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Abstract

Improving time series forecasting accuracy is an active area of research, several mod-

els and techniques have been proposed to enhance models performance and improve

forecasts accuracy, this work proposes two novel hybrid deep learning models applied

for direct multi-step ahead time series forecasting, a combination of Convolutional

Neural Network (CNN), Gated Recurrent and Deep Temporal Convolutional Network

(TCN), and a hybridization of Convolutional Neural Network (CNN), Long-Short Term

Memory network (LSTM) and Graph Neural Network (GNN) were proposed, both ar-

chitectures were tested on three different types of datasets and were compared to a

collection of eleven state-of-the-art models. Our novel models outperformed the base-

line models according to four evaluation metrics. This comparative study demonstrates

the superiority of hybrid models over individual approaches to time series forecasting.

Résumé

L’amélioration de la précision de la prévision des séries temporelles est un domaine de

recherche actif. Plusieurs modèles et techniques ont été proposés pour améliorer les per-

formances des modèles et accrôıtre la précision des prévisions. Ce travail propose deux

nouveaux modèles hybrides d’apprentissage profond appliqués à la prévision directe à

plusieurs pas en avant des séries temporelles. Il s’agit d’une combinaison de Convolu-

tional Neural Network, de Gated Recurrent Unit network (GRU) et de Deep Temporal

Convolutional Network (TCN), ainsi que d’une hybridation de Convolutional Neural

Network, de Long-Short Term Memory network (LSTM) et de Graph Neural Network

(GNN). Les deux architectures ont été testées sur trois types de datasets différents et

comparées à une collection de onze modèles de l’état de l’art. Nos nouveaux modèles

ont surpassé les modèles de référence selon quatre métriques d’évaluation. Cette étude

comparative démontre la supériorité des modèles hybrides par rapport aux approches

individuelles de prévision des séries temporelles.
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General introduction

Problem statement

Time series forecasting plays a crucial role in various domains such as finance,

economics, government, social science, environmental science, medicine, politics, and

more. Accurate and reliable predictions of future values of time series data have signif-

icant implications on decision-making and planning. As time series data often exhibit

complex patterns and dependencies, assessing the exact nature of a time series and

generating appropriate forecasts is often a challenging task, researchers and practition-

ers have developed a plethora of modeling techniques and approaches in the pursuit of

improving forecasting performance.

Classic statistical models such as Autoregressive Integrated Moving Average (ARIMA)

and Exponential Smoothing are widely used and well founded mathematical models for

time series forecasting, although these models cover a wide range to time series types

and have a desirable level of interpretability, they suffer numerous limitations such as

explicit assumptions on the data that are not always verified by real world situations

which limits their range of applicability, the need of a certain level of expertise to

adequately prepare and transform the data in addition to configuring the models, dif-

ficulties to model non-linearity and high sensitivity to data irregularities and outliers.

Deep learning models on the other hand demonstrated strong abilities to model non-

linearity and capture complex patterns and relationships as well as long-term depen-

dencies in the data. However, deep learning models often require large amounts of

data and computational resources and may have limited interpretability due to their

architectural complexity.

This thesis focuses on investigating and comparing different time series forecasting

models, including classic , deep learning , and hybrid models, with a special emphasis

on evaluating the performance of a novel hybrid model proposed within this study

against state-of-the-art models.

1



Research objectives

The primary objective of this thesis is to explore, understand and evaluate various

modeling approaches in order to design and build a robust and reliable model able

to enhance the performance and accuracy of time series forecasting. Particularly, the

major objectives of this work are as follows:

a) To study classic time series forecasting models, such as ARIMA, Exponential

Smoothing among others and understand their strengths and limitations in han-

dling different types of time series data.

b) To explore state-of-the-art deep learning models, including LSTMs, GRUs, TCNs,

Transformers and others, and assess their ability to capture complex temporal

patterns in time series data.

c) To implement and experiment with hybrid models that combine the strengths of

different models to potentially achieve superior forecasting accuracy and general-

ization performance.

d) To propose a novel hybrid model that incorporates an innovative approach and

model architecture, aiming to outperform existing individual and hybrid state-of-

the-art models in various forecasting scenarios.

Contributions of the thesis:

This thesis contributes to the time series forecasting literature in the following

ways:

• Comprehensive Evaluation: We systematically evaluated a range of classic

models, deep learning models, and hybrid models, providing a thorough compar-

ison of their performance across different types of time series data.

• Novel Hybrid Model: Our proposed hybrid models CNN-GRU-TCN and GNN-

CNN-LSTM introduces innovative model architecture, resulting in improved fore-

casting accuracy and generalization. This model demonstrated a substantial ad-

vancement in forecasting performance compared to existing methods.

2



Thesis outline

This paper is divided into four parts:

1. Introduction: introduces the thesis by defining the problem treated in this work

and delimiting the research objectives and the thesis layout.

2. Chapter 1: this chapter serves as introduction to time series forecasting, it

provides a theoretical background on the topic and introduces commonly used

methods and techniques for time series forecasting.

3. Chapter 2: dives into the time series forecasting literature and reviews a wide

array of forecasting methodologies focusing more on deep learning and hybrid

models found in recent literature.

4. Chapter 3: consists of the empirical part of this study, it highlights in detail the

proposed and implemented models, the research environment and methodology as

well as the subsequent presentation and discussion of the experiment results and

evaluations.
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Chapter 1

Time series analysis and forecasting

Introduction

Time series data arises naturally in many research fields including economics, busi-

ness, engineering, environment, medicine and more, such an important presence has

grabbed the attention of analysts and statisticians for the last few decades and have

been thoroughly analyzed and studied in order to discern the internal relationships and

patterns of the data and to elaborate models that are able to describe such processes

and allow for generating future predictions.

In this chapter we will dive into time series analysis and forecasting by first: estab-

lishing a definition of time series and outline their main characteristics and principles.

Subsequently we will move forward and discuss some of the major work that have been

conducted in the field and introduce prominent approaches both classical and modern

to time series analysis and forecasting where we will walk through statistical, machine

and deep learning commonly used base models .
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Chapter 1 – Time series analysis and forecasting

1.1 Time series

1.1.1 Definition

A time series refers to a collection of observations on a particular variable of interest

that are recorded at regular intervals over time, creating a chronological or time-

oriented sequence.

1.1.2 Examples of time series data

Figure 1.1: The number of US airline passengers from 1949 to 1960 [6].

Figures 1.1, 1.2 and 1.3 are time plots of : the number of US airline passengers,

the annual sea levels for Copenhagen and the quarterly dollar sales of Marshall Field

Company, this show how interest in time series data arises from different disciplinary

fields such as business, finance, economy and climatology. The study and analysis

of such data can help provide a deeper understanding and informative insights on

the process of interest, which by turn contributes to future decision making and risk

management.
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Figure 1.2: The annual sea levels in millimeters for Copenhagen, Denmark [6].

Figure 1.3: Quarterly dollar sales (in $1000) of Marshall Field & Company from 1960

to 1975 [6].
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1.1.3 Time series analysis

Time series analysis is a branch of statistics that is interested in studying time

series data in order to [44]:

• Understand the structure of the series and the time-dependency of the obser-

vations, identify and model the series components as well as extrapolating and

recognizing patterns in historical data.

• Design control schemes and perform forecasts of future values of the variable of

interest based on current and previous values.

1.1.4 Time series components

Decomposing a time series is a common and widely used technique in time series

analysis, it isolates the series components and therefore allows a deeper analysis and

a better understanding of the series behavior, its underlying patterns along side with

irregularities and data anomalies.

The decomposition often follows one of two models [35, 36] :

• Additive model:

Xt = Tt + St + It (1.1)

• Multiplicative model:

Xt = Tt × St × It (1.2)

With Tt being trend (trend-cycle), St seasonal and It irregular (random error,

risidual) components.

1.1.4.1 Trend

Trend is a general tendency over an extended observation time period, having ei-

ther an increasing or decreasing slope. It may be linear or nonlinear, deterministic

or stochastic [66].

Data in both Figure 1.1 and Figure 1.3 exhibit a clear upward trend.

1.1.4.2 Seasonality

Seasonality is a periodic recurrent pattern observed typically over a yearly or shorter

(quarterly, monthly, weekly...) period of time.

Figure 1.1 and Figure 1.3 series exhibit seasonality.
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1.1.4.3 Irregularity

The irregular component, also known as the residual, noise or random error, refers

to the random and unpredictable fluctuations and deviations in the data that are not

identified as part of the trend-cycle nor the seasonal components. It can represent any

unexpected events, external influence, data collection and measurement errors or other

factors.

Figure 1.4: Additive decomposition of the number of US airline passengers time

series (fig 1.1).

