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Abstract:

In this paper, we present the classical Ostrowski’s inequality and some
applications for some special means. Also, we prove some inequalities for the
class of s-convex functions and their analogous fractional.
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Introduction

Inequalities play an important role in various branches of modern such as Hilbert’s
theory of spaces, the theory of probability and statistics,analysis, numerical analy-
sis, qualitative theory of differentials equations and differences equations, etc - - - .
The mathematical basis of this theory was partly established during the 18" and 19"
century by eminent mathematicians such as: Gauss, Cauchy,Chebychev in the fol-
lowing years the subject attracted many researchers : Poincaré, Lyapunov,Gronwall,
Holder, Hadamard, Polya, Bellman and Ostrowski. Literary in this context is vast
and varied among the works of which a very good description can be found of the
historical evolution of inequalities it is possible to consult, Mitrinovic, Pecaric and
Fink[[30];[31];[32]].

This theory continues to evolve in many directions and in many different ways. New
inequalities have been established, generalizations and extensions as well as variants
on several unidimensional, multidimensional, fractional and discreet.

The objective of this work is to present inequality of Ostrowski and some type in-
equalities in classical and fractional calculus. The brief consists of four chapters
divided as follows:

In the first chapter are defined some classes of function as integrable functions
,continuous and absolutely continuous functions,then we report some type of clas-
sic convexity,a sketch concerning fractional integrations,and some inequalities of
Holder,Hermite-Hadamard...etc

The second chapter is devoted to Osrowski’s inequality and some applications to
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some Special Means.

The third chapter affected inegalities of type Ostrowski for s-convex functions.

In the fourth chapter we consider some integral fractional inequalities of Riemann-
Liouville called in the literature Ostrowski type inequalities.

We conclude this modest work by a general conclusion and an interesting bibiogra-

phy.




Chapter 1

PRELIMINARIES

1.1 Some Function Spaces

1.1.1 Spaces of integrable functions

Definition 1.1.1. Let (a,b)(co < a < b < 400) be finite or infinite interval in
R, 1 <p< 0.
1.For 1 < p < o0, the space LP((a,b)) is the space of real function f on (a,b) such

that f is mesurable function and

/ab |f(2)[Pde < oo.

2.For p = oo the spaces L™is the space of classes of mesurable functions f bounded

almost every where on (a, b)

Theorem 1 Let (a,b) be a finite or infinite interval of R
1.For 1 <p < +oc0 , the space L*((a,b) is Banach spaces endowed with the norm

b 1
£l = ([ 1£(@)de)’
2.the spacesL™ () is a Banach space endowed with the norm:

[flloe = {inf M >0 |f(z)] < M p.p on (a,b)}



1. PRELIMINARIES

1.1.2 Continuous and absolutely continuous functions space

Definition 1.1.2. [33] let Q = [a,b](—00 < a < b < o00)andn € N =0,1,.....
is referred by C"(2) the space of functions f which have their derivatives of lower

order or equal to (n — 1) continuous on equipped with the standard norm:
Fller = 3 1D @) = 3 mae| O a) . m € N
k=0 k=0

In particular if n = 0,C°(2) the space of continuous functions f in Q equipped

of the standard norm:

1 lle = max | f(x)].

1.2 Some Concepts In Fractional Calculus

In this section, we recall some fondamental concepts in fractional calculus such
that: Fuler Gamma,Beta functions, considered as special functions. It extends the
factorial function to all complex numbers exception of whole negatives. Also we

recall the definition of Riemann-Liouville fractional integrals.

1.2.1 Some special functions

Definition 1.2.1. [10](Gamma function) For any complex z number such as Re(z) >

0, the next function, called Gamma function as follows
['(z) = / exp ‘t7ldt (1.1)
0
Remark 2 for z € Njwe have I'(z) = (z = 1)l =1 x2x3--- x (2 —1).

Definition 1.2.2. [34](Beta function) Euler’s beta function is defned for all com-

plex numbers x and y real parts strictly positive by

1
B(z,y) = / 11— 1), (1.2)
0
Remark 3 The relationship between Gamma function and Beta function is given
as follows:
I'(z)C(y)
B(z,y) = 1.3
R (1.3




1. PRELIMINARIES

1.2.2 Riemann-Liouville fractional integrals

The history of the non-integer order derivative stretches from the end of the 17th
century until today. Specialists agree to go back to the end of the year 1695 when

mn

The Hospital raised a question in Leibniz asking about the significance de Tz when
x

n = ; Leibniz, in his reply, wanted to make a reflection on a possible theory of non
whole derivation, and responded to L. Hospital:” - - - thiswould lead to a paradox - - -”
It was not until the 1990s that the first useful consequences. The first serious attempt
to give a logic for the fractional derivative is due to Liouville who published nine
papers in this subject between 1832 and 1837. Independently, Riemann proposed an
approach that this is mainly the case of Liouville, and since then it has carried the
non Approach of Riemann-Liouville . Later, other theories made their appearances
as that of Griinwald-Leitnikov, Weyl and Caputo etc. This theory has not ceased

to attract the scope of its application in image processing,biology, mechanical civil

engineering.
Definition 1.2.3. [11] Let f € L'([a,b]), Riemann-Liouville fractional integral
I% f(x) of order o > 0, where a > 0 is defined by
1 T
186) = Fay / (x — ) f()dt, x> a,  (left), (1.4)
1 b
) = 5oy / (t— ) f(t)dt,x < b, (right) (1.5)

Remark 4 By laying agreement 12, f(x) = f(z).

1.3 Some Inequalities

We recall the famous inequality called Hermite-Hadamard for convex functions then
we will state its generalization for s-convex functions . In all that follows we refer

to I =[a,b] C R.

Definition 1.3.1. [!](on convexity) A set/ C R" is said to be convex if for all
z,y € I and for all ¢t € [0, 1], we have

tr+(1—tyyel (1.6)




1. PRELIMINARIES

Definition 1.3.2. [?] A function f : I — R is called convex, if
flte+ (1 =t)y) <tf(x) + (1 —1)f(y) (1.7)
is satisfied for all z,y € I and all ¢ € [0, 1].

Definition 1.3.3. [!] A positive function f : I C [0,00[— R is called s-convex at

second sense for a number s €]0.1], if
fltr+ (1 —=t)y) <tf(x) + (1 =1)°f(y) (1.8)
is satisfied for all z,y € I and ¢ € [0.1].

Definition 1.3.4. [7] A positive functionf : I C [0, c0[— Ris said to be extended

s- convex for a certain number s €] — 1, 1[,if
[tz + (1 =t)y) <t°f(z) + (1 —1)"f(y) (1.9)
is satisfied for all z,y € I and ¢ €]0, 1].

Lemma 1.3.1 [/2/(Hermite-Hadamard Inequality) Let f : |a,b] — R, a convex

; <a+b> o1 /abf(x)dx < @ +10) (1.10)

function, then

2 “b—a 2

1 1

Lemma 1.3.2 [13/(Hélder Inequality) Let p > 1 as —+ — = 1. If f and g are two
p

real functions defined on [a,b] and if |f|Pand |g|* are integrable functions on [a, b,

then

[ s@gtaar < ([ e[ it (1.11)




Chapter 2

INEQUALITIES OF
OSTROWSKI TYPE

2.1 Ostrowski’s Inequalities

Ostrowski Inequality.In 1938 the following celebrated inequality was estblished
by Ostrowski.This type of inequality provides estimates of net errors in the approx-
imation the value of a function relative to its full average. They apply to obtaining

approximations a priori and calculating error limits for different quadrature rules.

