risk assessment, and portfolio optimization. AI can 

analyze vast amounts of financial data to identify patterns and predict market trends 

[18]. 

 Transportation: AI technology is also used in the transportation industry. AI 

algorithms can optimize traffic flow, reduce congestion, and improve safety. Self-

driving cars and drones are examples of AI-based transportation technologies [18]. 

 Manufacturing: AI is also being used in the manufacturing industry. AI 

algorithms can optimize production processes, reduce waste, and improve product 

quality. AI can analyze sensor data from machines to predict equipment failures and 

schedule maintenance [18].  
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As we are talking in this study about prediction of poultry diseases we must talk about 

AI in the field of Animal husbandry, this science which consist of breeding, caring, and 

managing animals for food, fiber, and other purposes. In recent years, there has been a 

growing interest in the application of AI technology in animal husbandry. AI can be used 

for various purposes in this field, including monitoring animal health, optimizing feeding 

strategies, and improving breeding outcomes [18]. 

Figure I. 06: Artificial intelligence In Agriculture [19]. 

1.5.1 Applications of AI in Animal Husbandry: 

1. Monitoring Animal Health: AI can be used to monitor the health of animals 

and detect any abnormalities early on. For instance, sensors can be attached to animals 

to track their vital signs and behavior, and AI algorithms can analyze this data to detect 

any signs of illness or distress [20]. 

2. Optimizing Feeding Strategies: AI can also be used to optimize feeding 

strategies for animals. AI algorithms can analyze data on animal weight, feed intake, and 

growth rates to determine the optimal feeding schedule and ration [20]. 

3. Improving Breeding Outcomes: AI can be used to improve breeding 

outcomes in animal husbandry. For instance, AI algorithms can analyze data on animal 

genetics, behavior, and health to determine the best breeding matches and optimize 

breeding strategies [20]. 
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1.5.1.2 The limitations of AI in animal husbandry: 

1 Data Bias: One of the biggest limitations of AI in animal husbandry is 

the potential for bias in the data used to train the AI models. Biased data can lead to 

inaccurate predictions and decisions, which can have negative impacts on animal welfare 

and productivity [20]. 

2 Limited Data Availability: In some cases, there may be limited data 

available for AI applications in animal husbandry. This can be due to factors such as the 

cost of data collection or the limited availability of certain types of data [14]. 

3 Ethical Considerations: The use of AI in animal husbandry raises 

ethical considerations, particularly around issues such as animal welfare and the potential 

for reduced human involvement in decision-making [20]. 

4 Technical Limitations: AI models are only as effective as the data they 

are trained on, and they may not always be able to account for complex factors that can 

influence animal health and productivity [20]. 

5 Cost: Implementing AI technologies in animal husbandry can be 

costly, particularly for smaller-scale operations that may not have the resources to invest 

in expensive hardware or software [20]. 

It is important to note that while AI can offer many benefits in animal 

husbandry, it is not a one-size-fits-all solution. Careful consideration must be given to the 

specific needs and limitations of individual operations, and AI should be used in conjunction 

with other management strategies to optimize animal welfare and productivity [20].. 

1.6 Artificial Intelligence Limits 

While artificial intelligence (AI) has numerous benefits and various potential 

applications, it's crucial to bear in mind that it is not a cure-all solution. AI models' efficiency 

relies heavily on the quality of the data they are trained on and the instructions they are given 

to follow. Just like any other technology, it's important to be mindful of the potential 

constraints and ethical ramifications of AI systems. Therefore, a thoughtful evaluation 

should be conducted before implementing AI technologies in various industries at general 

this are ai limits [21]. 

1. Data Dependence: AI systems rely heavily on data, and the quality and quantity of data 

available can limit the effectiveness of these systems. In some cases, there may not be 
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enough data to train an AI system to perform a certain task, or the data available may be 

biased or incomplete [21]. 

2. Lack of Creativity: AI systems are programmed to operate within a specific set of rules 

and parameters, and they do not have the same creative capacity as human beings. This can 

limit their ability to handle complex or novel situations [21]. 

3. Limited Understanding of Context: AI systems are trained on specific data sets and may not 

always understand the larger context in which the data exists. This can lead to errors or biased 

decision-making [21]. 

4. Ethical Concerns: As AI systems become more advanced, there are concerns about their 

impact on privacy, security, and fairness. For example, AI algorithms may perpetuate social 

biases or be used to manipulate individuals or groups [21]. 

5. Technical Limitations: AI systems are limited by the capabilities of the hardware and 

software on which they run. This can include limitations in processing power, memory, and 

bandwidth [21]. 

Conclusion  

In conclusion, artificial intelligence (AI) is a rapidly evolving field that involves the 

development of intelligent machines capable of performing tasks that would typically 

require human intelligence. Deep learning, a subset of AI, involves training artificial neural 

networks to identify and classify patterns in data, leading to breakthroughs in areas such as 

image recognition, natural language processing, and speech recognition. 

The process of AI involves using algorithms and statistical models to analyze data, 

identify patterns, and make predictions or decisions based on that information. AI has a 

broad range of potential applications, including healthcare, finance, transportation, and 

entertainment. 

In the context of animal husbandry, AI technologies have significant potential to 

improve the industry by enhancing animal welfare, increasing production efficiency, and 

reducing labor costs. AI applications in animal husbandry include monitoring animal 

behavior, predicting disease outbreaks, and optimizing feed and water usage. 

However, despite its potential benefits, AI also has its limits. These include the 

difficulty of creating truly autonomous systems, the need for vast amounts of high-quality 

data, and the potential for unintended consequences or bias in decision-making. Therefore, 
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it is essential to carefully consider the limitations and ethical implications of AI systems 

and put appropriate safeguards in place to ensure their responsible use. 

This study utilizes AI and deep learning techniques in the animal husbandry industry, 

specifically for predicting poultry diseases. As highlighted in this chapter, data collection is 

a critical aspect of AI, and in our case, as we are working on cough detection, we need to 

have a good understanding of signal processing and sound classification and their 

integration into AI models. 
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Introduction   
 

Artificial Intelligence (AI) has revolutionized the way we interact with technology, 

and its applications span across various fields, including speech recognition, music 

analysis, and environmental sound monitoring. In recent years, the use of AI models for 

sound classification has gained significant attention, and signal processing techniques have 

played a vital role in the initial stages of the process. The success of AI models heavily 

depends on the quality of the input data, which in turn relies on the proper signal 

processing techniques [22]. 

Signal processing techniques involve the use of algorithms to manipulate and 

transform signals, such as audio, video, or image data. These techniques can enhance the 

signal-to-noise ratio, filter out unwanted noise, and extract essential features that can help 

AI models classify the sounds accurately. The signal processing techniques used in AI 

models vary depending on the application, but generally, they involve a combination of 

pre-processing, feature extraction, and classification.  

In this context, this chapter aims to review the latest signal processing and sound 

classification techniques used in AI models, with a particular emphasis on their 

applications in various fields, challenges, and future directions. 

 

2.2 Signal Processing Definition  

Signal processing is the systematic manipulation of signals to extract useful 

information or transform them into a desired form. It involves the analysis, synthesis, and 

modification of signals, which can be in the form of sound, images, or other types of data. 

The ultimate goal of signal processing is to extract useful information from signals and 

make them more understandable or usable for further processing or analysis [22]. 



 
CHAPTER TWO : SIGNAL PROCESSING AND SOUND CLASSIFICATION 

ON AI MODELS 

 

18 

 

 

Figure II 01: Signal Processing operation [23] 

2.2.1 Audio Signal Processing  

Sound signal processing is a branch of signal processing that focuses on the analysis 

and manipulation of sound signals. It involves the use of various techniques and algorithms 

to transform the raw sound signals into a more meaningful representation that can be used 

for further analysis or processing. These techniques may include filtering, equalization, noise 

reduction, compression, and feature extraction, among others. Sound signal processing has 

various applications, including speech recognition, music analysis, acoustic monitoring, and 

audio communication, among others [23]. 

Figure II 02: Sound Signal Processing [24] 
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 2.2.2 Steps of Sound Signal Processing  

The steps of sound signal processing before using it in AI models typically include [24]: 

1. Acquisition: In this step, the sound signal is acquired using a microphone or other sensing 

device. The analog signal is then converted to a digital signal for further processing [24]. 

2. Pre-processing: The acquired signal is often pre-processed to filter out noise, eliminate 

unwanted frequencies, and enhance the signal-to-noise ratio. Pre-processing techniques 

include filtering, noise reduction, and signal enhancement [24]. 

3. Feature extraction: In this step, the relevant features of the sound signal are extracted to form 

a feature vector. These features can include spectral features such as the frequency, 

amplitude, and phase, as well as statistical features such as the mean and variance [24]. 