1.1.5 Other note-worthy features

1.1.5.1 Volatility

Volatility in a time series refers to the fluctuations of the series variance over time,

it statically measures the dispersion of the series values around its mean. Volatility is

often manifested in financial data.
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Figure 1.5: S&P500 daily log returns from Jan 1950 to Jan 2014 [40].

1.1.5.2 Stationarity

Stationarity is an essential concept in time series analysis, it implies a statistical

equilibrium or stability in the series i.e the probability laws governing the series

behavior remain invariant through time.

We would like to highlight two types of stationarity:

• Strict stationarity: a time series is said to be strictly stationary if [36] the joint

distribution of Yt1 , Yt2 , Yt3 ,. . . , Ytn is the same as the joint distribution of Yt1+k,

Yt2+k, Yt3+k,. . . , Ytn+k for all time points ti and all lags k.

• Weak stationarity: a time series is said to be weakly or second-order sta-

tionary if [36] :

(a) The expected value of the time series is time independent.

(b) The autocovariance function Cov(y, yk), for any lag k is a function of k :

γy(k) = Cov(y, yk).

However strict stationarity is hard to verify empirically [58], therefore in the literature

stationarity often refers to weak stationarity.
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1.1.5.3 Linearity

A time series is said to be linear if it can be written as [58]

yt = µ+

∞∑
i=0

ψiat−i (1.3)

Where µ is the mean of yt, at is a sequence of independent and identically distributed

random variables with mean zero and a finite variance, also known as white noise.

1.1.6 Types of time series

Several components and features discussed in the previous section, in addition to

other unmentioned ones, serve as criteria for classifying time series. We would like to

highlight the following classifications :

1.1.6.1 Stationary vs Nonstationary

A time series is considered stationary or nonstationary depending on whether it

satisfies the stationarity condition (see 1.1.5.2) or not.

Figure 1.6: An example of stationary (a) and nonstationary (b) time series.

1.1.6.2 Linear vs Nonlinear

The linearity of a time series depends on the type of the relationship between its

observation values which can be either linear or nonlinear. A formal definition of

linearity is given in section 1.1.5.3.
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Figure 1.7: Linear (a) and nonlinear (b) time series.

1.1.6.3 Seasonal vs Nonseasonal

In time series analysis, many studied processes manifest seasonal patterns while

others don’t, this contrast creates an obvious distinction between the two classes sea-

sonal and nonseasonl time series.

Figure 1.8: Seasonal (a) and nonseasonal (b) time series.

1.1.6.4 Univariate vs Multivariate

While univariate time series analysis consists of analyzing and modeling a sin-

gle variable, in many fields such as business, economics and engineering, it is often

practical and even necessary to consider multiple variables as they may be contem-

poraneously related. As a result multivariate time series analysis studies and models

multiple series jointly in order to [7] :
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• To understand the dynamic relationships among them.

• To improve forecasts accuracy for individual series.

A general definition is given as the following [56]:

zt = (z1t, . . . , zkt)
′ (1.4)

Where zt is a vector of k univariate time series observed at equally spaced time points.

1.2 Time series forecasting

1.2.1 Definition

Forecasting is one of the main goals of time series analysis, it leverages statistical

and machine learning methods to make predictions using historical and present data.

1.2.2 Applications

Forecasting spans a variety of fields and it is critical for planning and decision

making, to name a few :

• Meteorology: Probably one of the most common applications is weather con-

ditions prediction such as temperature, precipitation, wind speed..., the forecasts

are crucial for planning for extreme weather conditions and natural disasters, more

over they help make informed decisions in different sectors such as agriculture and

transportation.

• Economics : Monetary and fiscal policy as well as budget and strategic planing

require governments and financial institutions to forecast major economic variables

such as production, consumption, job growth, unemployment, inflation, popula-

tion growth...

• Industrial process control: The forecasting of quality characteristics in a pro-

duction process can aid in making decisions on when to adjust or shut down the

process. Control schemes utilize predictions of process output for monitoring and

adjustment.

• Finance and risk management: Investors seek to predict the returns on their

financial assets, ranging from stocks and bonds to commodities and currency

exchange rates. The ability to forecast volatility is also critical to evaluating

investment portfolios risk and pricing financial derivatives.
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1.2.3 Types of time series forecasting

Let h be the forecast horizon or lead time, given a general model of forecasting as

the following

ŷt+h = f(yt, yt−1, yt−2, . . . ) + ϵt+h (1.5)

Where yt, yt−1, yt−2, . . . are the elements of the time series up until the time point t

and ϵt+h is the error, we distinguish two types of forecasting:

1.2.3.1 One step ahead forecasting

That is h = 1, this method is straight forward and utilizes the preceding values to

anticipate the next value in the series.

1.2.3.2 Multi-step ahead forecasting

In this case h > 1, the forecasts can be performed in two ways :

a. Iterative

Also known as recursive, it consists of chaining multiple one step ahead forecasts,

where each forecast is calculated using the previous ones.

ŷt+1 = f(yt, yt−1, yt−2, . . . ) + ϵt+1

ŷt+2 = f(ŷt+1, yt, yt−1, yt−2, . . . ) + ϵt+2

...

ŷt+h = f(ŷt+h−1, ŷt+h−2, . . . , yt, yt−1, . . . ) + ϵt+h

(1.6)

b. Direct

Unlike the iterative, the direct approach forecasts h-values using only the observed

values by estimating a model per horizon [54].
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1.3 Time series forecasting models

1.3.1 Statistical models

In this section, two assumptions are made, the time series in hand is assumed to

be linear and stationary unless otherwise stated.

1.3.1.1 Autoregressive models

Denoted as AR, is a class of simple models that represent the time series as a

linear combination of its past p values of the series plus white noise, AR(p) a general

autoregressive process of order p is written as

yt = ϕ0 + ϕ1yt−1 + ϕ2yt−2 + · · · + ϕpyt−p + ϵt (1.7)

Where the ϕi terms are the weights of yi consecutive observations and ϵt is white noise

[58].

1.3.1.2 Moving average models

Another class of simple models is the moving average class, denoted as MA, which

is similar to the AR class, but instead of regressing on the series observations, MA

models represent the time series as a linear combination of the present and previous

noise terms, a general moving average model of order q denoted as MA(q) can be

written as

yt = ϵt − θ1ϵt−1 − θ2ϵt−2 − · · · − θqϵt−q (1.8)

Where θi, i ∈ {1, . . . , q} are the coefficients of the ϵi noise terms.

1.3.1.3 Autoregressive moving average models

In practice, modeling processes with AR or MA methods may produce a model of a

high order, which tend to be hard to work with due to the large number of parameters

to estimate [58], one solution to this is to combine both models in order to get a

parsimonious representation [7], denoted as ARMA, a general model of order (p, q)

can be written as

yt = ϕ0 +

p∑
i=1

ϕi yt−i + ϵt −
q∑

i=1

θi ϵt−i (1.9)
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1.3.1.4 Autoregressive integrated moving average models

The models we have discussed so far are only applied under the stationarity con-

dition, however, in practice, most of the time series data tend to be nonstationary

and require transformation to stationarity. One solution to this problem is differenc-

ing, the first difference of a time series yt is defined as ∇yt = yt − yt−1, and generally

the dth difference is ∇dyt = ∇
(
∇d−1(yt)

)
.

An autoregressive integrated moving average model of order p, q and d of a

given time series yt, is a stationary ARMA(p, q) process of its dth difference,

it is called integrated due to the ability of reconstructing the series by summing or

integrating the differences. The model is denoted as ARIMA(p,d,q) and can be

written as

yt =

p+d∑
i=1

φiyt−i + ϵt −
q∑

i=1

θiϵt−i (1.10)

Where φi result from ϕi by applying differencing on the series.

1.3.1.5 Seasonal autoregressive integrated moving average models

While ARIMA can efficiently model a wide range of real world time series, it is

still unable to handle seasonal data and usually require a seasonal adjustment on the

data to remove seasonality, an extension to the ARIMA model has been proposed as

a solution, that is Seasonal ARIMA. By introducing another type of differencing

operation, seasonal differencing ∇syt = yt − yt−s where s denotes the seasonality

period, seasonal ARIMA, abbreviated as SARIMA, splits the data into regular and

seasonal data.