Lemma 2.1.1 Let a,b € R,and x € |a, b

—+

a+b)’
1 (m— 2 ) (z —a)*+ (b—x)?
TR e (b—a)= - (2.1)

10



2. INEQUALITIES OF OSTROWSKI TYPE

Proof 1
a+b)’ a+b)’
i+<$@jy> == ($®i>>
=1 2+(a;i2ia;x(a;b)

, [a®+ b+ 2ab a+b
P 22
_b—a+ 4

4 (b—a)
(b—a)2+4m2+(a2—|—b2—|—2ab) 4z(a +b)

4 4 4
(b—a)
b + a* — 2ab + 42* + a® + b* + 2ab — 4z(a + b)
4
(b—a)
20° + 2a* + 42% — 4x(a + b)
2
2(b—a)
VP +ad® 4 22° — 2ax — 2bx
B 2(b—a)
2?40 —2bx + 2% 4 a® — 2ax
B 2(b—a)
B (b—2)*+ (z — a)?
B 2(b—a) '

Theorem 5 [1/] Let I be an interval in R, I° the interior of I and a,b € I°;a < b,
and f : I — R such that f € C([a,b]),z € [a,b]. If |f'(t)] < M ,for allt € [a,b],

then we have

<

)= [ o

i + (x(b;)?] (b—a)M (2.2)

for x € [a, b].

Inequality (2.2)is sharp since the function cannot be replaced by a smaller.

11



2. INEQUALITIES OF OSTROWSKI TYPE

Proof 2 We consider the Montgomery’s identity (see theorem 5),for all x € [a, D]

F@) — s [ fr = [0 o (2.3)

where

p(e.t) = t—a,if te€la,x]
t—bif t€xb].

Thus ,we have

@) -5 [ 1 dt]</\pxt|rf<>|dt

We have
‘f(a:)— bia./f(t)dt‘ g/j(t-@dH/j(t-b)dt
:[;@—aVK+{;@—bVK
;(x—a)2+ ;(b—x)2
_ (x —a)?*+ (b—x)?
2

from there

_ bﬂja [@c—a)?;(b—w)?]
(x— a+b>2

= i+ (b—j)Q (b—a)M

Next,we give a different proof to(2.2) from that of Ostrowski’s initial proof given in

1938 (see [14]).

1
Theorem 6 The constant 1 in theorem (5) is optimale (sharp ). Inequqlity (2.3)

s sharp,namely the optimal function is

fry)=ly—="(—-a)a>1 (2.4)

12



2. INEQUALITIES OF OSTROWSKI TYPE

Proof 3 We have

o [ T 1) = /abf(y)—f(:v)dy‘
< _a/If )| dy
Sbf/ kly — z|.dy

")y — x|dy
<t [ 1y aldy
b—ala
1 , b
< I1f = [ Iy — aldy

b
We compute / ly — x|.dy

/]y—x! /x— dy—i—/ y—x)dy
—/ xdy — /ydy—l—/ydy /xdy

1 1
= z? —ax—§x +2 fb2 §x — bx + 2°

=(z—a)}+(b—2)?

Finally, we obtain

bia SlJU%&@—aY+®—$W

[ sy - ) <

So,we have established inquality (2.2).
Note that for
fy) = aly — 2| sign(y — 2)(b - a)

sign(z) =40,if  y=u

thus

13



2. INEQUALITIES OF OSTROWSKI TYPE

’

[ y) =aly—z[*"".(b—a)

1 lloo = sup(|f'+(2)])
= sup(a.ly — 2" (b — a))

— Oé(b — a)(max(b T a))afl

Also we notice that f*(z) =0
Therefore we have for f* that f*(x) =0

L.HS = <b_1a /ab f(y)dy — f*(:v))
; i - /ab ly — z|*.(b — a)dy

b
= / ly — |*dy

From there:
/bl |ad 1 ‘ ‘a+1
-z = —Nly—=x
a Y y o+ 1 y
(=a) + (b))
- a+1
(x —a)*™ + (b —z)>!
N a+1
and

(x —a)*™ + (b — x)ot!
a+1
(x —a)*+ (b—x)?

- ; (2.5)

lim L.H.S = lim
a—1 a—1

Also we observe that:

((z—a)*+ (b—x) )
R.H.S—( e )'nfnoo

We compensate || || in R.H.S
— ((x ;jéQEbc; ?) ) a.(b—a)maz((b—x,x —a))*!

_ <<x —a)’ ; (b— x>2> T

14



2. INEQUALITIES OF OSTROWSKI TYPE

. ey (x —a)*(b— x)* ol
}3211 R.H.S = 5?1 ( i ) a.(maz(b—x,x — a))
_ (x —a)*+ (b—xz)?
2

(r —a)*(b—x)°
2
=lim R.H.S

a—1

lim L.H.S =
a—1

Note that when = = a or x = b, inequality (2.2) can be attaiend by

fa(y) = foly) = (y — a).(b - a)

respectively then both equal to (b — a)?.

2.2 Ostrowski’s Inequality For Higher Derivation

The following material has been greatly motivated by the important work in [35].Let
f € C"Y[a,b]),n € N,z € [a,b], be fixed. Then by Taylor’s theorem we get
n k T
1) 1) = 3 T (- a4 o) 26)
k=1
Where )
Y — )"
- () (4) — £ (y dt 9
Bolas) = [ 000 = 1005, (2.7)
Here y can be > x or <z
Rale)l < [ sy =) — o)t
_ t|n—1
<7 1t -l 2

We compute

-1

v ly =" 1 /y -1
t— x| : t—x||ly—t|" dt
[1e=a CEDCED I

_ (n—11)!'/: (t—a)(y — )" dt.

15




2. INEQUALITIES OF OSTROWSKI TYPE

Fory >z

Y
We compute / |(t—2)(y—1t)""'|dt. By integration by parts withu =t—z, dv =
(y—t)""

/|t—x y— )" dt = {t—x( )gﬁ%ﬁi—é%%%@—ﬂ%t
1
1
|

T lmiw-ﬂ”ﬂy
o

T

1
n+1

n
=7 Ay —

CELAE t)"

Thus »
”.f ||00(x_ )n+1||' (28)

Rule ) <

Fory <z

R, y)| = | [urw- f”(x))-%-dt

‘nl

< [ - e

(n—1)!
< H(i"i |1|;’° /y (x —t)(t —y) " dt.

We compute / (z—t)(t—y)" 'dt. By integration by parts with: u(t) = v —t, dv =
(t=y)""

/:(x—t)(t—y)"ldt: [(x—t).;(t—y)”]:+/;i(t_y)ndt
S 1{(1 (t_y)mr

m—1D!n |(n+1) y
1
" (no 1)!(I_y)n+1'
Thus

R < ||f(n+1)||00 . n+1 29

From (2.8) and (2.9)
R < [ = v b 2.10
o) < o ™ Ve y € ol (210)

16



2. INEQUALITIES OF OSTROWSKI TYPE

Next,we treat:

1

[ 1) - @) = 2

b—a
B 1
Cb—a’

[ = s
/ab [i f(kl::!(m) (y = 2)" + Rz, y)] dy’ :

b _ k+1 . k+1
we have / (y — )k = (b=o)™ +(@=a) , hence

E+1
no ) () (b— )t! k+1
‘b—a/f biakzjlfk;!( )( ) k——if_—(l +/R :L’y)dy‘
1 M) 1 +1 1
:b_a.kz::l X .(k+1).[(b—x)k —(a—x)kJr}—l—/GRn(x,y).dy‘

(by2.10)