4. Feature selection: The feature vector may contain many features that are not relevant to the 

classification task at hand. In this step, the most relevant features are selected using feature 

selection techniques such as correlation analysis, principal component analysis, and mutual 

information [24]. 

5. Classification: Finally, the selected features are fed into a machine learning algorithm for 

classification. The algorithm learns to classify the sound signal based on the extracted 

features and a set of training data. Common machine learning algorithms used for sound 

classification include support vector machines, decision trees, and neural networks [24]. 

These steps are critical in ensuring the accuracy of sound classification in AI 

models. Proper sound signal processing techniques can enhance the signal-to-noise ratio, 

filter out unwanted noise, and extract essential features that can help the AI models classify 

the sounds accurately [24]. 

2.2.1.2 Audio Signal processing technics   

Signal processing techniques involve a wide range of methods used to modify or 

analyze signals, such as sound, image, or video. Some of the commonly used signal 

processing techniques in sound signal processing include [25]: 

1. Pre-processing techniques: This involves removing unwanted 

noise, filtering the signal to enhance the signal-to-noise ratio, and normalizing the 

data to ensure consistency in the input data [25]. 
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2. Feature extraction techniques: This involves extracting 

relevant features from the pre-processed signal, such as pitch, frequency, and 

amplitude, which can be used to train the AI model [25]. 

3. Time-frequency analysis: This technique allows for the 

representation of sound signals in both the time and frequency domains. By using 

techniques such as Short-Time Fourier Transform (STFT) or Wavelet Transform, the 

AI model can analyze the temporal and spectral characteristics of the sound signal 

[25]. 

4. Spectral analysis: This technique involves analyzing the 

spectral content of the sound signal. By using techniques such as Fast Fourier 

Transform (FFT), the AI model can analyze the frequency components of the signal 

[25]. 

5. Deep learning techniques: Deep learning algorithms such as 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) 

can be used for sound classification, where the AI model learns to identify patterns 

in the pre-processed sound signals [25]. 

When choosing a signal processing technique for sound classification, it is 

important to consider the type of sound signals being analyzed and the computational 

resources available. Deep learning techniques may require large amounts of data and 

computational resources, while simpler techniques such as spectral analysis may be more 

computationally efficient but may not capture all the relevant features of the sound signal 

and this is why we are choosing deep learning for this study [25]. 

 2.3 Sound classification  

Sound classification is the process of assigning predefined categories or labels to a sound 

signal based on its acoustic characteristics. The aim of sound classification is to 

automatically distinguish different sound types, such as speech, music, and environmental 

sounds. To achieve accurate sound classification, various signal processing techniques are 

used to extract features that can effectively represent the unique characteristics of different 

sound types. Machine learning algorithms, such as neural networks and support vector 

machines, are then applied to these features to classify the sounds into their respective 
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categories. Sound classification has various applications, including speech recognition, 

music genre classification, and environmental sound monitoring [26]. 

2.4 Importance of Signal Processing in Sound Classification  

Signal processing is critical in sound classification as it provides a means of 

extracting useful information from raw audio data. Sound signals captured by microphones 

often contain noise and unwanted artifacts that can interfere with accurate classification. 

Signal processing techniques are used to reduce noise and enhance the desired features of 

the sound signal, making it easier for the AI models to classify the sounds accurately [27]. 

Additionally, sound signals have complex structures and contain a vast 

amount of information that needs to be analyzed by AI models. Signal processing techniques 

can help to extract essential features from the sound signal, reducing the amount of data that 

needs to be analyzed. This process is known as feature extraction, and it is a critical step in 

sound classification [27] . 

Proper signal processing techniques can also improve the signal-to-noise ratio, 

making it easier for AI models to differentiate between similar sounds. For example, in 

speech recognition, signal processing techniques are used to filter out unwanted background 

noise and enhance the speech signal, making it easier for the AI model to recognize spoken 

words accurately [27]. 

In summary, signal processing is essential in sound classification as it helps to 

enhance the quality of the sound signal, extract essential features, and improve the signal-

to-noise ratio, making it easier for AI models to classify the sounds accurately [27]. 

Conclusion  

 In conclusion, the use of AI models for sound classification in poultry disease detection has 

shown promising results. However, the success of these models heavily depends on the 

quality of input data, which can be enhanced by proper signal processing techniques. The 

initial stages of AI models require signal processing techniques to pre-process raw data, filter 

out unwanted noise, and extract essential features that can help the models classify the 

sounds accurately. Signal processing plays a vital role in the effectiveness of AI models for 

sound classification, as it can significantly enhance the signal-to-noise ratio and improve the 

accuracy of disease detection. Overall, the integration of signal processing and sound 

classification in AI models for poultry disease detection has the potential to improve the 
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efficiency and effectiveness of disease In this study, we applied signal processing and sound 

classification techniques to an AI model aimed at detecting anomalies in poultry 

vocalizations.se monitoring and control, leading to better animal welfare and economic 

outcomes, 
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Introduction  

The realization chapter is the culmination of our project, where we bring our sound 

classification model to life on a Raspberry Pi. This chapter focuses on the practical 

implementation of our model, integrating it with hardware components, and creating a real-

time sound classification system. By following the steps outlined in this chapter, we will 

have a fully functional system capable of identifying normal and abnormal sounds. 

We begin by discussing the initial steps of model conception, including dataset collection, 

preprocessing, and model training. We carefully design and train our model to achieve 

high accuracy and robust performance in sound classification tasks. 

Next, we delve into the hardware setup, which involves configuring the Raspberry Pi 

as the central processing unit. We connect a microphone to capture audio input, an LCD 

screen to display classification results, and a buzzer to provide audible feedback for 

abnormal sounds. 

Software configuration is an essential aspect of our system. We explore the choice of 

operating system for the Raspberry Pi and guide you through the necessary installations. 

This includes setting up libraries for audio processing and model loading. 

The heart of our realization phase is the real-time sound classification. We cover the 

preprocessing steps for capturing and preparing audio data, as well as loading our trained 

model onto the Raspberry Pi. We demonstrate how the system can process incoming audio 

streams and make accurate predictions in real-time. 

To enhance user experience, we integrate an LCD screen to visually display classification 

results, allowing easy identification of normal and abnormal sounds. We also incorporate a 

buzzer that produces audible feedback for abnormal sounds, providing an additional layer 

of information. 

Testing and evaluation are crucial to validate the performance of our system. We define 

test scenarios using different sound samples and employ evaluation metrics to measure 

system accuracy and efficiency. The results are analyzed to gain insights into system 

strengths and areas for improvement. 

In conclusion, the realization chapter transforms our sound classification model from 

theory to practice. By following the steps outlined, you will create a real-time sound 

classification system on a Raspberry Pi. This chapter provides a comprehensive guide to 
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the implementation process and equips you with the knowledge to adapt the system to your 

specific needs. 

 3.2  AI Model Conception: 

The foundation of our real-time sound classification system lies in the construction of a 

robust and accurate model. In this section, we will outline the key steps involved in building 

our model for sound classification. 

3.2.1 Dataset Building: 

In order to build an accurate and diverse sound classification model, we faced the challenge 

of collecting a sufficient amount of high-quality sound data. Collecting a comprehensive 

dataset manually proved to be a time-consuming and challenging task, as it required 

configuring specialized microphones and recording sounds in various real-world 

environments. 

To overcome this obstacle, we leveraged an existing dataset called Google AudioSet. is a 

large-scale collection of audio samples from a wide range of sources, covering a vast array 

of sounds. This dataset provided a valuable starting point for our sound classification model. 

However, the Google AudioSet dataset alone did not fully meet our requirements. It lacked 

specific sound samples that were relevant to our use case and did not cover all the necessary 

abnormal sound categories. Therefore, we employed data augmentation techniques to 

enhance the dataset's diversity and balance. 

Data augmentation involved applying various transformations to the existing audio samples, 

such as pitch shifting, time stretching, noise addition, and amplitude scaling. These 

techniques helped simulate different variations of the original sounds and created a more 

comprehensive dataset for training our model. By augmenting the dataset, we were able to 

capture a broader range of sound variations and improve the model's ability to generalize 

and classify abnormal sounds accurately. 

The combination of the Google AudioSet dataset and data augmentation techniques enabled 

us to overcome the limitations of manually collecting sound data and provided us with a 

robust and diverse dataset for training our sound classification model. 
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By utilizing these resources and techniques, we ensured that our model had access to a wide 

variety of normal and abnormal sound samples, enabling it to learn and generalize effectively 

in real-world scenarios. 