Then, it applies a regular arima process on the regular data and, respectively, seasonal

AR of order P, seasonal differencing of order D and seasonal MA of order Q on

the seasonal data, at last both models are combined, typically via a multiplicative

model, the result is denoted as ARIMA(p, d, q) × (P,D,Q)s

1.3.1.6 Autoregressive conditional heteroscedastic models

In econometrics, particularly in asset pricing and risk management, data often ex-

hibit volatility (Sec 1.1.5.1) also known as heteroscedasticity which violates one of

the conditions the models mentioned so far have been relying on, that is the invariabil-

ity of the error component ϵt variance.
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An autoregressive conditionally heteroscedastic model of order p, denoted as

ARCH(p), assumes that the time series is serially uncorrelated but dependent and

that the dependence can be described by a simple quadratic function [36, 58], the model

is formulated as

yt = σtet,

σ2t = α0 + α1y
2
t−1 + α2y

2
t−2 + · · · + αpy

2
t−p

(1.11)

Where et is a sequence of independent and identically distributed random variables

with mean zero and variance 1 and σt denotes the conditional variance of yt with

α0 > 0 and αi ≥ 0.

1.3.1.7 Generalized autoregressive conditional heteroscedastic models

Empirically the ARMA model demonstrated a need to a high number of param-

eters to be able to model volatile processes adequately [7], generalized ARCH also

denoted as GARCH, is an extension to the ARCH model that have been established

to solve this issue, it assumes that the conditional variance of the time series σt does

not depend only on the p previous observations of the series but also on the q previ-

ous values of the conditional variance, a GARCH(p,q) model of orders p, q is

written as

yt = σtet,

σ2t = α0 + α1y
2
t−1 + α2y

2
t−2 + · · · + αpy

2
t−p

+ β1σ
2
t−1 + β2σ

2
t−2 + · · · + βqσ

2
t−q

σ2t = α0 +

p∑
i=1

αiyt−i +

q∑
j=1

βjσ
2
t−j

(1.12)

1.3.2 Machine learning models

Machine learning techniques and algorithms have gained popularity in time series

analysis and forecasting due to their capability of capturing nonlinear relationships

in time series data. In this section we will explore two of the most commonly used

techniques: support vector regression and regression trees.
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1.3.2.1 Support vector regression

Support vector regression or SVR is an extention to the Support Vector Ma-

chine classification algorithm [69], while SVM classification uses a hyperplan to sepa-

rate the training data in a multidimensional feature space, SVR computes the general-

ization error bounds by introducing an ε-insensitive loss function that allows an error

tolerance known as the ε-insensitive tube where errors below ε aren’t penalized [1].

The aim of SVR is to minimize, via optimization, the generalization error bounds i.e

making the ε-insensitive tube as narrow as possible [39, 69].

The regression function is given as [39]

J = wTϕ(x) + b (1.13)

Where ϕ is the feature of the input , w is the weight vector and b is the bias which are

estimated by minimizing the regularized error function written as

J =
1

2
∥w∥2 + C

M∑
i=1

L (yi, f(xi)) (1.14)

Where

L =

{
0 if |yi − f(xi)| ≤ ε

|yi − f(xi)| − ε otherwise
(1.15)

Where xi are the inputs, yi are the actual outputs, f(xi) is the predicted output for

xi, ε is the difference between the actual and predicted value, C is the regularization

parameter and L is the linear ε-insensitive loss function [1, 39, 69].

Figure 1.9: Transformation of the input space into a higher dimensional feature space

using a mapping function ϕ.
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As shown in Figure 1.9, to allow SVR to handle nonlinear data, a non linear kernel

is used to map the input space where no linear separation of the data is possible to a

higher-dimensional feature space where it can be linearly separated, this is also know

as the ”kernel trick” [69].

SVMs and SVR have known success in many application fields such as : pattern recog-

nition, text classification, image recognition, time series forecasting, bioinformatics

and more [47, 70].

1.3.2.2 Classification and Regression Tree

Classification and Regression Tree also known as CART is a supervised learning

algorithm in data mining which aims to construct a binary tree by recursively parti-

tioning the initial data into nonoverlapping subregions [14], in a regression case, we

would like to predict the value of a dependent variable Y based on predictor vari-

ables X. The resulting tree consists of a root node plus internal and terminal nodes,

where internal nodes represent a given condition of whether or not a split should be

performed at this step, the condition consists of a predictor variable and its threshold

value which are selected by minimizing, typically, the least square error in predicting

the value of the dependent variable Y , the terminal nodes or leaves contain the re-

gressed values [14].

The process of building a regression tree is carried out in three steps [11]

1. Constructing the maximum tree.

2. Pruning the tree.

3. Performing predictions with new data.

CART is widely used in many fields such as medicine, economy, ecology and many

more due to its ability to process a variety of data types be it numerical or categorical

or both as well as being able to handle linearity and nonlinearity relationships in the

data [14].

Figure 1.10 shows a time plot of the quarterly growth rate of US real gross domestic

product from 1947 to 2015 and Figure 1.11 shows an example of a fitted regression tree

for the GDP rates data in order to predict the next growth rate value yt based on its

three past values yt−1, yt−2 and yt−3 [57] which can be mathematically expressed as

yt = g(yt−1, yt−2, yt−3) + at (1.16)

Where the tree represents a piecewise nonlinear approximation of g and at represents

the error term [57].
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Figure 1.10: The quarterly growth rates of US real gross domestic product from 1947

to 2015 [57].

Figure 1.11: A regression tree for the quarterly growth rate of US real gross domestic

product using three lagged values [57].
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1.3.3 Deep learning models

Deep learning has been a subject of great interest in the last two decades and has

been heavily studied and explored, in this section we will see how time series analysis

takes advantage of deep learning’s power and we will highlight some of the widely used

techniques and algorithms in the literature.

1.3.3.1 Recurrent neural networks

Recurrent neural networks or RNNs are a dynamic type of neural networks [28]

that are best suited for modeling sequential data [50] including time series data. The

model’s architecture allows it to capture the inherent order and dependence where the

output value doesn’t depend only on the current input but also on the previous values

computed and stored in the hidden state vector, and therefore it is said that the model

maintains internal memory [63]. As shown in the figure, the RNN model can include

Figure 1.12: Folded and unfolded structure of an RNN [50].

multiple inputs and produce multiple outputs, one per time step, this input/output

dynamic allows it to operate in three different ways [42] :

• One to many : as in image captioning.

• Many to one : as in sentiment analysis where the input is a given sentence.

• Many to many : as in video classification, a label for each frame.

Figure 1.10 shows the a single RNN unit/cell, the computation process is given

mathematically as the following:

St = σh(Wxs · (xt ⊕ St−1) + bs)

yt = σy(Wy · St + by)
(1.17)

20



Chapter 1 – Time series analysis and forecasting

Where xt is the input vector, St is the hidden state, W ’s and b’s are the learned

parameters (weights and biases respectively) and the σ’s are activation functions.

Figure 1.13: RNN cell structure and computation process [50].

RNNs can be trained using the backprobagation through time algorithm [49],

the algorithm unrolls the RNN, sums the errors calculated for each time step, applies an

optimization algorithm such as SGD, ADAM ...etc to adjust the weights accordingly

and finally it folds the RNN back to its original form [42, 49].

The vanishing and exploding gradient problem

The main drawback with RNNs is that for long sequences processing and due to

the repeated multiplication of weights through time steps, the gradient can become too

small or too large and causes the RNN to lose the long-term information/dependencies,

this is known as the vanishing/exploding gradient problem [50, 63], the LSTM model

was specifically developed to address this problem.

1.3.3.2 Long short-term memory neural networks

The Long Short-Term Memory or LSTM model was developed specifically to ad-

dress the vanishing/exploding gradient problem and allows the network to learn the

long term dependencies in the data [67]. This is achieved by introducing a new, more

sophisticated and complicated cell structure shown in Figure 1.11.

In a LSTM network, information flows in two main streams, long and short term mem-

ory streams, which are controlled and manipulated by the gating mechanism, LSTM

cells consist typically of three different gates [67] :

• The forget gate : ft is the gate responsible of determining, based on the current

input St−1, how much of the previous cell state Ct−1 should be remembered, an

output of 1 retains all the previous information while a value of 0 means to totally

forget the previous information.
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Figure 1.14: LSTM cell structure and computing process [50].

• The input gate : it creates new potential values C̃t to be added to the cell state

based on the current input value and the previous hidden state.

• The output gate : Ot is the final gate, based on the current input and the

previous hidden state, it operates on the information resulted form the previous

two gates and decide how much of the the current cell state it is going to output

as the next hidden state and eventually the final output of the network.

The cell state represents the long term memory and the hidden state represents the

short term memory, this unit model can be mathematically represented as [50]:

ft = σ
(
Wf · (St−1 ⊕ xt) + bf

)
it = σ (Wi · (St−1 ⊕ xt) + bi)

C̃t = tanh (Wc · (St−1 ⊕ xt) + bc)

Ct = ft · Ct−1 + it · C̃t

Ot = σ (Wo · (St−1 ⊕ xt) + bo)

St = Ot · tanh(Ct)

yt = σ(Wy · St + by)

(1.18)

Where xt is the input vector, W ’s and b’s are the learned parameters (weights and

biases respectively), Ct is the cell state , St is the hidden state, σ is the sigmoid

activation function, tanh is the hyperbolic tangent activation function, ft, it, Ot are

the forget, input and output gates respectively.