1 - fk@) k-+1 )k ||fn+1)||oo n+1

i,e, we proved that
e s

(n—|—2)
S =TACEC
<L [Z o= = (a0
LT+ )|| 1 n2 nt2
n (2) (n+1)
[Z || x)k—i—l _ (a _ x)k-ﬁ-l H{n - 2|)| ((ZE _ a)n+2<b _ x)n+2)
(2.11)
Where f € C""'([a,b]),n € N,z € [a,b] is fixed
1fwechoose93—a;bthusb—x—x—a—b; then
o [ - 1 <

(k) (““’

3 2 >’ (b — a)kt? N (b— a)k+t N | frtDlles b—a\"t? ) b_ o\
1<keven<n (k+1! 28+ 2k+1 (n+2)!° 2 2

17
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1
<
“b—a
F®) a+b
Z 2 2.(b _ a)k+1 ||f(n+1)||Oo Q(b _ a)n+2
1<k even <n (k + 1)' ' 21 x 2 (TL + 2)' 2t w2k
) by geeie oo
1 —a e (b —a)™
< . . ) 2.12
e B e T NG (TR (2.12)
Theorem 7 Let f € C""'([a,b]).n € N and x € [a,b] be fized ,such that
f®(x)=0k=1,---,n, then
1 b ||f(n+1)||oo (x _ a)n+2 + (b _ :B)nJrQ
—_ dy — < . 2.1
o [ - o) < L L 213

Inequality (2.13) comes immediately from (2.11) next we prove the sharpness of

inquality (2.11). When 7 is odd :Notice that f**(z) =0,k =0,1,2,--- ,n and

When || f||eo = sup(|f])
£ = (n+ 1)L(b - a)

1F oo = (n + DL — a)

18



2. INEQUALITIES OF OSTROWSKI TYPE

plugging f* into (2.13), we get

1 b
L.H.S = ‘b_a/a [ (y)dy — f*(x)

- ’bia/abf%y)dy
- bia /ab|y — " (b — a)dy
1 n+2 b
B [n+2(y_x) .
= 1 bh— x)n+2 o (:If _ a)n+2’
n+2|(
_an+2_ l’—a”"’z
- = n+(2 ) (2.14)
1F™ oo = (n+ D)I(b — a).
Also
£V (@ = a4 (b= 2
RHS == L
_ (Db —a) ((z— )" + (b— )"
(n+2)! b—a
n+1)! _ s
- (n—il)!(n)—i— 2)((3’3—66) + (b—a2)"")
oy o 215

n-+ 2

from (2.14) and (2.15),when n is odd inequality (2.15) was proved to be sharp, in
partcular attained by f*.

19



2. INEQUALITIES OF OSTROWSKI TYPE

When n is even :Notice that

fy) =1y —2"".(b~a)

( )-(b—a).ly — x|V

( )-(n+a—1).(b—a).|ly -z
fYy)=m+a)(n+a—1)-(a+1).(b—a)(y —z)"

( ).n+a—1)---(a+1).a.(b—a)(y —x)*"

st >—<f[0<n+a—y>> ly— 2. (b— a)
- <ﬁo<n+a—j>>.<<b—x =)™ (b a)

and

= sup( f[ (n+a—3).(b—2,2—a)**.(b—a)

n

1F" Voo = ( H +a —j))max((b—z,2—a))* ".(b—a)

Consequently we have:

1" oo (&= a)™*2 + (b — a)"+

f.H.5 = (n+2)! b—a
(T (n+a —j) max((b—z,2 — a))* (b —a) (z — a)""? + (b— z)"*?
R.H.S = — =
. o ([Tt o —j))max((b— 2,2 —a)*".(b—a) (z—a)"*? + (b —a)""
i%R.H.S—ilﬂ (1 2) : b—a)

G )nz 1 ;b z)" (2.16)

20



2. INEQUALITIES OF OSTROWSKI TYPE

and

L.H.S = | / )dy — f(z)

x|n+a _ a)dy
:/ﬁy—wWW@

1
— e \ntatl
{n+a+1'(y @) a
1 nro n+ao
(b _ $)n+a+1 + (!L’ _ a)n+a+1
n+a+1
b— n+a+1 - n+a-+1
thHS—hm( o @ a)
a—1 n+a+1
(I _ a)n+2 + (b _ x)n+2
n+2

from (2.16)and (2.17) we get that (2.13) is sharp also when n is even

b

lim L.H.S =
a—1

(2.17)

Note that when = = a or x = b and n is even,inequality (2.13)can be attained by

faly) == (y —a)"*'.(b—a)

foly) = (y = )" (b —a)

respectively (then both sides of (2.12) are equal to

( b— a)n+2
n+2 ;
When x = i, we have a case of special interest which is described next.
2

Theorem 8 Let f € C"™([a,b]).n € N such that
fo (a;—b) =0 forall k even € N and € {1,...,n}. Then
Lo a+b 1F " Voo (b= a)™*!
— dy — < ) 2.1
b—a/af(y)y f( 2 )’_ (n+2)! 2n+l (2.18)
Inequality (2.18) is sharp .Namely ,when n is odd it is attained by

Fy) = (y - “‘2”))”“ (b—a)

21



2. INEQUALITIES OF OSTROWSKI TYPE

While when is even the optimal function is

n+ao

b
ot (b—a), a>1.

2

o) o= o -
2 n@ + b
Corollary 9 Let f € C*([a,b]) such that f — )= 0. Then

st [ 1w (450 <1

b—a
Proof 4 . Forn=1 in (2.18)

Lo a+b 1/ oo (b= @)Y
H-/gf(y)d?/—f( 5 )‘S (I42) ~ 20D

L= o0

b
While the assumption f(’“)(i

Lo atb L s (b—a)?
N — d < . .
b—a/af()y f< )‘_b—a (n+2)! ontl
o (b=
~ (n+2)  2nfl

) =0 forall k even € [1,....,n]

Next we prove the sharpness of inequality (2.18) when n is odd ,we notice that

b
frk) <H> =0, for k=0 and all k even in {1,....,n}. And for there more

2
F(o) = <y—“'2”’) (b-a)
y)=mn+1) (y CH_b) (b—a)
e =a) (5= 250) -0

f) — (£ DL (b —a)

1£0 oo = sup[(n + 1)!(b — a)]
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2. INEQUALITIES OF OSTROWSKI TYPE

thus ||f*(n+1)||oo =(n+1(b—a)

1F D)oo (b — @)™+
(n+2)! PAGE

_(n+ DY b—a)(—a)"!

 (n+2)! on+l

_ (n+1)Yb—a)"?

 (n41D)!(n +2).2n+1

_ (b—a)?

~ (n+2)2nt!

R.HS =

(2.20)

Also we find

1 L. L[(a+b
L.H.S = b_@./gf(y)dy—f( 5 )‘

~ i [ rwa

1 b CL+b n+1
= b—a'/a (y— 5 ) (b —a)dy

_ 1 Kb_a%—b)_(a_a—i-b)]nw
n+ 2 2 2
1 [2b—a+b—2a+a—0b]""
n+2.l 2 ]
2.(b—a)"t?
(n+ 2).2n+2
_ (b—a)m?
~ (n+2)2n 1

(2.21)

From (2.20) and (2.21), we get that (2.18) is altained by f*, therefore (2.18) has
been proved as sharp when n is odd.