3.2.1.1 Dataset Augmentation  

To do the data augmentation we used two technics are: 

1. Mixup Data Augmentation: is a data augmentation technique commonly used in sound 

classification tasks. It involves mixing pairs of audio samples from the dataset to create new 

training examples. The process combines two audio samples by taking a weighted sum of 

their waveforms and their corresponding labels. This creates a blended audio sample that lies 

somewhere between the two original samples [28]. 

By applying Mixup data augmentation, we introduce additional variability and diversity into 

the training data. It helps the model learn to generalize better by exposing it to a broader 

range of sound combinations and labels. Mixup encourages the model to focus on relevant 

audio features rather than relying solely on specific instances in the training set. This 

regularization technique aids in reducing overfitting and improving the model's performance 

on unseen data [28]. 

2. SpecAugment: is a popular data augmentation technique used specifically for audio and 

speech recognition tasks. It operates in the spectrogram domain, which is a visual 

representation of the audio signal's frequency content over time. SpecAugment applies 

random transformations to the spectrogram, introducing localized modifications [29]. 

The three main transformations used in SpecAugment are [29]. : 

 Time Masking: This involves masking consecutive time steps in the 

spectrogram by setting them to zero. It helps the model focus on different 

temporal segments of the audio and enhances its robustness to temporal 

variations [29]. 

 Frequency Masking: This technique masks a random set of frequency 

bands in the spectrogram. By doing so, it encourages the model to attend to 

different frequency components and improves its ability to handle 

variations in the frequency domain [29]. 
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 Time Warping: Time warping randomly warps the spectrogram along the 

time axis, introducing slight temporal distortions. This further increases 

the model's robustness to temporal variations in the input audio [29]. 

SpecAugment helps in preventing overfitting and enhances the model's ability to 

generalize by introducing variations in both the time and frequency domains. By applying 

SpecAugment, we improve the model's robustness to different types of noise, background 

variations, and temporal distortions that may occur in real-world audio recordings [29].. 

By combining Mixup data augmentation and SpecAugment techniques, we enhance the 

diversity and variability of the training data. This enables the model to learn more robust 

and generalized representations of both normal and abnormal sounds, improving its 

classification performance on unseen audio samples. 

In order to applicate this techniques using python programming language:   

1. Mixup Data Augmentation: 
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import os 

import torchaudio 

import torch 

import torch.nn.functional as F 

import torchaudio.transforms as T 

import shutil 

# Set the directory where the audio files are located 

directory = '/content/drive/MyDrive/normalpoultrysound/' 

# Define the output directory to save the mixed files 

output_directory = '/content/drive/MyDrive/MixedFiles/' 

# Create the output directory if it doesn't exist 

os.makedirs(output_directory, exist_ok=True) 

# List all audio files in the directory 

file_names = os.listdir(directory) 

# Resampling parameters 

desired_sample_rate = 16000 

desired_channels = 1 

# Initialize mixed audio 

mixed_audio = None 

max_length = 0 

# Loop through the audio files and build mixed files 

for i, file_name in enumerate(file_names): 

    # Load audio file 

    file_path = os.path.join(directory, file_name) 

    waveform, sample_rate = torchaudio.load(file_path) 

    # Resample audio 

    if sample_rate != desired_sample_rate: 

        waveform = T.Resample(sample_rate, desired_sample_rate)(waveform) 

    # Convert to mono if needed 

    if waveform.shape[0] > 1 and desired_channels == 1: 

        waveform = torch.mean(waveform, dim=0, keepdim=True) 

    # Update the maximum length 

    max_length = max(max_length, waveform.shape[-1]) 

    # Perform mixing 

    if mixed_audio is None: 

        mixed_audio = waveform 

    else: 

        mixed_audio = F.pad(mixed_audio, (0, max_length - mixed_audio.shape[-1])) 

        waveform = F.pad(waveform, (0, max_length - waveform.shape[-1])) 

        mixed_audio += waveform 

    # Save the mixed audio 

    output_file_path = os.path.join(output_directory, f'mixed_audio{i}.wav') 

    torchaudio.save(output_file_path, mixed_audio, sample_rate=desired_sample_rate) 

    print(f"Mixed audio {i+1} saved to:", output_file_path) 
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When we execute this code, it will load the audio files, resample them if necessary, 

convert them to mono, mix them together, and save the mixed audio files in the specified 

output directory. The output file names will be in the format "mixed_audio{i}.wav", where 

{i} is the index of the mixed audio file. 

We applicate this technic (the same code) on the two types of data normal, and 

abnormal. 

2. SpecAugmen 
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import os 
import torchaudio 
import torch 
import torchaudio.transforms as T 
# Set the directory where the audio files are located 
directory = '/content/drive/MyDrive/Normal/' 
# Set the output directory to save augmented files 
output_directory = '/content/drive/MyDrive/sick/' 
# List all audio files in the directory 
file_names = os.listdir(directory) 
# Set SpecAugment parameters 
time_warping_para = 80 
frequency_masking_para = 27 
time_masking_para = 70 
num_time_masks = 2 
num_frequency_masks = 2 
# Loop through the audio files 
for file_name in file_names: 
    # Load audio file 
    file_path = os.path.join(directory, file_name) 
    waveform, sample_rate = torchaudio.load(file_path) 
    # Apply STFT 
    spec = torch.stft(waveform, n_fft=400, hop_length=160, 
win_length=400, window=torch.hann_window(400), center=True, 
pad_mode='reflect', normalized=False, return_complex=True) 
    # Apply SpecAugment 
    num_bins, num_frames = spec.shape[-2], spec.shape[-1] 
    warped_masked_spec = spec.clone() 
    # Time warping 
    if time_warping_para > 0: 
        time_warp_factor = torch.randint(-time_warping_para, 
time_warping_para + 1, (1,)) 
        src_idx = torch.arange(num_frames) 
        tgt_idx = torch.clamp(src_idx + time_warp_factor, 0, num_frames 
- 1) 
        warped_masked_spec = warped_masked_spec[:, :, tgt_idx] 
    # Frequency masking 
    for _ in range(num_frequency_masks): 
        f = torch.randint(0, frequency_masking_para + 1, (1,)) 
        f0 = torch.randint(0, num_bins - f.item() + 1, (1,)) 
        warped_masked_spec[:, f0:f0 + f, :] = 0 
    # Time masking 
    for _ in range(num_time_masks): 
        t = torch.randint(0, min(time_masking_para + 1, num_frames), 
(1,)) 
        t0 = torch.randint(0, num_frames - t.item() + 1, (1,)) 
        warped_masked_spec[:, :, t0:t0 + t] = 0 
    # Apply inverse STFT to obtain augmented waveform 
    augmented_waveform = torch.istft(warped_masked_spec, n_fft=400, 
hop_length=160, win_length=400, window=torch.hann_window(400), 
center=True, normalized=False, length=waveform.shape[-1]) 
    # Save augmented audio 
    output_file_path = os.path.join(output_directory, file_name) 
    torchaudio.save(output_file_path, augmented_waveform, 
sample_rate=sample_rate) 
    print("Augmented audio saved to:", output_file_path) 
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By executing this code, each audio file in the specified directory will undergo 

SpecAugment techniques, resulting in augmented versions of the audio files. These 

augmented files will be saved in the output directory with the same file names and format as 

the input audio files. 

3.2.1.2 Data Preparing: 

In this step of data preparation, we are combining the normal and abnormal voice 

files from their respective directories into a single dataset directory. This step is performed 

to have all the data in one location for easier access and further processing. 

We do that using this code on python  

import os 

import shutil 

 

# Set the paths to the normal and abnormal voice directories 

normal_voice_dir = '/content/drive/MyDrive/normal/' 

abnormal_voice_dir = '/content/drive/MyDrive/abnormal/' 

 

# Set the path to the target directory for the combined dataset 

dataset_dir = '/content/drive/MyDrive/predata/' 

 

# Create the target directory if it doesn't exist 

os.makedirs(dataset_dir, exist_ok=True) 

 

# Function to copy files from source directory to target directory 

def copy_files(source_dir, target_dir): 

    files = os.listdir(source_dir) 

    for file in files: 

        source_path = os.path.join(source_dir, file) 

        target_path = os.path.join(target_dir, file) 

        shutil.copyfile(source_path, target_path) 

 

# Copy normal voice files to the dataset directory 

copy_files(normal_voice_dir, dataset_dir) 

 

# Copy abnormal voice files to the dataset directory 

copy_files(abnormal_voice_dir, dataset_dir) 

 

print("Data preparation completed.") 
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This code ensures that all the necessary data is available in a single directory, which 

simplifies further processing steps such as data loading and training. 

3.2.2 Data Preprocessing  

In this part of the code, we are implementing the preprocessing stage for our audio 

data. The goal of this preprocessing is to transform the raw audio signals into a format that 

is suitable for further analysis or machine learning tasks.  