1.3.3.3 Gated recurrent unit

Gated recurrent unit GRU is a variant of the LSTM model [67] that was con-

ceived as an alternative in order to reduce the computational cost of the LSTM cell
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without a significant loss in its performance and while still being able to handle the

vanishing/exploding gradient problem. GRU is considered a lighter LSTM [67] and

the complexity reduction is achieved by integrating the input and forget gates of the

LSTM cell into one gate called the update gate which, in addition to the second

gate the reset gate, constitutes the GRU and reduces the total number of the unit

parameters [67].

Figure 1.15: GRU structure and computation process [50].

The GRU is mathematically expressed as the following [50]

rt = σ (Wr · (St−1 ⊕ xt) + br)

zt = σ (Wz · (St−1 ⊕ xt) + bz)

S̃t = tanh (Ws · (St−1 · rt ⊕ xt) + bs)

St = (1 − zt) · St−1 + zt · S̃t
yt = σ(Wy · St + by)

(1.19)

The recurrent neural network class (vanilla RNN, LSTM, GRU) has a great ability

to process sequential data and had a tremendous success in many applications such as

[28] :

• Time series forecasting.

• Language modeling.

• Image and video captioning.

• Robotic control.
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Conclusion

The diversity of time series types and features makes forecasting a complicated

task with no known universal model. This lead to the development of numerous meth-

ods and techniques both statistical and artificially intelligent, each of which has its

strengths and weaknesses.

In this chapter we have defined what time series are, their types, components and

important features. Furthermore we introduced time series forecasting and detailed its

types and applications. Finally we presented some of the commonly used techniques

in time series analysis and forecasting, in the next chapter we will present state of

the art models and see how it is possible to combine two or more models to improve

forecasting results by taking advantage of each model’s strength and compensating for

their limitations.
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Chapter 2

Literature review of time series

forecasting models

Introduction

Given to the crucial role time series forecasting plays across various domains and

the impact it has on decision making, enhancing forecast accuracy became an unde-

niable imperative. The subject was consequently intensively studied in the last few

decades yielding a rich literature that encompasses several models originating from

across multiple study fields including : statistics, machine learning and deep learning.

To address these models’ limitations and to further improve forecasting accuracy, re-

searchers explored the potential of combining existing models, the advantages it offers

and the challenges it comes with.

The aim of this chapter is to provide a comprehensive and up-to-date review of

state-of-the art models in the time series forecasting literature. The review is organized

into three sections, in the first section, we begin by examining classical techniques along

with other well-established machine learning approaches. The second section delves

into the advancements in deep learning models for time series forecasting and present

a detailed overview of these models. In the final section we shed the light on hybrid

models and we discuss the challenges and considerations in regard to this approach.
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2.1 A survey of other forecasting methods

Expanding on the models introduced in the preceding chapter, this section delves

into an exploration of three notable non-deep-learning methodologies employed in time

series forecasting. These models, hailing from distinct perspectives including statistics,

machine learning, and Bayesian analysis, are highlighted and discussed in detail to shed

light on their respective approaches.

2.1.1 Exponential smoothing

Exponential smoothing is yet another family of traditional statistical methods for

time series analysis and forecasting and is one of the earliest set of techniques to be

developed in the literature [66]. Exponential smoothing splits the series into signal and

noise components, where the signal represents patterns caused by intrinsic dynamics

(trend, seasonality) while the noise represents any irregular variations in the data

[36, 66]. For forecasting tasks, Exponential smoothing applies a weighted average

on the current and previous observation to generate forecasts, this is accomplished

by allowing observations to influence the new value depending on their position in

the historical data timeline, the further an observation is from the present the less

influence it has on the forecast, therefore the weight assigned to each value is increased

exponentially as the observation chronologically approaches the current observation of

the series [66].

2.1.2 XGBoost

XGBoost, known as eXtreme Gradient Boosting, is a powerful supervised machine

learning algorithm that implements the gradient boosted trees technique. It is specif-

ically engineered for scalability and efficient computation [10], making it suitable for

handling large-scale datasets. Taking part of the ensemble learning methods family,

XGBoost harnesses the collective strength of multiple weak learners, namely classifi-

cation and decision trees (CARTs), to attain superior predictive performance beyond

what each base learner can achieve individually [5].

The fundamental concept underlying XGBoost is the iterative enhancement of the

model’s predictive capabilities by sequentially adding and training decision trees. At

each iteration, XGBoost intelligently assesses the errors made by the ensemble of pre-

viously trained trees and focuses on rectifying those errors with the introduction of

new successor trees [19]. This iterative process allows the model to capitalize on the

strengths of each weak learner and gradually refine its predictions, ultimately leading

to enhanced performance and heightened precision in making accurate forecasts.

26



Chapter 2 – Literature review of time series forecasting models

2.1.3 Facebook Prophet

Prophet is a time series forecasting model and an open-source library developed

by Facebook’s Core Data Science team and is available in R and Python languages.

It serves as a tool for both experts and non-experts to produce high quality forecasts

at scale by providing a set of intuitive parameters that can be adjusted with having

minimal knowledge of the details of the underlying model [55].

Prophet is an additive regression model based on time series decomposition with

three core components: trend, seasonality and holidays [55] described in the following

equation:

y(t) = g(t) + s(t) + h(t) + ϵt (2.1)

Where g(t) is the trend component which models non-periodic changes in the values of

the time series, s(t) represents the seasonal component that models periodic changes

in the values of the series, h(t) models the holidays effect which may occur irregularly

over variant time periods and are manually provided by the user as input to the model,

lastly ϵt is the error term representing any changes that are not accommodated by the

model. The trend component is modeled in two ways by Prophet :

• Nonlinear, Saturating Growth : which is modeled by logistic growth, which

in its most basic form is given as

g(t) =
C

1 + exp(−k(t−m))
(2.2)

Where C is the carrying capacity, k is the growth rate andm is an offset parameter.

When considering a time varying carrying capacity and a non-constant growth

rate, the piece-wise logistic growth model is written as

g(t) =
C(t)

1 + exp(−(k + a(t)⊺δ)(t− (m+ a(t)⊺γ)))
(2.3)

Where a, δ and γ are vectors of rate adjustments and changepoints.

• Linear trend with changepoints : Covers cases where the series doesn’t exhibit

saturating growth which is often useful [55], the piece-wise linear model becomes

parsimonious and is given as

g(t) = (k + a(t)⊺δ)t+ (m+ a(t)⊺γ) (2.4)

Prophet grew popular in the data science community due to its out of the box tools

for forecasting and its great ability to handle outlines, missing values and dramatic

changes in the time series.
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2.2 An overview of deep learning techniques for

time series forecasting

In recent years, several breakthroughs have been achieved in various fields and

approaches to many complex tasks have been revolutionized thanks to deep learning

advancements, time series forecasting was no exception to this revolution. Motivated by

their ability to model non-linearity, to extract high level features and to handle complex

data, deep learning models have been adopted to time series forecasting tasks. In this

section we will highlight a collection of state of the art models :

2.2.1 Recurrent neural networks family

Due to their recurrent nature, RNNs are sequential by design which makes them

well suited for sequence processing and modeling problems including time series fore-

casting [50], the key component that empowers RNNs effectiveness is the recurrent layer

which allows the network to inherently capture the temporal order and dependence of

the data [18] while the nonlinear activation functions grant modeling the nonlinear

dependency and the complex dynamics of the series, finally, the recurrence mechanism

combined with the hidden state ensure that the network remembers information from

previously processed observations.

For the aforementioned reasons, RNNs, particularly LSTM and GRU architectures

have grown popular and became the standard in tackling sequence modeling tasks [4],

however these architectures suffer from their own shortcomings that motivated the

exploration of other architectures :

• Training difficulty: RNNs are notorious for being hard to train [41], improved

variants such as LSTMs and GRUs have more complex cell architectures which

introduce a high computational complexity as a result of the increased number

of parameters [67] which, by turn, requires longer training time and larger data

samples [45].

• Long memory limitations: different time series data can exhibit different types of

temporal dependency ranging from short to long term dependencies, while some

types of RNNs such as LSTMs can efficiently model short, medium and even

moderate long term dependency, their effectiveness seems to drop as the sequences

grow longer and therefore these networks eventually fail to capture considerably

long term dependencies [71].