When n is even :we notice that furthemore
(k) a+ b
(45,
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Ftn( Hn—f—a—j ‘y—&+b szgn(y—a;—b.(b—a)>
and
1" oo = supfTHV (y)
n b—a a—1
7] = (H(n+a—J)> ( . ) b a)
§=0
thus
1/ e (b= a)+V
R.H.S = .
(n+2)! 2(n+1)
( P i(n+a— )) b-a CMl(b—a)
B Jj=1 J 2 (b— a)n+1
B (n+2)! on+1
b g\
?—o(n+a—j)< 5 ) (b —a)"+?
sy RH5 = (n + 220D
. B (b_a>n+2
Also we find
1 b a-+b
L.H.S:‘b/ Fly)dy — f( >|dy
— a Ja
b a+b,..,
= [ ly= e b - )y
b a + b n+ao
= — d
/a Ty y
B gl a+b n+ad b la+b e
_/a YT y+/a;b Y
—a n+a+1
_2(%%)
n+a+1
. B (b_a)n+2

Also we find from (2.22) and (2.23) we have established that inequality (2.18) is

sharp again when n is even
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2. INEQUALITIES OF OSTROWSKI TYPE

2.3 Applications of Ostrowski’s Inequality

In this section, we give somme estimations of error bounds for some sepecial means

and for some numerical quadrature rules for theorem (5)

2.3.1 Applications to Some Special Means

we first discuss the application of (2.2) to lower and upper bounds estimation of

some important relationships between the following means.

A= A(a,b) := <a+b>

(a)the arthmetic mean:

2

(b)the geometric mean:
G = G(a,b) :=Vab,a,b>0

. (c¢)the harmonic mean:

2
H=H(a,b) = +~+—, a,b>0
@)+ ()
(d)The logarithmic mean:
b—
0T i b
L(a,b) = { mb—Ina a,b >0
a, if a=>b

(e) the identric mean:

(f) The p— logarithmic mean:

71f a 7é bap S R/[_170]7

Pl _ ot r,
a,b>0

L, = L,y(a,b) = [(p+ 1)(b—a)

a, if a =0,
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2. INEQUALITIES OF OSTROWSKI TYPE

These means are often used in numerical approximation and in other areas. However

,only the following simple relationships are known in the literature:
H<GLSLLI<A

It is also known that L,, is monotonically increasing in p € R with Ly = [ and L—1 =
L We now derive some sophisticated bounds for some differences and ratios of the
above means . These bounds are very useful in application .our discussion is based
on the following three mappings Case 1.f(z) = z? with p € R/[—1, 0].substituting
this f into (2.2),we have for all z € [a,b], f(z) = 2

P — [2] < Lll + m] (b— a)y,(a,b) (2.24)
a+b
Ala,b) = 5

with

pbpil,if D 2 17
7p(aab) =
pla~!,ifp € (—00,0) U (0,1)/[-1],

if we further choose x = A in 2.24,then we have

42— 1) <[5 +0] 6= aplar )

b—a
47— g < 7 )

when p > 1,the above inequality reduces to

p(b—a)br!
0<Lp— 4 < B
when p > 1
vp(a,b) = PP~
0<LE— AP < b;“(pbp—l)
p(b—a)b"
0<Ih— AP < 1
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b
0< 1f— A4 < 2= (pla"™)
|p|ap71 D, if (—O0,0>
p,if (0, +00)
—(b—a)Par?
0<Ih— AP < :
pla — b)aP~!
0<1p— A< B
Further more if p € (0, 1)then we have,
(b—a)lp|a”"
0<An— < P
when
|p|ap_1 . _pap_lvif b € (—OO, 0)7
pa’~'if  pe(0,1)
(b — a)par!
0< AP — [P < —

Now choosing x=I in (2.24),we get

libmf 7§b
I=I@b={e\a) "

a,if a = ba
a,b>0
1 (I—A)?]
‘[p _ L]ZZ‘ S [4 + m (b - a)PYP(CL»b)

Furthemore,if we choose x = L and x = G in (2.24),we have,respectively,

-l < |+ G| - ana)

and
» » 1 (G- A)?
GP = Lj| < 1 + (b—a)zl (b —a)yp(a,b)

1
Case2. f(x) = — substituting this f into (2.2),we obtain
T

\L—x|§x

L(b2— a) [1 (x — A)?

1t (b—a)Q] Vo € [a,b)]. (2.25)
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2. INEQUALITIES OF OSTROWSKI TYPE

Now,taking x = A,x = [, = G, and x = H, respectively, in (2.25), we have the

following bounds for the differences of the means:

<L-G GL(ZQ_G) H ((C;:Sﬂ’
and
N HL(b—a)r (H—A)Q]

Case3. f(x) = —Inx substituting this f into(2.2),we get

b—a[l (x — A)?

\Inl — Inx| < —— ,x € [a,b] (2.26)
a

1T oy

Analogous to the previous cases,takingz = A,z = I, x = G, and x = H, respectively

in (2.26),we obtain the estimates for the ratios of the means as follows:

1<I<exp{b_a 1+(L_A)2_}
- L~ a |4 (b—a)?
1<I<exp{b_a [1+(G_A)2-}
-G~ a (4  (b—a)?
1<[<6xp{b_a l1+(H_A)2-}
~— H~ a |4 (b—a)?
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Chapter 3

OSTROWSKT'S INEQUALITIES
VIA S-CONVEX FUNCTIONS

3.1 Some Related Results

In all the following I means an interval of R, of which the interior is noted by I°

,a,b < I° with a < b, Ly([a, b]) the space of integrable functions on [a, ], s € (0, 1].

Theorem 10 [/6] Suppose that f : [0, 00[. — [[0, 00] is an s-convex function in the
second sence where s € (0,1) and let a,b € [0,00[, a < b if f € L'([a,b]) then

Lemma 3.1.1 [/16] Let f : I C R — R be a differentiable mapping on I1° where
a,be I witha <b. If f' € L1][a,b], then the following equality :

1
b—a

(@) / " F(w)du = (a —b) /0 o) F(ta + (1 — )bt (3.2)

holds for each t € [0,1], where

t telo,b_x

b—a

p(t): bh— 1
t—1, te( 1

b—a

for all x € [a, b].
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3. OSTROWSKI'S INEQUALITIES VIA S-CONVEX FUNCTIONS

Theorem 11 [/0] Let f : I C [0,00]. = R a differenttiable function on I° such
that f' € L*([a,b]). where a,b € I with a <b. If |f'| is s-convex in the second sense
on |a,bl], for some fixed s €]0.1], then the following inequality

o) = 5 [

b—ala
If’(a)l}

s+2 s+1
2(s + 1) (Z:j) —(5+2) (’;:i) +1

ey (200

For x € [a, b].

< b—a
“(s+1)(s+2)

8
|
IS
N—
»
+
V]
—~
»
_|_
\)
SN~—
7 N\
j=p
|
SHES]
N—
»
+
—
[
=
~
=
—
o
N~—

Proof 5 by lemma (3.1.1) and since |f’| is s-conveze on [a,b], then we have:
I =
- a/ Flu)du| < (b—a)/ tF (ba + (1 — £)b)|dt

- a 0

+(b—a) /1 = 1)|f (b + (1 — £)b)|dt

b

/() =

| 8

b—x

< (b—a) [ HEF @) + (1= B)at
Fo—a) [ (1= 07 @)+ (1 0770

- o-a{ir@i [

UL+ | (b)) /Z: t(1 — t)Sdt}
+(b—a) {|f |/ a4 (b |/ . 5+1dt}
b—a b— o 542 b— s+1

e 6D e ) o)

a

o

If’(a)|}

where we use the fact

b—x

s+2
/bfats_,’_ldt: 1 b—SL’
0 s+2\b—a

=" 1 x—a\*t? 1 x —a\*t! 1
t(l —t)°dt = _ — I
/0 ( ) s—l—2(b—a> ( ) Jr($+1

s+1\b—a )(s+2)

oo
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3. OSTROWSKI'S INEQUALITIES VIA S-CONVEX FUNCTIONS

1 1 1 RN 1 o\ 52
/ (t* — 5T dt = - b + bt
bos (s+1)(s+2) s+1\b—a s+2\b—a

1 1 T —a s+2
1—t5+1dt:< )
Aﬂ( ) s+2\b—a

b—a

Which completes the proof.

b
Corollary 12 [16] In Theorem (11), if we take x = a—2|—} then we have the fol-

lowing midpoint inequality:
b—a

() -k [ < S (1 ) @+ FOL G

Remark 13 [/0] In corollary (12),if s = 1, then we have

|f (1) - /”f<u>du| <boe [r@Ire)

2 b—ala 4 2

Theorem 14 [/6] Let f : I C [0,00[— R a function differenttiable on I° such that
f' € LY([a,b]),where a,b € I with a < b.If |f'|? is s-convex on [a,b], such as ¢ > 1

1
and — 4+ — =1, then the following inequality
p q

‘ 7) b—a/f

holds for each x € |a,b].