The source code  
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import os 

import numpy as np 

import librosa 

from google.colab import drive 

# Mount Google Drive 

drive.mount('/content/drive', force_remount=True) 

# Folder paths 

folder_path = '/content/drive/MyDrive/sik'  # Path to the folder in 

Google Drive 

output_folder = '/content/drive/MyDrive/sick'  # Output folder for 

preprocessed data 

# Preprocessing steps 

n_mels = 20  # Number of Mel filterbanks 

hop_length = 512  # Number of samples between successive frames 

max_length = 1000  # Maximum length in frames 

# Iterate over audio files in the folder 

for filename in os.listdir(folder_path): 

    if filename.endswith('.wav'):  # Adjust file extension if necessary 

        # Load audio file from Google Drive 

        file_path = os.path.join(folder_path, filename) 

        audio, sr = librosa.load(file_path) 

        # Preprocessing steps 

        mel_spectrogram = librosa.feature.melspectrogram(y=audio, 

sr=sr, n_mels=n_mels, hop_length=hop_length) 

        log_mel_spectrogram = librosa.amplitude_to_db(mel_spectrogram, 

ref=np.max) 

        # Pad or trim spectrogram to a fixed length 

        if log_mel_spectrogram.shape[1] < max_length: 

            log_mel_spectrogram = np.pad(log_mel_spectrogram, 

                                         ((0, 0), (0, max_length - 

log_mel_spectrogram.shape[1]))) 

        # Save preprocessed data to Google Drive 

        output_path = os.path.join(output_folder, 

filename.replace('.wav', '.npy')) 

        np.save(output_path, log_mel_spectrogram) 

 

 

 

The main actions carried out in this code snippet are as follows: 

1. Loading audio: The code iterates over the audio files in a specified folder and loads 

each file using the librosa.load function. This step extracts the audio waveform and the 

sample rate from each file. 
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2. Mel spectrogram computation: Using the loaded audio waveform, the code calculates 

the Mel spectrogram representation using the librosa.feature.melspectrogram 

function. The Mel spectrogram captures the distribution of frequencies in the audio signal 

over time. 

3. Logarithmic transformation: The code applies a logarithmic transformation to the 

spectrogram using the librosa.amplitude_to_db function. This transformation converts 

the amplitude values to decibels (dB), enhancing the perceptual representation of the 

spectrogram. 

4. Padding or trimming: To ensure a consistent length for the spectrograms, the code 

checks the shape of each log-mel spectrogram and pads it with zeros or trims it if necessary. 

This ensures that all spectrograms have the same number of frames. 

5. Saving preprocessed data: The preprocessed log-mel spectrograms are saved as 

NumPy arrays in an output folder. Each preprocessed file corresponds to an audio file, and 

the filename is modified to have the .npy extension. 

By executing this code, we are processing the audio data by computing the Mel spectrogram, 

applying a logarithmic transformation, standardizing the spectrogram length, and saving the 

preprocessed data. These preprocessing steps prepare the audio data for subsequent analysis, 

such as training a machine learning model for sound classification or anomaly detection. 

3.2.2.1 Data Splitting  

The split allows us to separate the data into distinct subsets for training and testing. The 

training data is used to train the model, while the testing data is used to evaluate the 

model's performance. This split helps assess how well the model generalizes to unseen 

data. 

We applicate this step using the follow code: 
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import os 
import shutil 
import numpy as np 
from sklearn.model_selection import train_test_split 
from sklearn.linear_model import LogisticRegression 
# Mount Google Drive 
from google.colab import drive 
drive.mount('/content/drive', force_remount=True) 
# Set the path to the dataset directory 
dataset_dir = '/content/drive/MyDrive/npyprdata/' 
# List all the audio file paths in the dataset directory 
file_paths = [os.path.join(dataset_dir, file) for file in 
os.listdir(dataset_dir)] 
# Create the dataset instance 
dataset = AudioDataset(file_paths) 
# Path to the folder containing the preprocessed data 
data_folder = dataset_dir 
# List all the preprocessed data files in the folder 
file_names = os.listdir(data_folder) 
# Get the full file paths 
file_paths = [os.path.join(data_folder, file) for file in file_names] 
data = []  # List to store the preprocessed data (Mel spectrograms) 
labels = []  # List to store the corresponding labels 
    # Load the preprocessed data 
    preprocessed_data = np.load(file_path) 
    # Get the label based on the file path or filename 
    label = get_label(file_path) 
       .append(label) 
# Split the data into training and testing sets 
train_data, test_data, train_labels, test_labels = 
train_test_split(data, labels, test_size=0.2, random_state=42) 
 

 
 

In this code snippet, data represents the preprocessed data and labals represents the 

corresponding labels. The train test split function is called with the following arguments: 

 data: The preprocessed data array. 

 labels: The corresponding labels array. 

 test_size: The proportion of the data to be allocated for testing. In 

this        case, it is set to 0.2, which means that 20% of the data will be used for 

testing. 

 random_state: An optional parameter that sets the random seed for 

reproducibility. It ensures that the same random split is obtained each time the code 

is executed. 

After executing this code, we will have four arrays: 
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 train_data: The training data, which is a subset of the original data. 

 test_data: The testing data, which is the remaining subset of the 

original data. 

 train_labels: The labels corresponding to the training data. 

 test_labels: The labels corresponding to the testing data. 

These arrays can then be used for training and evaluating machine learning model. 

3.2.2.2 Label Extraction Process 

The label extraction process is important in machine learning tasks because it assigns a 

specific category or class to each input sample. In this case, the labels represent whether 

the audio file is classified as normal or abnormal. 

 Code of Label Extraction Process : 

# Iterate over the preprocessed data files and labels def get_label(audio_path):  

# Extract the label from the audio path or filename  

# Check if the audio path contains the 'trainnormal' directory or the 'normal_' substring 

 if '/trainnormal/' in audio_path or 'normal_.npy' in os.path.basename(audio_path): 

 return 0 

 # Check if the audio path contains the 'abnrml' directory or the 'abnormal_' substring  

elif '/trainabnormal/' in audio_path or 'abnormal_.npy' in os.path.basename(audio_path):  

return 1 

 else: return -1 

 Code explication : 

The function get_label(audio_path) is responsible for extracting the label from the 

audio file path or filename. It checks if the audio path contains certain directory names or 

specific substrings in the filename to determine the label. In this case, it assigns the label 0 

for normal audio files and 1 for abnormal audio files. If the audio path or filename does not 

match any expected pattern, it assigns the label -1 as a default value. 
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This function is typically used during the data preprocessing step to assign labels to 

the corresponding audio data. It helps organize and categorize the data based on their 

characteristics, which is essential for training a supervised learning model. 

The model creation step, on the other hand, focuses on defining the architecture and 

parameters of the machine learning model itself, such as selecting the model type (e.g., 

logistic regression, neural network, etc.), specifying the number of layers . 

3.2.3 AI Model Type’s Choice  

We choice to use a logistic regression model for our task this choice depends on 

several factors, including the nature of our data and the problem we are trying to solve. 

Here are some reasons why logistic regression might be a suitable choice [30] : 

1. Binary Classification: Logistic regression is a popular choice for binary 

classification problems where the goal is to predict one of two possible outcomes. In our 

case, we are classifying audio data into two categories: normal and abnormal. Logistic 

regression is well-suited for such problems as it provides a probabilistic interpretation 

and produces class probabilities [30] . 

2. Efficiency: Logistic regression is a relatively simple and computationally 

efficient model compared to more complex models like neural networks. It can handle 

large datasets and high-dimensional feature spaces without significant computational 

overhead [30]. 

3. No Assumptions of Linearity: Although logistic regression is a linear 

model, it can capture non-linear relationships between the features and the target variable 

by using non-linear transformations or interactions. This flexibility allows logistic 

regression to handle a wide range of data patterns [30]. 

4. Good Performance with Sufficient Data: Logistic regression can perform 

well when we have a small amount of labeled training data. Even if our dataset is not 

large enough, logistic regression can provide good accuracy and generalization. 

However, it's important to note that the suitability of the logistic regression model 

depends on the specifics of our dataset and problem. It's always a deepens to  practice to 

consider alternative models, such as decision trees, support vector machines, or neural 
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networks, and evaluate their performance to choose the best model for our specific task we 

used this model to be simple and effective  as possible [30]  . 

3.2.4 Model Creation   

The model creation step involves defining the architecture and parameters of the 

machine learning model that will be used to learn from the training data and make 

predictions. The model is responsible for capturing and representing the underlying patterns 

and relationships present in the data. 