2.2.2 Temporal convolutional networks

Convolutional neural networks or CNNs have gained an immense popularity in the
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last decade given their notable success in different computer vision related tasks such

as image classification, object detection and image segmentation as well as reaching

state of the art performance in natural language processing tasks including machine

translation, character and word level language modeling [4]. Driven by this success,

investigations have been conducted to whether similar results can be achieved by ap-

plying CNN architectures in time series analysis.

Temporal convolutional networks or TCNs are a recent network architecture that

have been originally developed for audio synthesis [59] and later adopted for action

segmentation [27] and time series forecasting problems and showed promising results

[26, 30], they are based on one dimensional dilated causal convolution and

residual blocks which we will discuss in detail in this section.

2.2.2.1 Causal convolution

In order to respect the temporal order and avoid information leakage from future

values, TCNs use a special type of convolution known as causal convolution where an

output at time step t is obtained using only inputs from time steps prior or equal to t

[4].

Figure 2.1: Visualization of a stack of causal convolution layers [59].

2.2.3 Dilated convolution

In time series forecasting and in sequence modeling in general, it is crucial to the

model’s performance and accuracy to be able to capture dependencies that may span

lengthy ranges, to give TCNs the ability to effectively handle history of large size dilated

convolution is used [4], that is, between every two kernel elements a fixed step of size

d is inserted, where d = 1 gives the standard convolution as shown in Figure 2.2.

This adjustment in the kernel structure enables an exponentially large receptive field

[4] and therefore the TCN is able to capture long term patterns in the sequence.

29



Chapter 2 – Literature review of time series forecasting models

Figure 2.2: Visualization of a stack of dilated causal convolution layers [59].

2.2.3.1 Residual connection

In practice, to further expand the network’s receptive field beyond its elementary

parameters (kernel size, dilation factor) the depth of the network is increased, however,

this increases the learning complexity as well and gives rise to the degradation problem,

residual connections were opted for in order to counteract against these drawbacks as

they were proven to benefit deep neural architectures [4].

A residual connection or block consists of adding the output of a TCN block to its

input x and is generally given as [26] :

o = Activation(x+ F (x)) (2.5)

Figure 2.3: An example of a TCN residual block.
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A deep temporal convolutional network consists of stacking multiple TCN blocks

such as the output of each is the input to next, each block has a stack of dilated causal

convolution layers (Figure 2.2) and a residual connection. The TCN blocks preserve

the input size by zero padding the input to each convolutional layer. This architecture

improves upon the existing RNN class of networks in mainly two ways [4, 26] :

• Parallelism : An input sequence can be processed as whole instead of sequentially

as in RNNs given that the convolution can be performed concurrently, resulting

in a faster training and evaluating time.

• Stable gradients : TCNs do not suffer from gradient problems as they are

trained using the standard backpropagation algorithm unlike RNNs that rely on

the backpropagation through time algorithm.

2.2.4 Transformers

The transformer architecture is an attention based model that made a huge suc-

cess in the NLP domain by outperforming state of the art models in machine transla-

tion [60] and other NLP tasks, it empowers large language models such as OpenAI’s

ChatGPT and Google’s Bard.

Transformers follow the Encoder-Decoder structure and are entirely based on the atten-

tion mechanism while disposing of any recurrence which yielded significant improve-

ments in speed and performance [60]. It wasn’t long until this novel architecture and

its variants started being exploited in other deep learning areas including time series

forecasting [68, 73, 63], in the following, we will present the main components and

concepts that make up this powerful model.

2.2.4.1 Attention

The attention mechanism is at the core of the Transformer model and it’s the

basis of two important layers in the Transformer architecture: self-attention layer

and encoder-decoder attention, it allows the model to attend to different parts in

the input sequence and how each element relates to the other elements of the input,

this gives the model a broader understanding of the dependencies and the contextual

relationships in the sequence.

Attention can be described as a function that maps a set of Query, Key and Value

inputs to an output [60] and it’s given as the following :

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.6)
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Where

Q = XWQ, K = XWK , V = XW V (2.7)

X is a matrix of the packed input sequence where each row corresponds to a single

value of the sequence, WQ,WK and W V are learned matrices and dk is the dimension

of K [60, 17].

In order to take full advantage of the attention mechanism and its ability to be paral-

lelizable, transformer models often use what’s called a Multi-Head Attention, that

is: applying, in parallel, multiple attention heads (Equation 2.6) with separate learned

matrices, this allows the model to diversely attend to information at different positions

form different attention heads.

Figure 2.4 is a visualization of the attention mechanism in the case of time series anal-

ysis where each element in a layer is allowed to attend elements in the other layer up

to its position only.

Figure 2.4: Visualization of a restricted attention mechanism.

We like to note that the term self-attention mechanism refers to the case where

the attention is performed between the sequence and itself, both layers in Figure 2.4

would then correspond to the same sequence, hence the ”self” reference.

2.2.4.2 Input embedding

Transformer models employ an input layer at both the encoder and decoder levels

where input elements are mapped to vectors by a learned embedding [60].

2.2.4.3 Positional encoding

Unlike RNNs that inherently capture the sequential order and TCNs which use

causal convolutions, Transformers do not have recurrence nor convolution and thus

they need a way to model order and positioning, therefore positional encoding has

been introduced as an effective way to insert order information into the input. The

canonical Transformer model [60] use sine and cosine functions to generate positional

encodings which are added to the input embedding from the previous layer, the gener-
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ating functions are given as the following :

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
(2.8)

Where i is the positional encoding dimension and dmodel is the dimension of the input

embedding resulting from the input layer, this choice of generating functions allows

the model to extrapolate to sequence of variante length including ones longer than

sequences encountered during training [60].

Figure 2.5: Transformer model architecture applied to time series forecasting [50].

2.2.4.4 Encoder

The Transformer encoder structure consists of N stacked identical layers, each of

which has two sub-layers, the first being the multi-head self-attention mechanism and
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the second is a fully connected feed-forward network, around each of these two layers,

a residual connection is applied followed by layer normalization.

2.2.4.5 Decoder

The decoder has a similar architecture to the encoder as it’s also composed of N

stacked identical layers with one main difference, the decoder has a third sub-layer that

applies multi-head attention on the encoders output, another subtle difference resides

in the self-attention layer, unlike the encoder the decoder employs a masked multi-head

attention to prevent attending to future values provided as its input.

2.2.5 Graph neural networks

Graph neural networks are a subset of the broader field of geometric deep learning

that attempts to generalize neural networks for non-Euclidean data structures such as

graphs and manifolds [8], they are designed to operate on graph-structured data and

are based on message passing techniques to iteratively update each node’s state using

its previous state and its neighbors’, GNNs leverage the expressive power of graphs to

address problems where modeling entities, their relationships and their interactions is

required, they have been successfully applied to various problems such as molecular

chemistry, recommendation systems, intelligent transport systems, social, financial and

biological networks. GNNs have also found applications in the field of time series

analysis, more extensively in multivariate time series forecasting. Numerous studies in

the literature have explored the use of GNNs for this task.

In this section, we aim to shed the light on a selection of some of the prominent variants

of GNNs :

2.2.5.1 Graph recurrent neural networks

Graph Recurrent Neural Networks (GRNNs) aim to generalize traditional RNNS

and extend their capabilities in order to be able handle data with graph structures,

they are designed to exploit the power of recurrence to capture temporal dependencies

within sequences of varying lengths while also considering the underlying graph struc-

ture [46]. To enhance the information propagation and retention across the graph,

GRNNs incorporate a gating mechanism inspired by RNNs[31], this gating mecha-

nism significantly improves the ability and effectiveness of the Graph Neural Network

(GNN) to exchange and retain relevant information. In GRNNs, the state of each node

is recurrently updated by exchanging information with its neighboring nodes through

a diffusion mechanism [64]. This mechanism enables the nodes to share and aggregate

information from their neighborhoods and thus facilitating the integration of local
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and temporal dependencies and ensuring that each node’s state reflects the collective

influence of its neighboring nodes over time.

2.2.5.2 Graph convolutional neural networks

Analogous to GRNNs, Graph convolutional neural networks (GCNNs) generalize

conventional CNNs to graph-structured data, the main idea is to take the convolution

operation beyond the regular grid data and apply it on graph data where each node’s

representation is obtained by aggregating its features vector and its neighbors’. GCNNs

often stack multiple layers with different weights for each layer allowing the network

to extract high-level node representations [64]. GCNNs are mainly divided into two

categories spectral-based and spatial-based networks.