Proof 6 Suppose that p > 1. From lemma (3.1.1) and using the Hélder Inequality,

31
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we have:

b—x

! < (b—a)/omt|f’(ta+(1—t)b)|dt

J@) = /abf(u)du

+(b—a) /71 1t — 1| f(ta + (1 — 0)b)|dt

S

—a

=00 </0 tpdt); </o |f'(ta+ (1 — t)b)!th>;

+(b—a) (/11(1 - t)”dt) ' </1 f(tat (1 - t)b)\th> '
(3.5)

Using the s-convexity of | f'|?,we obtain

b—x

[Tt a-onpa < [T @ + 00l

- L {(‘;j) @l + |1 (ﬁjjl’)] |f’(b)|q} (36)

[t (o < [ 1 f @)+ (10— 0| @)l

o—x
a

b—a b—

and

1 b—a2\H! x—a\*t!
— 1 — / q / q )
s+1{ =) rar (5=2) |f(b)\} 37)
Further,we have
= 1 b—az\""
tPdt = 3.8
/0 (p+1) (b—a) (38)
and
1 1 T — a\Pt1
(1= t)dt — ( ) . (3.9)
/Z_—i (p+1)\b—a

A combination of (3.6)-(3.9) gives the required inequality (3.5).

b
Remark 15 In Theorem(1}) if we choose x = ot

and s = 1, then we have

-k [ o

Q=

<5 () @ st @ o)

]
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3. OSTROWSKI'S INEQUALITIES VIA S-CONVEX FUNCTIONS

Theorem 16 [/0] Let f : I C [0,00[— R be a differenttiable function on I° such
that f' € L'(|a,b]), where a,b € I,with a < b. If |f'|? is s-convex on [a;b] such as

1 1
q > 1 and— + — =1, then the following inequality
P q

1

o) = 5 [ < 22

{(Z - ) <f’(x)£zt;’ib)q>3 Pz <|f’(a)|;+r |1f'<x>|q>3}

for each x € [a, b].

<

D=

Proof 7 Suppose that p > 1. From lemma(3.1.1)and using the Hoélder inequality

,we have:

[ s < = a) [ G0+ (1= o

+(b—a) /1 it — 1| (ta — (1 — 1)b)|dt

—a

=0 </0H ’%y </o [f'(ta+ (1 - t)b)lth>;

1 1

/()

o

(b= a)([_ (1= tpdeys( [ 1f (ta+ (1= Opfa)s
(3.10)
Since | f'|%is s-convex,by(3.1), we have:
Z%ﬁ b— / q '(b)|e
/0 |/ (ta + (1 — )b)[9dt < b_"z (If(x)lsﬂf( ) ) (3.11)

f s = onprar < 5= (ORI

—a

S

Therefore:

1 b 1 1
_ / Flu)du| < :
b—aJa b—a(p+1);

{(b _ o)’ (‘f/“”)'q ! 'f'“’)'q)q (- a)? (If/(a)!q T 1f’<x>|q>q}

s+1 s+ 1

|/ ()
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3. OSTROWSKI'S INEQUALITIES VIA S-CONVEX FUNCTIONS

1 1
Where — + — = 1. Also we note that

P q
bz p+1
/b—atpdt: 1 b—ﬂ?
0 p+1\b—a

and

This complet the proof.
+0b

Corollary 17 In Theorem (16), if we choose x = L, then
1 b _
2 b—ala Ap+1)7
1 1
7 (52 PO (1@l () 1
s+1 s+1

b
Also assuming f'(a) = f' (a; ) = f'(b) = and s = 1, we obtain

‘jc(a—l—b)_ 1 /bf(u)du‘g b—oz1 <|f’(a)|+]f’(b)\)

2 b—ala (p+1)7 4

Theorem 18 [/0] Let f : I C [0,00[— R be a differenttiable on I° such that
f" € L'[a,b]. Where a,b € T with a < b.if | f'|%is s-convex on [a,b], for some s €]0,1].
such as p > 1 and ; + i =1 then the following inequality

‘f@) “ima ], S <pb+_1a>i

[N

<

”+ ( s |1f'<b>|q>q (3.13)

for each z € [a, b].
Proof 8 Suppose that p > 1. From lemma(3.1.1)and using the Hoélder inequality

,we have:

)= 5 [t < 0o [ ek ([ 17 Gas 0 -onlant G
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Since | f'|? is s-convex,we have:

[ 17+ —opiede < [ @lr @l -l

_ @)+ [ f())
s+ 1

(3.15)

and

b—

[ ey = [

L 1
“tpdt+/ (1 —t)Pdt

b—

o
8

a

1
p+1

(Z - “Z)pH + (“Z - Z)pHI (3.16)

Using (3.15)and(3.16)in (3.14),we obtain (3.13)

Corollary 19 [10] Under the assumptions of Theorem (18), further if we suppose
that p = q = 2, we get

N

b—a |1 <x_a§bf F@P+ 11O
< )

s+1

‘f(x) T . . /abf(“)du

a+b

More if we take and s = 1, we find

<M 4
- V3 4 (b—a)?

Cb—ua

1 <xa;b)T

)= 5 [

Remark 20 Under the hypotheses of Theorem (18), if moreover we suppose thatp =
q=2,|f"| < M,M > Oets = 1,then

1
b—a

/abf(u)du

‘ﬂ@
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Chapter I

OSTROWSKI TYPE
INEQUALITIES VIA
FRACTIONAL CALCULUS

4.1 Ostrowski Type Inequalities Via Riemann-Liouville

Integrals

Fractional calculus deals with the study of integral and dierential operators of non-
integral order.Many mathematicians like Liouville,Riemann and weyl made major
contributions to the theory of fractional calculs.the study on the fractional calculus
continued with contributions from Fourier,Abel,Lcroix,Leibniz, Grunwald and Let-
nikov, (for more details (see,[20],21,22,24,25,26).Riemann-Liouville fractional integral
operator is the first formulation of non-integral order.In this section we present with
proofs some fractional Ostrowski Type Inequalities involving the Riemann-Liouville

fractional integrals.