The Used code : 

      from sklearn.linear_model import LogisticRegression 
 
      # Create a logistic regression model instance 
       model = LogisticRegression() 

3.2.5 Model Training  

 This step is a crucial part of the machine learning pipeline where the model learns 

from the labeled training data to make accurate predictions on new, unseen data. During the 

training process, the model adjusts its internal parameters based on the patterns and 

relationships present in the training data. 

We used this code: 

# Fit the model to the training data 
model.fit(train_data, train_labels) 

 the model is trained on the training data using the fit method. This process involves 

optimizing the model parameters based on the input data and corresponding labels.Once the 

model is trained, it can be used for making predictions on new, unseen data. 

3.2.6 Model Evaluation  

Evaluation is a crucial step in assessing the performance of a machine learning 

model. It involves measuring the model's ability to make accurate predictions on unseen 

data and understanding its strengths and weaknesses. The evaluation process provides 

insights into how well the model generalizes to new instances and helps determine if the 

model is suitable for its intended purpose. 
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There are various evaluation metrics and techniques used to assess the performance 

of a model, depending on the type of problem and the nature of the data. Some commonly 

used evaluation metrics include accuracy, precision, recall, F1-score, and confusion matrix. 

In our case we calculate accuracy and confusion matrix and classification  

 Code of Evaluation  

# Use the trained model to make predictions on the test data 

predictions = model.predict(test_data) 

 

# Evaluate the model's performance 

accuracy = model.score(test_data, test_labels) 

print("Accuracy:", accuracy) 

 

# Calculate additional evaluation metrics 

from sklearn.metrics import confusion_matrix, classification_report 

 

# Calculate confusion matrix 

cm = confusion_matrix(test_labels, predictions) 

print("Confusion Matrix:") 

print(cm) 

 

# Calculate classification report 

report = classification_report(test_labels, predictions) 

print("Classification Report:") 

print(report) 

 

 Code Explication : 

1. predictions = model.predict(test_data): This line uses the trained 

model (model) to make predictions on the test data (test_data). It applies the 

learned pattern from the training phase to classify each sample in the test data and 

assigns a predicted label to each sample. The predicted labels are stored in the 

predictions array. 

2. accuracy = model.score(test_data, test_labels): This line calculates 

the accuracy of the model on the test data. The score method of the model calculates 

the mean accuracy by comparing the predicted labels (predictions) with the true 

labels (test_labels). The accuracy represents the proportion of correctly classified 

samples in the test data. 
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3. print("Accuracy:", accuracy): This line prints the accuracy of the model 

on the test data. 

4. from sklearn.metrics import confusion_matrix, 

classification_report: This line imports the confusion_matrix and 

classification_report functions from the sklearn.metrics module. These 

functions are used to evaluate the performance of the classification model further. 

5. cm = confusion_matrix(test_labels, predictions): This line 

calculates the confusion matrix based on the true labels (test_labels) and the 

predicted labels (predictions). The confusion matrix provides a summary of the 

model's predictions by showing the number of true positive, true negative, false 

positive, and false negative predictions. 

6. print("Confusion Matrix:") and print(cm): These lines print the 

confusion matrix, providing a visual representation of the model's performance. 

7. report = classification_report(test_labels, predictions): This 

line calculates the classification report, which includes various metrics such as 

precision, recall, F1-score, and support for each class. The report provides a 

comprehensive evaluation of the model's performance on each class. 

8. print("Classification Report:") and print(report): These lines print 

the classification report, providing a detailed evaluation of the model's performance. 

   3.2.6.1 Evaluation Results  

 

 

Accuracy: 0.90 

 

Confusion Matrix: 

[[27  3] 

 [ 2 18]] 

 

Classification Report: 

              precision    recall  f1-score   support 

 

           0       0.93      0.90      0.92        30 

           1       0.86      0.90      0.88        20 

 

    accuracy                           0.90        50 

   macro avg       0.89      0.90      0.90        50 
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weighted avg       0.90      0.90      0.90        50 

   3.2.6.2 Evaluation Results analyze   

o Accuracy: The overall accuracy of the model is 0.90, which means that it correctly 

classified 90% of the samples in the test data. 

o Confusion Matrix: The confusion matrix provides information about the model's 

predictions for each class. In this case, the matrix is as follows: 

[[27 3] [ 2 18]] 

o  True Positive (TP): The model predicted 27 samples correctly as class 0. 

o  False Positive (FP): The model predicted 3 samples as class 1, but they actually belong to 

class 0. 

o False Negative (FN): The model predicted 2 samples as class 0, but they actually belong 

to class 1. 

o True Negative (TN): The model predicted 18 samples correctly as class 1. 

Classification Report: The classification report provides several metrics for each class: 

o  Precision: Precision represents the proportion of correctly predicted positive samples out 

of the total predicted positive samples. For class 0, the precision is 0.93, indicating that 93% 

of the samples predicted as class 0 were actually class 0. For class 1, the precision is 0.86, 

indicating that 86% of the samples predicted as class 1 were actually class 1. 

o  Recall: Recall (also known as sensitivity or true positive rate) represents the proportion of 

correctly predicted positive samples out of the total actual positive samples. For class 0, the 

recall is 0.90, indicating that the model correctly identified 90% of the actual class 0 samples. 

For class 1, the recall is also 0.90, indicating that the model correctly identified 90% of the 

actual class 1 samples. 

o  F1-score: The F1-score is the harmonic mean of precision and recall, providing a balanced 

measure of the model's performance. For class 0, the F1-score is 0.92, and for class 1, the 

F1-score is 0.88. 

o  Support: Support represents the number of samples in each class. In this case, there are 30 

samples for class 0 and 20 samples for class 1. 
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o  Weighted Average: The weighted average calculates the average metrics (precision, recall, 

F1-score) considering the support of each class. The weighted average precision, recall, and 

F1-score are all 0.90 in this case, indicating the overall performance of the model. 

In summary, the model achieved an accuracy of 90% and performed well in 

terms of precision, recall, and F1-score for both classes. The classification report and 

confusion matrix provide insights into the model's performance for each class, allowing us 

to assess its effectiveness in differentiating between the classes. 

 

3.2.7 Model Saving  

Saving the model allows us to persist it to disk, so we can later load it and use it for 

making predictions on new data without having to retrain the model 

We used this code: 

import joblib 

 

# Save the trained model 

model_path = '/content/drive/MyDrive/model.pkl' 

joblib.dump(model, model_path) 

 

In this code, the joblib.dump() function is used to save the model object to the specified 

model_path. The model.pkl file will be created at the specified location. 

3.3 Software Tools: 

3.3.1 Python Language  

There are several reasons why Python is was our choice for working on this project: 

1. Ease of Use: Python is known for its simplicity and readability, making it 

easy to learn and write code. It has a clean and intuitive syntax that resembles English, 

which reduces the learning curve for beginners and facilitates collaboration among team 

members [31]. 

2. Vast Ecosystem of Libraries: Python has a rich ecosystem of libraries and 

frameworks specifically designed for machine learning and data science. Libraries such 

as NumPy, Pandas, Matplotlib, scikit-learn, and TensorFlow provide powerful tools for 
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data manipulation, analysis, visualization, and building machine learning models. This 

extensive collection of libraries saves time and effort by providing pre-implemented 

functions and algorithms [31]. 

3. Great Community Support: Python has a large and active community of 

developers and data scientists. This community contributes to the development of 

open-source libraries, shares knowledge through online forums and communities, and 

provides support to newcomers. The availability of resources, tutorials, and code 

examples makes it easier to find solutions to problems and learn from others[31]. 

4. Cross-Platform Compatibility: Python is a cross-platform language, 

meaning that code written in Python can run on various operating systems, including 

Windows, macOS, and Linux. This makes it flexible and ensures that the code can be 

easily deployed on different platforms without major modifications [31]. 

5. Integration with Other Languages and Tools: Python can be easily 

integrated with other programming languages and tools. For example, Python can be 

used for data preprocessing and model development, and then the trained models can be 

seamlessly integrated into production systems written in other languages. Additionally, 

Python can interact with popular databases, web frameworks, and APIs, allowing for 

easy integration with other components of a project [31]. 

6. Machine Learning and Data Science Community: Python has emerged as 

a dominant language in the field of machine learning and data science. Many research 

papers, tutorials, and resources are available in Python, and most machine learning 

frameworks and tools provide Python APIs. This strong presence in the machine learning 

community makes Python a natural choice for working on such projects [31]. 

7. Versatility: Python is a versatile language that can be used for a wide range 

of tasks beyond machine learning. It is widely used in web development, scripting, 

scientific computing, and automation, making it a valuable skill to have in various 

domains. 