• Spectral-based GCNNs : operate in the spectral domain, they assume the

graph to be undirected and represent it by a normalized graph Laplacian matrix

which is further decomposed to obtain a matrix of eigenvectors that form an or-

thonormal space. The input signal is then projected to the space from the previous

step by receiving the graph Fourier transform. Now a convolution operation is per-

formed by multiplying a learnable filter with the transformed signal [64]. Spectral-

based GCNNs are computationally expensive due to the eigen-decomposition and

several network variants were introduced to improve their computational com-

plexity.

• Spatial-based GCNNs : operate in the spatial domain and are algorithmically

similar to the well known 2D image convolution, in this context, the representa-

tion of each node in the graph is derived by convolving a filter with its previous

representation and the neighboring nodes’ representations [64]. This convolutional

operation propagates information along the graph edges allowing the network to

capture local spatial relationships and dependencies which can be further extended

to learn complex and more abstract patterns across the graph by employing mul-

tiple convolution layers.

2.2.5.3 Graph attention neural networks

Graph attention neural networks (GATs) were introduced as an innovative adoption

of the attention mechanism into GNNs [74] as it gained a wide recognition following its

remarkable success in various sequence-related tasks. GAT leverages the self-attention

mechanism to compute each node’s features by attending to its neighbor nodes where

each of which is assigned a distinct weight [74]. Similar to the Transformer model,

in order to maximize the effectiveness of the attention mechanism and to stabilize

the learning process, GAT integrates multi-head attention mechanism [61] yielding a

diverse and more nuanced comprehension of the data dependencies and relationships.
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2.3 Hybrid approach to time series forecasting

As shown in the previous two sections, a variety of models of different categories

including statistics, machine learning and deep learning have been developed in the

time series forecasting literature. Each of these models possesses its own strengths

and weaknesses, some are more suited for short-term forecasting capturing immediate

fluctuations with precision and others excel in long-term predictions providing insights

into broader horizons, certain models make explicit assumptions about the inherent

characteristics of the time series data, such as linearity or stationarity, further tailor-

ing their applicability to specific contexts.

Although the development of new techniques and methods is an active area of research,

the emergence of new models is infrequent, and while the new models may improve

upon their predecessors they are likely to follow the same pattern of having their own

benefits and shortcomings. Therefore, researchers and practitioners have opted for

hybrid approaches, attempts to combine multiple models with the aim of leveraging

the composing models strong points and overcoming their individual limitations, ulti-

mately obtaining a potentially higher performance beyond what each model can achieve

separately.

Some of the important advantages the hybrid approach might offer are:

• Accuracy enhancement: Combining models in a complementary manner can lead

to improvements in the forecast performance [36] as the amalgamation of informa-

tion from different models provides diverse insights into the underlying structure

and behavior of the time series.

• Adaptability and Robustness: Different models operate on different types of data

and may require specific conditions which narrows their ability to adapt and gen-

eralize for different forecasting tasks. Merging multiple models can extend their

natural capability of handling data outside of what they usually operate on and

performing tasks that they may not be designed for.

In this section we will showcase a selection of hybrid models that combine different

types of algorithms and techniques. Later on in this section, we will briefly discuss

challenges and consideration associated with designing and building hybrid models.

2.3.1 ARIMA and RNNs combination

ARIMA and RNNs (LSTM and GRU particularly) have long been the go-to for

time series analysis and forecasting, both have their strengths and weaknesses, ARIMA

lacks the ability to model non-linearity in time series, on the other hand, LSTMs and
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GRUs are able to model both linearity and non-linearity, however their training requires

a significant amount of time and data [12]. Therefore, it can be said that search for

a midpoint is intuitive and the hybridization of ARIMA and LSTM/GRU follows as

a natural subsequent step. This combination is common in the forecasting literature

and several works have studied and successfully applied it [3, 53, 65, 12].

The main idea behind this hybrid model is to separate the time series into a combination

of linear Lt and non-linear Nt components, the linear part is then given to the selected

ARIMA model and the non-linear component is handled by the LSTM/GRU network,

the predicted values obtained by both models are then added to produce the final

forecast :

y(t) = Lt +Nt (2.9)

This statistical-deep learning combination of two of the most well-known forecasting

algorithms demonstrated a better performance than the individual models.

2.3.2 Exponential smoothing and RNNs

Another interesting hybridization of classic and deep learning techniques is the com-

bination of Exponential smoothing (ES) methods and RNNs, one particularly notable

framework involved merging the Holt and Winters variation of Exponential smoothing

with dilated LSTMs. This framework emerged victorious in 2018 in the prestigious

M4 forecasting competition. The combination leverages the ES ability to disassemble

the time series and capture its main components (trend and seasonality) while serving

as an instrument to preprocess and deseasonalize the series, the RNN contributes by

capturing long-term dependencies and modeling non-linearity in the data [51].

Driven by this success, numerous works were based on this framework and variants

from both methodological classes have been effectively combined and applied to vari-

ous forecasting tasks, including short and midterm load forecasting, crime prediction,

stock market analysis, and more [24, 9, 52, 51, 13].

Figure 2.6: An example of hybrid ES-RNN framework [9].
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2.3.3 LSTM and GRU hybridization

LSTM and GRU neural networks are two of the most commonly used deep learning

models for time series forecasting due to their capability of memorizing long information

sequences and capturing complex non-linear patterns in the data. Researchers have

explored the coupling of the two architectures and investigated the performance and

results [21, 37, 20, 29, 48].

The framework involving both architecture is theoretically conceivable in several way,

the two frequent amongst are :

• Stacked combination: this design approach consists of stacking GRU network

layers on top of the LSTM network layers or vice-versa, thus the output of one

block serves as an input to the other creating an hierarchical structure as depicted

in Figure 2.7a.

• Parallel combination: as shown in Figure 2.7b, this architecture separates the

LSTM block from the GRU block, both receive the same input and perform their

own computations in parallel, using an aggregation function of choice, the outputs

from each block are then combined for further processing or to directly obtain the

final forecasting results.

(a) (b)

Figure 2.7: LSTM-GRU hybrid model: (a) Stacked combination [16], (b) Parallel

combination [48].
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The hybrid model achieved superior performance over individual LSTM/GRU net-

works.

2.3.4 CNN-LSTM/GRU

This hybrid model exploits the CNN ability to extract high-level features from

the data while the LSTM/GRU layers are employed to capture short and long-term

dependencies as well as complex patterns and irregularities. This combination is able

to successfully learn spatial and temporal relationships in the time series data and

have been applied to several forecasting tasks [33, 23, 32, 22, 34]. The results showed a

significant improvement over the independent networks in the prediction accuracy and

the convergence rate.

(a) A CNN-LSTM network variation.

(b) A CNN-LSTM network variation (smaller filters, no FC layer).

Figure 2.8: An example of CNN-LSTM hybrid architecture [32].

The hybrid CNN-LSTM architecture is highly variable: the size and number of con-

volution filters, whether or not pooling, dropout, up-sample and fully connected layers

are integrated, Figure 2.8 depicts two examples of CNN-LSTM network variations.
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2.3.5 ARIMA-CNN-LSTM model

Yang et al. [72] proposed a hybrid ARIMA-CNN-LSTM framework for stock price

forecasting, the model consists of three hierarchical layers and splits the time series

into linear and non-linear components, the first layer is the ARIMA layer and it serves

as a linear filter, it receives the time series sequence as input and produces predictions

for the linear components, the real targets are then subtracted from these predictions

to get the error terms, the residuals or the error series is regarded as the non-linear

component and is processed by the CNN-LSTM network. The CNN is responsible for

extracting feature patterns while a sequence to sequence LSTM networked generates

non-linear predictions. A fully connected layer is employed to concatenate results from

ARIMA and Seq2Seq layers, thus obtaining the final forecast values, the model can be

summarized in the following equations :

x̂t+h = ARIMA(xt)

et+h = x̂t+h − xt+h

ẽt+h = CNN(et+h)

êt+h = Seq2Seq(ẽt+h)

yt+h = FC(êt+h, x̂t+h)

(2.10)

Figure 2.9: The proposed ARIMA-CNN-LSTM architecure [72].

The model demonstrated higher accuracy than the independent models by a sig-
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nificant margin.

2.3.6 CNN-LSTM-Transformer model

Hajji et al. [2] proposed a comprehensive framework for solar energy production

forecasting that amalgamates three influential deep learning mechanisms: convolution,

recurrence and attention. The proposed model employs a sequential combination of

three distinct network types: a CNN, an LSTM, and a Transformer network. The

data undergoes preprocessing using a self-organizing map, which organizes it into four

distinct seasons. Subsequently, the data mapped into four clusters is fed into a con-

volutional network to extract spatial features. The LSTM then captures temporal

dependencies from the processed data, and the resulting outputs are further passed to

a Transformer network. The inclusion of the Transformer enhances the model’s mem-

ory capacity and compels the LSTM to focus on pertinent historical features.