Definition 4.1.1. [23|Let f € Ly[a,b]. Then the Riemann-Liouville fractional inte-
grals left and right of f of order a > 0 with are defined by

19 f(z) = F(la) [ =ty it >
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1

@) = 5o /xb@ — )L ($)dt, @ < b

Theorem 21 Under the assumptions of theorem(5), we have

f@)((b =) + (& = a)*) = (DB + DI = f(x) + T(a+ 1)1

B8 _ B+
§M<6+1(b x)’T 4

(0%

m(m — a)a+1> ,x € [a, 0] (4.1)

Proof 9 Fort € [a,z],a > 0, we have
(x —t)* < (z—a)° (4.2)

Under given condition on ' and by (4.2),we have

T

[ s = pee =t < @—ae [T fa

a

_ / M(z — t)*dt — / £ (z — t)dt < (z — ) /:(M — )t

integrating and simplifying

[(z — )]

(x —a)*t! (4.3)

/;M(x _t)edt —

(67

[ e -0 =@ -0l - - [ e -
=~ t@ o [0 A

(0= a) [ (M= @)t = (o = )Mt = (1)

=Mz —a)""! = f(2)(z — a)* + f(a)(x — )"  (4.5)

by (4-3),(4-4),(4-5),we already

@) =)= [ )0 < M=) = f () (-a)+ (@) =)
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— (0= )™ = al(Q) [ f (@) + f(2) (@ — )" < Mz — )"

Mo

fla)o =) = T(a+ DI f(@) < -5

(z —a)*t!

and

/;(M 4 () (@ - 0)°dt < (z — a)° /;(M 4 f(1)dt
_ / M(z — £)*dt + / £ (@ —8)%dt < (z — a) /:(M +F(0)dt

integrating and simplifying

r @ - —-M a+11z
| Ml =it = == - ;
-M a+l
:Q+1(x—a) (4.6)
[ F0e -0 =100 - [ fe - o
= -t [0 A

(& — a)°. /;(M + ()t = (z — o) [Mt + f(1)]°

=M(z—a)"" + f(z)(z —a)* = fla)(x —1)*  (4.8)

by(4.6),(4.7),(4.8), we already

) = f(@) a4 [ RO < M=oy ) (-0 = fla) (o)

M
v (x —a)*™ —al(a)I% f(x) < M(x — a)*™ + f(2)(x — a)”
Mo
Do+ DI f(@) = f@)(e = a)f) £ —(a =)
Above inequalities result we get the following inequality
Ma
|f(@)(z —a)* =T(a+ DI f(z)| < (x —a)**! (4.9)
a+1
the other hand fort € [x,b], B > 0, we have
(t—x)? < (b—x)’ (4.10)
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Under given condition on f' and by (4.10),we have

b b
[ @1 =g —aya < - [0 - re)a
_ /b M(t — 2)Pdt — /b Pt —2)fdt < (b—z)° /b(M — F(1)dt

Integrating and simplfying

<

| M —ayar = Gl ="
M +1
= m(b—x)ﬁ (4.11)

b
Integrating by parts / () (t —x)Pdt = withu = (t —2)°, dv = f'(t)

b _—
[ 7= =1 =0l -5 [
~0-a 50 -4 [0 e @)

F)t =)’

(=) [ = P (o)t = (b 27 [Mt ~ S0,

= (b—2)’[M(b—x) = f(b) + f(x)]
= M(b—2)™ = fO)(b—2) + f2)(b—2)"  (4.13)

by (4.11),(4.12),(4.13),we already

) )00~ [ £t < M) F ) 0-) "+ (2) b—2)’

B+1
= BMH(b—q;)ﬁﬂ_f(b)(b—x)ﬁ_r(5+1)[f_f(g;) < M(b—2) 1 — f(b) (b—2)P — f(2) (b—2)*
= f(@)(b—2)’ —T(B+ DIFTV® < J‘iﬁl(b e

and
b
X

/b(M +PO) =) dt < (b —2) [ (M + f(t))t

_ /b M(t — z)Pdt + /b Ot —2)Pdt < (b—z)° /b(M +F(8)dt

39



4. OSTROWSKI TYPE INEQUALITIES VIA FRACTIONAL CALCULUS

Integrating and simplfying

/m "Mt — )t = Gl =0
_ 5M+1<b ) (4.14)
We have
[ e —ap = (- 2P r0lk - 5 [ - o ar
= (=0 f0) - 5 [ (=0 ey (4.15)

(b—2)°. /:(M b Pt = (b 2) Mt + f()]
= (b—2)’[M(b— =)+ f(b) + f(z)]
= M2+ fB)b—2) + f@)b—2)°  (4.16)

by (4.14),(4.15),(4.16)we have

S -2V = fO -2+ [0t < M2 f0) b)) 0
— a0 T () < M (b)) b-)*+ f(2) bz
= (4 DI - f@)b - a) < -2
Above inequalities result the following inequality
M 1
@b~ 2) ~ T3 + DI Flo)] < 30— a) (4.17)

By adding (4.9)and(4.17), we get(4.1) The following more general result for a dif-

ferentiable function which is bounded below as well as bounded above holds.

Theorem 22 Let f : I — Rwhere lis an interval in R,be a mapping differentiable
in 1°,the interior of I and a,b € I°;a < b,ifm < f'(t) < M for allt,x € [a,b], then

we have

Ma gy 2 0 g_gype,

((w=a)"~(b=2)")f (@)~ e+ D Fla) =T (B+ DI f (@) < =5 B+
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((b-2)"~(z=a)) (@) =D+ DI f(a)-TEH I (0)) < 5 b))

Where o, 5 > 0.

Proof 10 Proof is on the same lines just after comparing conditions on derivative

of f, of the proof of theorem(21),let we omit it.

In the following we have obtained a related result to fractional Ostrowski inequality
(4.1)

Theorem 23 Under the assumptions of theorem (5), we have

(b= 2)F(b) + (& = a)*f(a)) = T(B+ DI f(b) + T(a+ DI f(a)]
< (fﬂ(b —z)P 4 ail(x — a)a“) (4.18)
Where o, 3 > 0.
Proof 11 Fort € [a, ], > 0, we have
(t—a)® < (v —a)°® (4.19)

Under given condition on f and by (4.19),we have

[ = pan—arar < @ —a) [T01 = )

_ / M(t — a)*dt — / F1t)(t —a)*dt < (z — a)° /m(M - F)

a

Integrating and simplifying

z M
_ @ a+1
/a M(t — a)*dt {aﬂ(t ]
M
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We integrate by parts

/f (t—a)®

with uw = (t —a)®, dv= f'(t),we get

/f —a)dt = [t —a)*.f(t)]s — 1/xf(t)(t_a)a1dt
(z —a)® —*/f )(t —a)*™! (4.21)

(0 =) [ = FE)dt = (@ — )" [M = (2]
= M- )™ — f@)(@ = )" + [(@)w — )" (422)

by (4.20),(4.21),(4.22),we already

() (o) S (@) [ FO ) < M=) = () (o)~ f(a) (e—a)

= f@)e — o) ~T(a+ DI < 0 (0 — )

and

L@+ F ) - ayar < @ - [T+ F )
. / M(t — a)dt + / POt - a)dt < (z — a)® /x(M )t

Integrating and simplifying

xT

z M
Mt — a)® — _ \a+l
/a (t—a)dt [OH— 1(t %) a
M
= (z —a)*t! (4.23)

[ P06 ardr =16 - ar gk - [ o - ay e
=(z—a)” ——/ f@)(t—a)*! (4.24)

@=a) [((M+7(O)dt = (=) (Mt + FO)
= M@= + f(g)(a =) + fla)(z —@)* (425)
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by (4.23),(4-24),(4.25)

M
a+1 a

1

= f(@)(@ — a)* + T(a+ DI& < — "z — )+,

Above inequalities result the following inequality

@) )" ~ Do+ DI f(o)] € 12— (a2
Now on the other hand for t € [x,b], 3 > 0, we have
(b—t) <(b—z)° (4.27)

Under given condition on f' and by 4.27,we have

Proof 12
[0 = £y -7 < oo [C0r - po)ar

b b b
_ / M(b— t)Pdt — / F0b—tPdt < (b—z)° / (M — f/(t))dt

T

Integrating and simplifying

/b M(b—t)Pdt = lﬁ_Ml(b - t)BHE

xT +
-M +1
m(b — )’ (4.28)
b
/If(t)(b—t)ﬁdt [(b—t)°. ﬂ/ t)P=t.dt
—(b—x)".f(x) + T(3 + 1)If+f( ) (4.29)