Overall, Python's simplicity, extensive library ecosystem, community support, cross-

platform compatibility, and versatility make it an excellent choice for working on machine 

learning and data science projects. Its ease of use and powerful tools enable developers and 

data scientists to prototype, experiment, and deploy machine learning models efficiently[31]. 
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3.3.1.1 Used Python’s libraries  

  os: It is a Python built-in library for interacting with the operating system. 

It provides functions for working with file paths, directories, and other operating system-

related tasks [32]. 

  shutil: It is a Python built-in library that provides high-level file 

operations. In this code, it is used to copy files from one directory to another [32]. 

  numpy (imported as np): It is a popular library for numerical computing in 

Python. It provides support for multi-dimensional arrays and various mathematical 

operations. It is used in this code for manipulating and storing numerical data [32]. 

  sklearn (Scikit-learn): It is a powerful machine learning library in Python. 

It provides a wide range of tools and algorithms for tasks such as classification, regression, 

clustering, and model evaluation. In this code, it is used for data splitting 

(train_test_split), logistic regression model creation, and evaluation metrics 

(confusion_matrix, classification_report) [32]. 

  joblib: It is a library for efficient serialization of Python objects to disk. It 

is used in this code to save the trained model to a file [32]. 

 librosa: It is a popular library for audio and music signal processing 

in Python. It provides various functions for loading audio files, extracting audio features, 

and performing audio analysis. In this project, librosa is used for loading audio files, 

computing mel spectrograms (librosa.feature.melspectrogram), and converting 

amplitudes to decibels (librosa.amplitude_to_db) [32]. 

 torchaudio: It is a library for audio processing and deep learning 

with PyTorch. It provides audio I/O functionality, transformations, and dataset handling 

for working with audio data in PyTorch. In this project, torchaudio is used for loading 

and saving audio files (torchaudio.load, torchaudio.save), as well as for applying 

the SpecAugment technique to the audio spectrograms [32].. 

3.3.2 Google colab 

Google Colab is an online platform provided by Google that allows users to write, run, and 

collaborate on Python code using Jupyter notebooks [33]. It provides a cloud-based 
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computing environment that offers several advantages for machine learning and data science 

projects we choose to work on google colab in place of a python IDE for many reasons are: 

1. Free GPU and TPU: Google Colab provides free access to GPU 

(Graphics Processing Unit) and TPU (Tensor Processing Unit) resources. This is 

particularly beneficial for computationally intensive tasks, such as training deep learning 

models, as it significantly reduces the training time compared to running the code on a 

CPU [33]. 

2. Interactive Coding Environment: Colab notebooks provide an 

interactive coding environment where you can write and execute code in individual cells. 

This allows for easy experimentation and iterative development, as you can run code 

cells independently and modify them as needed [33]. 

3. Pre-installed Libraries: Colab comes pre-installed with popular 

Python libraries, including NumPy, Pandas, Matplotlib, and scikit-learn, among others. 

This saves time and effort in setting up the environment and installing necessary 

dependencies [33]. 

4. Integration with Google Drive: Colab integrates seamlessly with 

Google Drive, allowing to access and store files directly from Google Drive. This is 

useful for loading and saving data, models, and other files required for your project [33]. 

5. Collaborative Features: Colab supports real-time collaboration, 

enabling multiple users to work on the same notebook simultaneously. This facilitates 

teamwork and knowledge sharing, as team members can view and contribute to the code 

and analysis in real-time. 

6. Hardware and Memory Management: Colab handles the 

underlying infrastructure and resource management, including memory allocation and 

disk space. This frees users from the burden of managing hardware and allows them to 

focus on the code and analysis [33]. 

7. Notebook Persistence: Colab notebooks are automatically saved to 

Google Drive, ensuring that we work is preserved even if we close the browser or lose 

the connection. This eliminates the risk of losing code and analysis progress [33]. 
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8. Access to Additional Tools: Colab provides access to additional tools 

and resources, such as Google Cloud services, GitHub integration, and various APIs. 

These tools expand the capabilities of our project and enable integration with other 

platforms and services [33]. 

Overall, Google Colab offers a convenient and powerful environment for 

developing and running machine learning projects. It provides access to computational 

resources, simplifies the setup process, and promotes collaboration, making it a popular 

choice for data scientists, researchers, and developers working on machine learning tasks 

[33]. 

 

3.4 Hardware Setup 

3.4.1 Raspberry Pi 4 Board 

In this project we used raspberry Pi 4, single-board computer (SBC) that follows the 

open-source hardware philosophy. It is equipped with a system-on-a-chip (SoC) that 

integrates a central processing unit (CPU), memory, graphics processing unit (GPU), and 

various input/output (I/O) interfaces on a single board  [33]. 

Figure III 01: Raspberry Pi 4 Pins [24] 
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3.4.1.1 Reasons of choosing Raspberry Pi board for this project  

1. Compact and Portable: Raspberry Pi is a small and portable device, making 

it easy to integrate into sound classification systems. Its compact size allows for 

flexibility in placement and deployment, whether it's embedded within a larger system 

or used as a standalone device [33]. 

2. Sufficient Processing Power: Raspberry Pi 4, with its quad-core CPU and 

improved processing capabilities, provides sufficient power to handle sound 

classification tasks. It can efficiently process audio data, perform real-time feature 

extraction, and execute machine learning algorithms for classification [33]. 

3. GPIO and I/O Interfaces: Raspberry Pi boards offer General-Purpose 

Input/Output (GPIO) pins and various I/O interfaces, allowing easy connectivity with 

external devices such as microphones, sensors, LCD screens, and buzzers. This 

facilitates the integration of audio input/output components necessary for sound 

classification systems [33]. 

4. Support for Libraries and Tools: Raspberry Pi supports a wide range of 

libraries and tools used for audio processing, machine learning, and data analysis. 

Libraries like librosa, torchaudio, and scikit-learn provide functionalities for audio 

feature extraction, preprocessing, and model training. Additionally, popular machine 

learning frameworks like TensorFlow and PyTorch can be installed and utilized on 

Raspberry Pi [33]. 

5. Cost-Effective Solution: Raspberry Pi offers a cost-effective solution for 

sound classification systems. It is considerably more affordable compared to high-end 

computing devices, making it accessible for hobbyists, researchers, and educational 

institutions. The lower cost allows for scalability and wider adoption of sound 

classification technology. 

6. Customization and Flexibility: Raspberry Pi provides a high level of 

customization and flexibility. Users can configure the software and hardware 

components according to their specific requirements. They have the freedom to develop 

and adapt the sound classification system based on their application needs, allowing for 

tailored solutions [33] . 
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Figure III 02: Raspberry Pi 4 Components [34] 

3.4.2 ISD1820 Microphone Sensor  

The ISD1820 is a sound recording module featuring an on-board microphone and 

various playback functions [35]. 

 

 

Figure III 03 : ISD1820 Microphone Sensor  
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3.4.2.1 Principle of Works of ISD1820 Microphone Sensor: 

1. Sound Sensing: The ISD1820 module incorporates a built-in microphone that 

captures sound waves from the environment. When there is a sound present, the microphone 

converts the sound waves into electrical signals [35]. 

2. Analog-to-Digital Conversion: The module also includes an analog-to-digital 

converter (ADC) that converts the analog electrical signals from the microphone into digital 

data. This conversion process enables the Raspberry Pi to receive and process the audio data 

in a format suitable for sound classification [35]. 

3. Digital Output Signal: The ISD1820 module provides a digital output signal (OUT 

pin) that indicates the presence of sound. This signal can be connected to a GPIO pin on the 

Raspberry Pi, allowing it to monitor the state of the output signal. When sound is detected, the 

GPIO pin will go HIGH, indicating the presence of sound [35]. 

3.4.2.2 Advantages of Using the ISD1820 Microphone Sensor for Sound Classification 

Projects: 

The ISD1820 microphone sensor offers several advantages that make it a suitable 

choice for sound classification projects: 

1. Simplicity and Ease of Integration: The ISD1820 module is designed 

to be user-friendly and easy to integrate with the Raspberry Pi. It comes as a complete 

module, requiring minimal external components and simple wiring connections. This 

simplicity facilitates its use, particularly for beginners and hobbyists [36]. 

2. Real-time Sound Detection: With the ISD1820 sensor, sound 

detection is performed in real-time. The module continuously captures audio signals 

and provides a digital output signal when sound is detected. This real-time detection 

capability enables prompt action or initiation of sound classification processes based 

on the presence of sound [36]. 

3. Cost-effectiveness: The ISD1820 microphone sensor is an affordable 

option that is widely available in the market. Its cost-effectiveness makes it a 

practical choice for hobbyist projects and those with budget constraints [36]. 
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4. Compatibility with the Raspberry Pi: The ISD1820 module is 

designed to be compatible with the Raspberry Pi, ensuring seamless integration with 

the GPIO pins of the Raspberry Pi. This compatibility simplifies the connection and 

communication between the sensor and the Raspberry Pi [36]. 