The model achieved top performance compared to baseline models and outperforms

CNN-LSTM hybridization and other combinations.

Figure 2.10: The proposed CNN-LSTM-Transformer hybrid model [2].

2.3.7 Challenges and considerations to the hybrid approach

While the hybrid approach to time series forecasting offers many advantages and

performance improvements, it is still a complex task that presents several challenges
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and difficulties that should be accounted for when considering this approach. Here

are some points that the analyst or practitioner should be aware of when designing or

opting for a hybridization:

• Model selection, composition and parameter tuning : The time series fore-

casting literature offers a rich selection of models and techniques to choose from,

therefore selecting an adequate combination prove to be complicated and requires

careful evaluation of the strengths and weaknesses of each model, deep under-

standing of the nature of the data at hand and the forecasting task. Integrating

the candidate models is no less complicated than choosing them, the models com-

patibility must be verified and appropriate interfaces between the models are to

be conceived. The final challenge in the composing step is parameter tuning, as

each model has its own set of parameters, these sets need to be tuned with respect

to their respective model as well as to the the framework as a whole which may

be a complex optimization problem.

• Complexity, computational resources and scalability : Merging different

models together often increases the englobing framework’s complexity, which in-

troduces higher computational requirements such as processing power and mem-

ory capacity and often leads to longer training times. As the model’s complexity

grows, the ability to scale it to larger datasets and to integrate new features and

functionalities becomes more and more challenging.

• Model interpretability and maintenance : Individual models design, func-

tionality and purpose make them inherently comprehensible and highly inter-

pretable. However, hybridizing models result in high model complexity and may

reduce the global interpretability of the framework. The less interpretable a hy-

brid model is the harder it is to maintain it, particularly when unexpected results

or behavior occur.
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Conclusion

In conclusion, when facing a forecasting problem, developing or selecting a suit-

able model hasn’t always a clear path, the literature review presented in this chapter

highlights the diversity of models available for time series forecasting and provides a

comprehensive overview. Based on the insights gained from this review we can imple-

ment existing models and propose new ones. We have also emphasized the importance

of considering the specific characteristics of the dataset, the type of prediction task at

hand, the desired level of interpretability, and the computational resources available

when selecting or designing an appropriate forecasting model.
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Chapter 3

Proposition and evaluation

Introduction

The quest for improving forecast accuracy has always been at the center of time

series analysis and forecasting field, several models and approaches have been proposed

ranging from classic and machine learning to recent deep learning models as well as

different combinations of these classes.

The research question guiding this chapter is: ”How do classic forecasting models

compare to recent deep learning techniques and does the hybrid approach guarantee

performance improvements ?”

To address this question we have conducted a comprehensive experiment to investigate

the effectiveness of different forecasting models, the experiment aims to assess and

compare the performance of various state-of-the-art baseline models and our two novel

hybrid model architectures.

This chapter is outlined as the following: we first introduce our proposed hybrid deep

learning models, we then walk through the experimental setup presenting the tools,

datasets and environment in which this study took place. Subsequently we showcase

the baseline models details and architectures as well as the evaluation metrics used in

assessing these models performance. Furthermore, we explain the forecast strategy on

which we based our work. Finally the results of our experiment are presented, analysed

and discussed in order to draw the final conclusion of this work.

44



Chapter 3 – Proposition and evaluation

3.1 Proposed models

3.1.1 CNN-GRU-TCN

In this section we present our novel hybrid model of CNN-GRU and deep TCN

networks combination. The main idea behind this choice of architecture is to combine

strength of two of the prominent sequence modeling architectures while using CNN as

a complementary component and a performance enhancer.

This model aims to take advantage of the constituent networks strong points and

merges them in a complementary manner:

• Short-term dependencies and local patterns: thanks to the convolution operation,

TCNs are capable of capturing local complex patterns and dependencies across

temporally close observations.

• Powerful long-term dependency modeling: GRUs were developed to address the

vanishing/exploding gradient problem, thus giving them the ability to span longer

sequences and therefore having larger sequential memory and retaining deep in-

formation history. TCNs on the other hand leverage stacked, increasingly dilated

convolution layers to expand their receptive field to be eventually able to mem-

orize, in a non-sequential manner, long information history and temporal depen-

dencies. Combining both can benefit the model as it diversifies its long-memory

information representations and allows it to learn from different parts of the se-

quence.

Following Section 3.3.3.3 demonstrations, we employ a 1D-convolution layer to enhance

the performance of the GRU network, as discussed discussed in Section 3.3.3.3 the

CNN plays a key role as a spatial feature extractor and a signal smoother, we consider

it a necessary upgrade and we view the CNN-GRU/LSTM model hybridization as

a single functioning block given the performance/complexity ratio of adding the 1D-

convolutional layer. Few works have been accomplished in investigating the TCN-GRU

hybridization potential but none have added CNN to the combination as a performance

enhancer of the general framework.

The model consists of two parallel blocks, the first is a deep TCN block composed of

N stacked residual blocks (Figure 3.11) and the second is the CNN-GRU model shown

in Figure 3.18, the outputs from each block are concatenated and passed through two

fully connected layers to obtain the final results, the full architecture is illustrated in

Figure 3.1.
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Figure 3.1: Proposed CNN-GRU-TCN model architecture.

3.1.2 GNN-CNN-LSTM

Our second proposed model combines the GraphSAGE (Sample and aggregate)

graph neural network proposed by Hamilton et al. [15] with the CNN-LSTM hybrid

neural network. The main motivation behind this hybrid approach is to gain deep

insights into the time series by learning temporal and spatial patterns and dependencies

from two distinct representations of the series: sequential grid-like and non-Euclidean

graph data structures.

The visibility graph offers a non-conventional and unique representation of the time

series as the generated graph structure depends entirely on the underlying structure

and characteristics of the time series data. The visibility graph breaks the sequential
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nature of the series and exposes an excellent spatial structure of it, where for example

two observations at the extremeties of the sequence may have a direct visibility link

while two closer observations may not. The GraphSAGE neural network constitutes

a powerful graph modeling tool, unlike other graph neural networks that learn node

embeddings, it trains a set of aggregator functions, these functions learn to aggregate

feature information from a node’s local neighborhood, each function learns from a

different search depth in a way that one function might be aggregating features from

direct neighbors of a given node while another might be aggregating information from

distant and indirect neighbors as shown in Figure 3.2. This technique provides two

major benefits, first the network is able to learn local and global context, patterns

and contributions of the graph nodes, second, since the network is learning aggregator

functions and not direct embeddings it has a great ability to generalize to unseen data

[15]. The network and the model by extension gain in-depth insight into the spatial

information and structure of the time series.

Figure 3.2: Aggregating feature information from different sample neighborhoods [15].

On the other hand the CNN-LSTM block handles the sequential grid-like structure

of the time series data and learns temporal and long-term dependencies of the series.

Combining both models makes the hybrid framework perfectly apt to learn complex

spatial and temporal patterns and relationships and covers more than one perspective

on the underlying structure of the time series, which therefore improves the model’s

robustness and accuracy.

Our model consists of two parallel blocks, the first is the GraphSAGE network block

which is similar to GAT architecture presented in Section 3.3.2.4 with the difference be-

ing the incorporation of three GraphSAGE network layers instead of three GAT layers,

for the second block we implement an LSTM instance of Section 3.3.3.3 architecture

and we zero-pad the input accordingly to preserve its size after the convolution, we also

employ a residual connection to both blocks outputs, the input sequence is subjected

to 1D-convolution of kernel size=1 and is then added to the aforementioned outputs,
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result sequences are subsequently concatenated and passed through two fully connected

layer to finally obtain the prediction values.

Figure 3.3: GraphSAGE-CNN-LSTM
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3.2 Experimental setup

3.2.1 Implementation Tools and Environment

3.2.1.1 Google Colaboratory

All of our experimentations have been conducted on Google Colaboratory or ”Co-

lab” which is a cloud-based platform designed for data science and AI research purposes,

it provides students, data scientists and AI researchers with a web-integrated Jupyter

Notebook environment with a large set of pre-installed libraries and packages, it also

offers up several runtimes with a decent hardware setup with the following specs (free

plan) :

• Intel Xeon CPU @2.20 GHz.

• 13GB of RAM.

• Nvidia Tesla K80 GPU 12 GB GDDR5 VRAM.

• GPU runtime comes with NVIDIA Tesla T4 GPU 16GB VRAM.

• TPU runtime offers NVIDIA A100 GPU with 40GB of VRAM.

Additionally Colab offers other important features such as: version control integration,

history tracking, Notebook sharing and remote collaboration...etc.