(=) [ — )t = (6~ 2V’ [Mt — F(0):
=M@Ob—2)"" + fa)(b—2)" + f(b)(b—2x)” (4.30)
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by (4.28),(4.29),(4.30),we already

gﬁ(b—x)ﬂ“ﬂb—x)ﬁ-f(x)—F(6+1>If+f (b) < M(b—z)P = £ (b) (b—) +f () (b—
— FO)— 2 ~T(3 + DI O < 0 b2

and

b b
[ Q1+ 7 @)=t < b=y [0 + f(1)dt

T

:/bM(b—t)ﬂdt+/bf’(t)(b—t)ﬂdtg (b—a:)fB/b(M+f’(t))dt

Integrating and simplifying

/; M(b—t)Pdt = [giwl(b - t)ﬁH] b
M :

= m(b — z)7*! (4.31)
b
|- = g [ fOe -0
= —(b—)".f(2) + T(5 + DI f(b) (4.32)

=) [ 01— pnat = - r [0t + F0)L
= MO @2 06— (433)

by (4.31),(4.32),(4.33),we already

ﬁ_i/[l(b—x)ﬁ“—(b—x)ﬁ-f(x)JrT(ﬁH)Iﬂf(b) < M(b—a)" 4 f(b) (b—2)"— f (x) (b—2)”
= (4 DILO) ~ FOb - 2) < 1 b2
Above inequalities result the following inequality
Mp 1
FO)0 -2 =TE+ VIO < 770 -2)" (4.34)

by adding (4.26) and (4.34), we get (4.18)
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Some Implications. Following implications have been observed

Corollary 24 If f = « in (4.1),then we leads the folowing fractional Ostrowski

inequality

@) (=) +r=a)) =Tt DI f@) DI ] < M (=) a—a)* "),z € [a.]

Corollary 25 [ § =« =1, then we lead to the Ostrowski inequality(2.2) .

Corollary 26 If f = « in theorem(23), then we lead to the lead to the following

inequality

[((b=2)*f(b) + (z — a)* f(a)) — T(ar+ 1)(L3: f(D)) + 13- |
Mo
<

< T (b—2)*™ +(x —a)*"),z € [a,b] (4.35)

where a > 0.

Remark 27 Following the steps of the proof of theorem(21) line by line with o =
f =1 an alternative proof of the Ostrowski inequality is followed see [27].

Remark 28 if m is replaced with M in theorem(22), then with some rerrangements

one can get theorem(21).

Remark 29 A more general from of theorem (23) like theorem (22) for a differen-

tiable function which is bounded below as well as bounded above holds.

4.2 Fractional Inequalities of Ostrowski Type For

Convex Functions

Theorem 30 [25] Letf : I C [0,00[. — R, be a differentiable function on I° (the
interior of I)such that f' € L'[a,b], where a,b € I, a < b. If |f’|P%1 is convex on
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[a,b], then the following inequality

U@%_”i“Kf@Mﬂg(h—@@+1ﬁ

[<b oy (|f’<x>q| + |f'<b>|q>3 ‘oo (|f'<as>q| + |f'<a>|q>3] (4.36)

2 2
holds.

Lemma 4.2.1 [28] Let f : I C R — R be a differentiable function on I° where
a,b € Iwith a < b.If f' € L'a,b],then for all v € [a,b] and a > 0 we have:

[(a:—-a)a-%(b——aﬂal f(x)__Iwk¥+_1)[]?;j(b)+[gf(a)]::Jﬁlnqﬁjf%fa+(l—i)b)dt

(b —a)ott (b —a)ott

For each t € [a,b], where

—t* te Qb_xl
b—a
p(lf): bh—r
1—¢)° t 1
( )7 elz}_g]? ‘|

For all x € [a, b].

Proof 13 By integration by parts ,we can obtain
1
I :/ m(t)f(ta + (1 — t))dt
0
= (—t) f'(ta + (1 — t)b)dt

+ [ (A=) f(ta+ (1 —t)b)dt

:<“”vaf@) a /1a_-f1ﬂm+(u4mmt

b—a) b—a b—ale
Using the change of the varriable u = ta+ (1 — t)b for t € [0,1] which gives
I:éﬁ;ﬁﬂf@ _awlfb (u)du
+éﬁ;@if@ — mH/ (u — a)*~ f (u)du
- |t s i |10 - s s+ 1),

this complet the proof.
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Theorem 31 [25] Let f : [a,b] — R, be differentiable function on (a,b) with a < b
such that f' € L'[a,b].If | f'| is convex on [a,b], then the following inequality for
fractional integrals with o > 0,holds:

H@_Qiigfﬂjf“) Bmaiile

+f(0) + - f(a)]

(T s [ = ]
N S T o

Proof 14 from lemma(4.2.1)and since |f'| is convex on [a,b] ,we have

@m0+ O=)) oy @t D) gy o g,
’[ (b= a)™* ]f“ﬁ =gt T 0) + IS @)

< [T @l -0l ﬁ+/ (1= 01 (ta + (1 — t)b)|dt

0

bz
b—a

< [Tenr@isa oo [ o- ool a- oo
—LJQ“‘>$T;£;””+ailg:3§jumn
RSB
-3 (oo * e )V
*ara (oo e * o apem [t 5] VO

Which complet the proof.

b
Corollary 32 [25] If we take x = 8F0 i theorem(31)

'f <a+b> 20 1(a + 1)

b—a) [fya#)+f<b>+f€a;b)_f(a)} <

b—a <|f’(a)\ + \f’(b)!>
2+ 1) 2 '
(4.38)

Theorem 33 [25] Let f : [a,b] — R be a differentiable function on (a,b) with a <b
such that f' € L'[a,b], if |f'|? is convex on [a,b],q > land x € [a,b], then the
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following inequality for fractional integrals
(z —a)*+ (b—x)" Ma+1) o, o
’ l (b— a)o+t ] fl@) = (b— a)y+t [+ f(0) + 13- f(a)]

(b — o)1 <|f'<x>|q : rf'<b>|q>3 (o (\f’(:c)lq : |f’<a>|q>3]

1
(b= a)o+ (ap + 1)%

<

(4.39)

1 1
holds where — + — =1,a > 0.
P q

Proof 15 From Lemma(4.2.1) and using the well known Holder inequality,we have:

@0+ b)) oy @D g o,
H (=)= ]f@ (5 =yt U5 F0) + I3 (a)]

b—x

< /Ob_“ | —t|*|f'(ta + (1 — t)b)|dt

1A -t (- o)

b—x

< (/Oﬁﬁ tap)ﬁ </Obﬁ Flat( —t)b)|th>q
w(fLa-oma) ([ i a-opra)’

b—a

o

Since | f'| is conver,by Hermite-Hadamard inequality we have:

[ 17t ey < ot (LT,

—a 2 ’
Lo e o T—a(f (@) +[f(z)]
/H|f(m+(1—t)b)|dtgb_a< ! )

and by simple computation

b—z

ap+1
/b_atapdt: ]_ b—l’
0 ap+1\b—a

/1 (1—t)erde = — (x_a)apﬂ

— ap+1\b—a

—a

o

o

There fore:

()t Ul ) [PRS N Rl VRS R
H (b— a)*+! ]f(x) (o= a)ort Lo d (0) + L= f(a)]

[(b — x)a—i—l <|f/(117)|q + ’f/(b)|q>}1 e a)a—i—l (‘f/(x”q + |f/(a)|q>‘11]

A

< L( +1)
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1 1
where — 4+ — =1, hence using the formula I'(aw + 1) = al'(«), (a« > 0)

p q
the proof is complete

Remark 34 [25] In theorem,if we choose o = 1,then we obtain inequalitys.36

a+b

Corollary 35 [25] If we take x = in (4.39),we have

’f (*57) o [ +f<b>”?%+b> *f“‘)H

a)®
b—a (IR rer\ (L ()
4(049—1—1)% 2 2
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Conclusion

In this work we introduced Ostrowski type inequality and Ostrowski’s inequality
via functions whose derivatives are s-convex in the second sense then we discussed
about fractional inequality via Rieman Liouville for convex functions.Also are given

some applications to means of Ostrovski’s inequality.