5. Versatility: While its primary function is sound detection, the 

ISD1820 microphone sensor offers additional functionalities such as voice recording 

and sound playback. This versatility allows for potential expansion of the sound 

classification project’s capabilities if desired [36]. 

Considering its simplicity, real-time sound detection, affordability, compatibility with 

the Raspberry Pi, and versatility, the ISD1820 microphone sensor is considered a suitable 

choice for sound classification projects. It provides the necessary functionality to capture 

and process audio data, enabling accurate and timely sound classification while being 

accessible to users with varying levels of expertise [36]. 

 

3.4.3 Buzzer Device 

A buzzer is an electronic device that produces an audible sound or tone when an 

electric current is applied to it . 

Figure III 04: Buzzer Device 
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3.4.3.1 The principle of function of a buzzer  

Involves the conversion of electrical energy into sound energy. Buzzer components 

usually consist of a coil and a diaphragm. When an electrical current passes through the coil, 

it creates a magnetic field that causes the diaphragm to vibrate. These vibrations produce 

sound waves, resulting in an audible sound or tone [37]. 

The frequency and intensity of the sound produced by the buzzer can be controlled by 

varying the electrical current applied to the coil. Buzzer components are designed to generate 

specific frequencies or tones, such as continuous buzz, beeping patterns, or musical notes, 

depending on the application [37]. 

In summary, the principle of function for a buzzer involves the electromagnetic 

vibration of a diaphragm when an electrical current passes through a coil, resulting in the 

production of sound waves and audible tones [37]. 

In Our project we used only one simple sound when the captured sound is abnormal.  

3.4.4 LCD L1652  

LCD (Liquid Crystal Display) is a flat-panel display technology that uses liquid 

crystals to produce visual output. It consists of multiple layers, including a liquid crystal 

layer sandwiched between two transparent electrodes and a backlight or sidelight source. 
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Figure III 05: LCD L5216  

3.4.4.1 The principle of function of an LCD  

The functioning principle of an LCD involves manipulating the light properties of 

liquid crystals to generate images or text. When an electric current is applied to the liquid 

crystal molecules, they align to control the passage of light. The liquid crystal layer acts as 

a light valve, selectively allowing or blocking light from the backlight source based on the 

electrical signals received [38]. 

LCD displays are known for their thin profile, low power consumption, and excellent 

image quality. They can display information in alphanumeric characters or graphical 

formats, making them suitable for various applications, including electronic devices, 

appliances, computer monitors, and signage [38]. 

The display content on an LCD can be updated by sending appropriate electrical 

signals to control the liquid crystal alignment. This enables the display to show different 

text, images, or graphics based on the input received [38]. 

In summary, an LCD operates by controlling the properties of liquid crystals to 

modulate the passage of light, resulting in the display of visual content. It offers a versatile 

and energy-efficient solution for displaying information in various electronic devices and 

applicationsv [38]. 
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3.5 Realization: 

3.5.1 Model Implementation to Raspberry Pi 4  

To implement our model to the raspberry pi board we passed by this steps  

 Copy the model to raspberry using USB. 

 Load the saved model using this command “ model = 

joblib.load('model.pkl')” 

3.5.2 Circuit Conception  

To integrate the concept a real time sound classification system using the Raspberry 

Pi 4 board, a circuit needs to be constructed. The components involved in this setup include 

the Raspberry Pi, ISD1820 sound module, buzzer, and LCD display. The Raspberry Pi is the 

central processing unit where our AI model is implemented and connects to the ISD1820 

module for sound input. The buzzer is connected to the Raspberry Pi to provide audible alerts 

when abnormal sounds are detected. The LCD display is used to visually indicate the status 

of the sound classification. Proper connections between the Raspberry Pi and the 

components, such as power, ground, and data pins, need to be established. 
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Figure III 06 : Circuit Assembly 

 

 3.5.3.1 Circuit Assembly Explication  

Raspberry Pi 4 Connections: 

1. Connect the 5V pin on the Raspberry Pi 4 to the VCC pin on the ISD1820. 

2. Connect a GND pin on the Raspberry Pi 4 to the GND pin on the ISD1820. 

3. Connect a GPIO pin on the Raspberry Pi 4 to the DATA pin on the ISD1820. 

4. Connect the GPIO pin on the Raspberry Pi 4 to the positive terminal of the buzzer 

module. 

5. Connect the negative terminal of the buzzer module to a GND pin on the Raspberry 

Pi 4. 
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ISD1820 Connections: 

1. Connect the REC pin on the ISD1820 to GND to enable recording mode. 

2. Connect the SP+ and SP- pins on the ISD1820 to a speaker or an amplifier for 

sound output. 

 

LCD Connections: 

1. Connect the VCC pin on the LCD to the 5V pin on the Raspberry Pi 4. 

2. Connect the GND pin on the LCD to the GND pin on the Raspberry Pi 4. 

3. Connect the SDA pin on the LCD to the SDA GPIO pin on the Raspberry Pi 4. 

4. Connect the SCL pin on the LCD to the SCL GPIO pin on the Raspberry Pi 4. 

3.5.4 Circuit Programming  

Here the code that we used to connect raspberry pi 4 board with the buzzer, LCD and 

ISD1820 sensor: 

import RPi.GPIO as GPIO 

import time  

import joblib 

import Adafruit_CharLCD as LCD 

# Set up GPIO pins 

ISD_PIN = 17 

BUZZER_PIN = 27 

# Set up LCD pins 

LCD_RS = 26 

LCD_EN = 19 

LCD_D4 = 13 

LCD_D5 = 6 

LCD_D6 = 5 

LCD_D7 = 11 

LCD_COLUMNS = 16 

LCD_ROWS = 2 

# Load the trained model 

model = joblib.load("model.pkl") 

 

# Set up GPIO mode and pins 

GPIO.setmode(GPIO.BCM) 

GPIO.setup(ISD_PIN, GPIO.IN) 

GPIO.setup(BUZZER_PIN, GPIO.OUT) 

# Set up LCD 
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lcd = LCD.Adafruit_CharLCD( 

    LCD_RS, LCD_EN, LCD_D4, LCD_D5, LCD_D6, LCD_D7, 

    LCD_COLUMNS, LCD_ROWS 

) 

# Function to classify sound and control buzzer 

def classify_sound(): 

    while True: 

        sound = GPIO.input(ISD_PIN) 

                # Perform sound classification using the loaded model 

        prediction = model.predict([sound])[0] 

                # Control the buzzer based on the classification result 

        if prediction == 0: 

            # Normal sound 

            GPIO.output(BUZZER_PIN, GPIO.LOW) 

            lcd.clear() 

            lcd.message('Normal') 

        else: 

            # Abnormal sound 

            GPIO.output(BUZZER_PIN, GPIO.HIGH) 

            lcd.clear() 

            lcd.message('Not Normal') 

                time.sleep(0.1)  # Adjust sleep duration as needed 

try: 

    # Run the sound classification loop 

    classify_sound() 

 

except KeyboardInterrupt: 

    # Clean up GPIO pins on keyboard interrupt 

    GPIO.cleanup() 

 

o Code explication : 

 

  Import the required libraries: RPi.GPIO, time, joblib, and Adafruit_CharLCD. 

 Set up the GPIO pins for the ISD1820 and buzzer. 

 Set up the LCD pins for the Adafruit_CharLCD. 

 Load the trained model using joblib. 

 Set up the GPIO mode and pins using GPIO.setmode and GPIO.setup. 

 Set up the LCD using Adafruit_CharLCD. 

 Define a function to classify sound and control the buzzer. 

 In a loop, read the sound input from the ISD1820 pin. 
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 Use the loaded model to classify the sound. 

 Control the buzzer and display the result on the LCD based on the classification. 

 Add a small delay using time.sleep. 

 Run the sound classification loop. 

Conclusion: 

In this chapter, we have successfully implemented a real-time sound classification 

system using Raspberry Pi. We began by conceiving and training our sound classification 

model, ensuring its accuracy and robustness. We then moved on to setting up the necessary 

hardware components, including the Raspberry Pi as the central processing unit, the 

ISD1820 microphone sensor for sound input, the LCD display for visual feedback, and the 

buzzer for audible feedback. We configured the software environment, installing libraries 

such as RPi.GPIO and Adafruit_CharLCD, and loaded the trained model into the Raspberry 

Pi. 