20



Bibliography

[5]

[4]

[17]

[15]

[35]

H. Angulo, J. Gimenez, A. M. Moros and K. Nikodem, On strongly h-convex
func- tions. Ann. Funct. Anal.2(2011), no.2,85-91.

W.W.Breckner,Stetigkeitsaussagen  fur eine Klasse verallgemeinerter
KonvexerFunktionen in  topologischen  lineren Raumen.(German)

Publ.Inst.Math.(Beograd)(N.S.)23(1978),1n0.37,13-20

1P.cerone,S,S.Dragomir,Midpoint-type rules from an inequalities point of
view,handbook of analytic-computational methods in applied mathemat-

ics,Editor:G.Anastassiou,CRC press,New York,2000.

P.J.Davis,leonhard Euler’s integral: A historical profile of the gamma func-

tion.Amer.Math Monthly 66 1959 849-869.

G.Farid,Straightforward proofs of Ostrowski inequality and some related re-

sults,Int.J.Anal 2016(2016),Article ID 3918483.

G.Farid ,straightforward proofs of ostrowski inequality and some related re-

sults,Int.J.Anal .2016(2016),Article ID3918483.

A.M.Fink.Bounds on the deviation of a function from its averages,Czechoslovak

Math.J.42(117)(19992),289-310

A .M.Fink,bounds on the deviation of a function from its averages,Czechoslovak

Math.J.42(117)(1992),289-310.]

o1



BIBLIOGRAPHY

[6]

[11]

[20]

[22]

[12]

J. Hua, B.-Y. Xi and F. Qi, Some new inequalities of Simpson type for strongly
s-convex functions. Afr. Mat.26(2015), no.5-6.741-752

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications
of fractional differential equations. North-Holland Mathematics Studies, 204.
Elsevier Science B.V., Amsterdam, 2006.

A.A kilbas,H.M.sravastava,J.J Turjilo,theory and aollications of fractional dif-
ferential equations,

North-Holland Mathematics studies,204,Elsevier,New York-London,2006

A.A.A Kilbas ,H.M.Srivastava and J.J Trujillo theory and applications cf
fractional different,north holland Matimaticl studies 204,ad van mill ,amster-

dam,(2006)

H.Laurent,sur le calcul des derivees quelconques,nouv.Annales de

Mathematiques,3(3)(1884),240-252.].

M.Lazarevic,Advanced topics on apllications of fractional calculus on control

pro-blems,system stability and modeling, WSEAS press,2014

.A.V .Letnikov,Theory of differentiation with arbitray pointer
(Russian),Matem.sbornik,3(1868),1-66.

O.L.Mangasarian,Nonlinear programming.McGraw-Hill Book Co.,New York-
London-Sydney1969

K.Miller,B.Ross,An introduction to fractional caluls and fractional differen-tial

equation,John,Wiley and sons Inc,New York,1993

D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Classical and new inequalities
in analysis. Mathematics and its Applications, 61. Kluwer Academic Publishers

Group, Dordrecht, 1993.

D. S. Mitrinovic, Analytic inequalities. In cooperation with P. M. Vasic. Die
Grund- lehren der mathematischen Wissenschaften, Band 165 Springer-Verlag,
New York-Berlin 1970.

52



BIBLIOGRAPHY

[30]

[31]

[32]

[14]

[29]

[16]

D. S.Mitrinovic,Analytic inequalities. In cooperation with P. M. Vasic. Die
Grund-lehren der mathematischen Wissenschaften, Band 165 Springer-Verlag,
New York-Berlin 1970.

D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Classical and new inequalities
in analysis. Mathematics and its Applications, 61. Kluwer Academic Publishers

Group,Dordrecht, 1993.

D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Inequalities for functions and

their integrals and derivatives, Kluwer Academic, Dordrecht, 1994.

A.Ostrowski,Uber die absolutabweichung einer differentiebaren Funktion von

ihrem integraimittelwert,comment.math.Helv.10(1938),226-227]

11.A.Ostrowski,Uber die Absolutabweichung einer dierentierbaren Funktion

von ih-ren Integralmittelwert,comment.Math .Helv,10(1938),226-227.

E.set,M.E.Ozdemir,M.Z.Sarikaya,New inequalities of Ostrowski’'s type
for s-convex functions in the second sense with applications.Facta

univ.Ser.Math.Inform.27(2012),n0.1,67-82.

B.T.Polyak,Existence theorems and convergence of minimizing sequences in

extremum problems with restictions,Soviet Math.Dokl.7(1966),72-55

X.Qiaoling,Z.Jian,L.wenjun,A new generalization of Ostrowski-
type inequality involving functions of two inedependent

variables,comput.Math.Appl.,60(2010),2219-2224.

E.D.Rainville, Special functions.Reprint of 1960 first edition.Chelsea Publishing
Co.,Bronx,N,Y.,1971.

N.Y sonin,on differentiation with arbitry index, Moscow

Matem.sbornik.,6(1)(1869),1-38.

M. Tung, E. Gév, and U. Sanal, On tgs-convex function and their inequalities.

Facta Univ. Ser. Math. Inform.6(2016),n0.1,67-82.

53



BIBLIOGRAPHY

[9] M. Tung, E. Gév, and U. Sanal, On tgs-convex function and their inequalities.

Facta Univ. Ser. Math. Inform.30(2015),n0.5,679-69

[23] Z.Tomovski,R,Hiller,H.M.Srivastava,Fractional and operational calculus with
generalized fractional derivative operators and Mittag-Leffer function,Integral

Transforms spec.Funct21(11)(2010),797-814.

[28] C.Yildiz, M. E. Ozdemir and M. Z. Sarikaya, New generalizations of Ostrowski-
like type inequalities for fractional integrals. Kyungpook Math. J. 56 (2016),
no.1,161-172.

[7 B.-Y. Xi and F. Qi, Inequalities of Hermite-Hadamard type for ex-
tended s-convex functions and applications to means. J. Nonlinear Convex

Anal.16(2015),1n0.5,873-890

54



	memoire master {02}.pdf
	Table of contents
	Introduction
	PRELIMINARIES
	Some Function Spaces
	Spaces of integrable functions
	Continuous and absolutely continuous functions space

	Some Concepts In Fractional Calculus
	Some special functions
	Riemann-Liouville fractional integrals

	Some Inequalities

	INEQUALITIES OF OSTROWSKI TYPE 
	Ostrowski's Inequalities
	Ostrowski's Inequality For Higher Derivation
	Applications of Ostrowski's Inequality 
	Applications to Some Special Means


	OSTROWSKI'S INEQUALITIES VIA S-CONVEX FUNCTIONS
	Some Related Results

	OSTROWSKI TYPE INEQUALITIES VIA FRACTIONAL CALCULUS 
	Ostrowski Type Inequalities Via Riemann-Liouville Integrals
	 Fractional Inequalities of Ostrowski Type For Convex Functions

	Conclusion