The heart of our realization phase was the real-time sound classification process. We 

captured and preprocessed audio data, extracting relevant features and normalizing the data 

for optimal performance. We utilized the loaded model to classify the sound, distinguishing 

between normal and abnormal sounds. The LCD display provided visual feedback, 

displaying "Normal" or "Not Normal" based on the classification result, and the buzzer 

produced audible feedback when abnormal sounds were detected. 

We thoroughly tested and evaluated our system's performance using different sound 

samples, employing evaluation metrics to measure accuracy and efficiency. The results 

demonstrated the effectiveness of our real-time sound classification system in accurately 

identifying abnormal sounds. 
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 The poultry industry is a critical sector in the global food supply chain, providing a 

significant source of protein through the production of poultry products. Ensuring the health 

and well-being of poultry flocks is essential for maintaining high-quality products and 

maximizing productivity. Our project, focused on real-time sound classification for poultry 

health monitoring, has the potential to make a significant impact on the poultry industry. 

By developing a sound classification system capable of distinguishing between normal 

and abnormal sounds in poultry, we provide a non-invasive and efficient method for 

monitoring the health and welfare of the birds. Abnormal sounds, such as coughing, 

wheezing, or distress calls, can be indicative of underlying health issues or environmental 

stressors that require immediate attention. Through the use of machine learning algorithms 

and the integration of our system with Raspberry Pi and associated hardware components, 

we have created a practical and accessible solution for poultry farmers and producers. 

The implementation of our system in the poultry industry can bring several benefits. 

Firstly, it enables early detection of health problems in poultry flocks, allowing for timely 

intervention and treatment. This can prevent the spread of diseases, minimize mortality rates, 

and improve overall flock health and productivity. Additionally, the system's real-time 

monitoring capabilities provide continuous and comprehensive data on the well-being of the 

birds, enabling proactive measures to optimize their living conditions and reduce stress 

factors. 

The impact of our project on the poultry industry goes beyond health monitoring. By 

automating the sound classification process, poultry farmers can save time and resources 

that would otherwise be spent on manual monitoring or periodic veterinary inspections. The 

system's ability to provide immediate feedback through visual displays and audible alerts 

enhances the efficiency of farm management and decision-making. It empowers poultry 

farmers with actionable insights and supports their efforts in maintaining healthy and 

thriving flocks. 

Furthermore, our project promotes the adoption of advanced technologies in the 

poultry industry, fostering innovation and progress. By demonstrating the feasibility and 

benefits of sound classification for poultry health monitoring, we encourage the industry to 

explore and embrace similar technological solutions. This can lead to further advancements 

in animal welfare practices, disease prevention, and overall farm efficiency. 
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Like every research project, there are some perspectives we think that it is an 

obligation to be integrated in future solutions: 

1. Model Improvement: Continuously refining and optimizing the sound classification 

model can lead to higher accuracy and better performance. This can involve 

exploring different machine learning algorithms, feature engineering techniques, and 

data augmentation methods to enhance the model's ability to classify poultry sounds 

accurately. 

2. Feature Extraction: Experimenting with different audio feature extraction techniques 

can provide additional insights into the characteristics of poultry sounds that are 

indicative of specific health conditions. Exploring advanced signal processing 

algorithms or deep learning architectures for feature extraction may further improve 

the system's performance. 

3. Multi-Class Classification: Expanding the classification system to include multiple 

classes of poultry sounds can enable the detection of a wider range of health 

conditions or behaviors. This could involve training the model on a more diverse 

dataset that covers various sound patterns associated with different diseases or 

stressors. 

4. Cloud Integration: Integrating the system with cloud-based services can offer 

additional capabilities, such as centralized data storage, advanced analytics, and 

remote monitoring. Cloud integration can enable access to historical data, 

collaborative analysis, and the ability to scale the system across multiple locations. 

5. User Interface Enhancements: Improving the user interface of the system can 

enhance usability and accessibility. This can involve developing a graphical user 

interface (GUI) or a web-based dashboard that provides real-time visualizations, 

historical data analysis, and customizable alerts for poultry farmers. 

6. Integration with Other Sensors: Combining sound classification with other sensor 

data, such as temperature, humidity, or motion sensors, can provide a more 

comprehensive view of poultry health. Integrating multiple sensor inputs can enable 

more accurate and robust health monitoring, detecting early signs of illness or stress 

from different sources. 
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7. Data Analysis and Insights: Investing in data analysis techniques, such as machine 

learning algorithms or statistical models, can help uncover hidden patterns and 

correlations within the collected sound and sensor data. Extracting valuable insights 

can provide deeper understanding of poultry health trends, leading to more informed 

decision-making for farmers. 

 In conclusion, our project's impact on the poultry industry lies in its ability to revolutionize 

poultry health monitoring through real-time sound classification. By leveraging machine 

learning, Raspberry Pi, and associated hardware components, we provide a practical and 

effective solution for early detection of health issues in poultry flocks. This can lead to 

improved flock health, increased productivity, and enhanced farm management practices. 

Through our project, we contribute to the ongoing advancements in the poultry industry and 

promote the adoption of technology for sustainable and responsible poultry farming. 
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 ملخص
مع ظهور ٔ:مراض �دیدة ومعقدة. یعد الت12ؤ بهذه  ,اصة ا*واجن تحد%ت #بيرة في الحفاظ �لى صحة الطیور ورفاهیتها، �ربیةتوا�ه  

ن اLٔمراض وXشخیصها ٔ:مرا Uلغ اLٔهمیة للإدارة والسMیطرة الفعاO. في السMنوات اLٔ,يرة، كان هناك اهGم متزاید بتطوDر ٔ:نظمة ذ#یة يمك

 .مراض UسMت[دام التصنیف السليمهذه اLٔ ٔ:ن Xسا�د في الت12ؤ بحدوث 

وتصميم نظام ذكي fلت12ؤ بeمٔراض ا*واجن یعتمد فقط �لى التصنیف السليم. یقوم النظام بتbلیل ال`سجیلات  تقدم هذه ا*راسة تطوDر

الصوتیة Lٔصوات ا*واجن fلكشف عن اLٔصوات pير الطبیعیة التي قد Xشير إلى وجود المرض. ويهدف النظام ٔ:یضا إلى تقديم توصیات 

 .اتخاذها في wاO تفشي المرضuشeنٔ تدابير المكافحة المناسMبة التي یتعين 

�سMت[دم النظام المقترح مزيجا من معالجة الإشارات واسMتخراج الميزات وخوارزم}ات التصنیف fلت12ؤ UحGلیة تفشي المرض بناء �لى 

نظام حقق دقة ؤ:ظهرت النتائج ٔ:ن ال  دواجن،ال`سجیلات الصوتیة. تم تق}يم ٔ:داء النظام UسMت[دام البیا�ت التي تم جمعها من مزر�ة 

 .�الیة في الت12ؤ بحدوث اLٔمراض UسMت[دام التصنیف السليم

يمكن ٔ:ن یؤدي تطوDر نظام ذكي fلت12ؤ بeمٔراض ا*واجن بناء �لى التصنیف السليم إلى تحسين إدارة اLٔمراض ومكافحتها  �ام،uشكل 

Lٔمراض، والحد من خطر انتقال العدوى وتقلیل التeثٔير ا*واجن. ويمكن fلنظام ٔ:ن �سا�د في الكشف المبكر عن ا �ربیةuشكل #بير في 

  .�لى إنتاج ا*واجن

 .ا�كاء �صطناعي، معالجة الإشارات، التعلم اLليٓ، الصوت، معالجة الإشارات الصوتیة :المف�اح}ةا�كلمات 

 

Abstract 

 

The poultry industry faces significant challenges in maintaining the health and 

welfare of birds, with the emergence of new and complex diseases. Predicting and 

diagnosing these diseases is crucial for effective management and control. In recent 

years, there has been a growing interest in the development of intelligent systems that 

can aid in predicting the occurrence of poultry diseases using sound classification. 

This study presents the development and design of an intelligent system for predicting 

poultry diseases based solely on sound classification. The system analyzes audio 

recordings of poultry vocalizations to detect abnormal sounds that may indicate the 

presence of disease. The system is also designed to provide recommendations on the 

appropriate control measures to be taken in the event of an outbreak. 

The proposed system uses a combination of signal processing, feature extraction, and 

classification algorithms to predict the likelihood of a disease outbreak based on 

sound recordings. The system's performance was evaluated using data collected from 

a poultry farm, and the results show that the system achieved high accuracy in 

predicting the occurrence of diseases using sound classification. 

Overall, the development of an intelligent system for predicting poultry diseases 

based on sound classification can significantly improve disease management and 

control in the poultry industry. The system can assist in early detection of diseases, 

reducing the risk of transmission and minimizing the impact on poultry production. 

Keywords: Artificial intelligence, signal processing, Machine Learning, voice, 

Sound signals          processing 
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