3.2.1.2 Python

Python is a versatile and widely adopted programming language, its rich ecosys-

tem of libraries and frameworks makes it a preferred choice for data science, machine

learning and deep learning applications.

In addition to the language’s simple syntax and clarity that provide an easier written

and highly maintainable code, the extensive collection of specifically designed libraries

such as NumPy and Pandas destinated for numerical computation and data analysis,

as well as machine and deep learning libraries including Tensorflow, Pytorch, Keras

and others, offers pre-built functionalities and off-the-shelf tools that accelerate pro-

ductivity and allow researchers and practitioners to focus on designing and composing

models rather than dealing with implementation details and mathematical complexity

thanks to the provided high-level and reliable tooling.

Leveraging Python in our implementation ensures that we can effectively harness the

existing tools and resources and enables us to focus on the core objective of comparing

and evaluating different time series forecasting models.
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3.2.1.3 Statsmodels

Statsmodels is a Python library that specializes in statistical modeling, economet-

rics and exploratory data analysis. It is particularly suitable for time series analysis

and offers a set of classes and functions for :

• Estimating different time series statistical models such as ARIMA and SARIMAX

and their respective parameters.

• Component decomposition of time series.

• Generating ACF and PCF plots as well as confidence intervals.

• Running statistical inference and performing hypothesis and diagnoses tests.

The Statsmodels module is integrated with the Pandas library which facilitates results

manipulation and data exchange between the two libraries APIs.

3.2.1.4 PmdARIMA

PmdARIMA is a library built on top of the Statsmodels library and provide useful

extra-functionalities, notabely the AutoARIMA function that offers automatic ARIMA

model selection given time series. The function performs several types of tests in order

to determine the optimal parameter set for an ARIMA model, the function provides a

model summary as well which highlights relevant information about the model such as

the values of different information criteria involved in the selection process as well as

the results of additional tests conducted during the model selection such as Ljung-Box

and Jarque-Bera tests.

3.2.1.5 PyTorch

PyTorch is an open-source deep-learning framework developed by Facebook’s AI

research group, it has established itself as the de facto research framework [38] it shares

the main advantageous features with other popular frameworks such as TensorFlow and

Keras:

• High-level abstraction: the APIs offered by such frameworks provide high-level ab-

stractions and simplify implementing complex neural network architectures thanks

to the pre-built layers, modules and functions which reduce the manual effort going

into developing and optimizing at a low-level.

• Automatic differentiation: automatic differentiation algorithms are at the core of

deep learning frameworks, these algorithms efficiently compute gradients required

for neural networks optimization, thus by automating this process the need for
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manual derivation is eliminated and the implementation of complex models is

significantly simplified.

• Computational efficiency: with the incredible advancement in computer hardware

particularly GPUs and TPUs, it became a necessity to leverage the computa-

tional power of these components and such do modern deep learning frameworks.

When performing large and intensive computations such as large matrix multipli-

cations, complex and costly mathematical operations and tensors manipulation,

these frameworks allow users to take full advantage of the hardware acceleration

and therefore hasten and optimize execution, inference and learning times.

PyTorch also has its own unique features that eventually convinced us to opt for among

other available options such as TensorFlow:

• Customizability: while PyTorch offers a wide range of pre-built layers, neural

networks and models it is still exceedingly customizable at a very low-level which

provides a high flexibility and freedom when building models.

• Dynamic computational graphs and flexibility: deep learning frameworks repre-

sent neural networks architectures as directed graphs where variables, weights,

biases, gradients, loss functions are portrayed as graph nodes. PyTorch builds

these graphs at runtime or ”on-the-fly” which allows for a gain of flexibility re-

garding models with inputs and outputs of variable lengths that are unknown prior

to runtime. This feature wasn’t introduced to TensorFlow until its 2.0 version.

• Research focus: PyTorch currently dominates the deep learning research com-

munity and it is becoming the standard framework for building state-of-the-art

models with more of 92% of HuggingFace models being PyTorch exclusive and

about 80% of recently published research papers used PyTorch [38].

3.2.1.6 PyTorch Geometric

PyTorch Geometric is a deep learning library built on top of PyTorch and specif-

ically designed for geometric deep learning including graph-structured data. It has a

user friendly API closely similar to PyTorch’s which ensures a seamless integration, it

also comes with a wide array of built-in graph neural network from various published

papers all while having PyTorch’s flexibility, thus allowing for modifications to existing

models or creating new architectures.

3.2.1.7 TS2VG

Time Series To Visibility Graph is a python package that provides an efficient

algorithm for building visibility graphs from time series data. The employed algorithm
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is highly performant and able to efficiently generate visibility graphs and some of

their properties even from time series data with large numbers of observations. The

package provides two types of visibility graphs natural and horizontal as well as multiple

variations including weighted, directed, parametric and other visibility graphs.

3.2.1.8 Pandas

Pandas is a Python package that has established itself as an essential tool for

data scientists and analysts, it offers a wide variety of tools and functionalities that

simplify and facilitate working with data. The package encompasses powerful and

robust features namely :

• The flexible and efficient DataFrame object: a two-dimensional tabular data struc-

ture with with labeled axis (rows and columns) allowing users to store and struc-

ture data in SQL-like manner.

• Time series and Date native functionalities: a comprehensive set of date and time

functionalities as well as a one-dimensional data structure with time indexing

possibility making it easier to handle time series data and to seamlessly perform

time-based operations.

• Data manipulation: Pandas is a data oriented library therefore it provides a

plethora of tools and functionalities including indexing, slicing, filtering, reshap-

ing, merging, and grouping data as well as the ability to handle missing data. The

library can be easily integrated with other libraries such as NumPy and Matplotlib

providing a unique and complete environment for data processing.

3.2.1.9 NumPy

NumPy is the fundamental package and a lead contributor to Python’s success

in scientific computing. It provides powerful array object that supports multiple di-

mensions, along with a diverse range of derived objects like masked arrays and ma-

trices. With a rich collection of functions and operations tailored for efficient array

processing, NumPy empowers users with an extensive array of capabilities, including

rapid execution of mathematical and logical operations, seamless manipulation of array

shapes, efficient sorting and selection methods, input/output handling, discrete Fourier

transforms, fundamental linear algebra operations, essential statistical computations,

random simulation capabilities, and a host of other functionalities to cater to diverse

scientific computing needs.

The core data structure of the NumPy package, is the nd-array object that en-

capsulates n-dimensional arrays of homogeneous data types, it comes with various
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performance optimized operations due to its implementation in C language and the

efficient memory management it provides.

3.2.1.10 Matplotlib

Matplotlib is a comprehensive library for creating static, animated, and interactive

visualizations in Python. As visualization plays a key role in data science and machine

learning by providing helpful and intuitive insights via different charts and graphs,

Matplotlib became an essential tool when tackling any data related task as it helps :

• Create publication quality plots.

• Make interactive figures with zooming, panning and updating abilities.

• Make extensive visual style and layout customization.

• Export to many file formats.

• Embed in JupyterLab and Graphical User Interfaces.

• Use a rich array of third-party packages built on Matplotlib.

3.2.1.11 Scikit-learn

Also known as sklearn, is an open-source machine leraning library, it simplifies

predictive data analysis by offering a variety of utilities including: data preprocessing

and visualization, machine learning algorithms, evaluation metrics and more.

3.2.2 Data description, preprocessing and splitting

A reliable analysis and forecasting of time series data is heavily dependent on the

quality and characteristics of the datasets involved. This section provides an overview

of the datasets utilized in the implementation and the experimental evaluation, high-

lighting their key features, data sources, and relevance to the research objectives. We

chose to diversify the source domains of the data, allowing for a comprehensive and

well founded assessment of the implemented models in different real-world scenarios.

3.2.2.1 Air Passengers dataset

For our first dataset we chose a classic in the time series literature used in the work

Box and Jenkins, the data shows monthly totals of US international airline passengers

for the 12-year period from January 1949 to December 1960 consisting of a total of 141

observations. The series exhibits an uptrend due to the increasing number of passengers

from year to year as well as a visible seasonality related to the holiday seasons.
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Figure 3.4: Plot of US monthly international airline passengers time series.

We saw that this series would be a great case study for assessing the models’

performance against seasonal data. The dataset is available for download on Kaggle

website.

3.2.2.2 Covid-19 casualties dataset

For the second case study we opted for mortality analysis of the Covid-19 epi-

demic, the dataset was obtained from Kaggle website. Consisting of 188 observations

representing daily new death cases from Jan 22 to Jul 27 of the year 2020, the dataset

underwent four different non-linearity tests using the R programming language: Tsay,

Keenan, Terasvirta and white neural network tests , all four tests yielded p-values sig-

nificantly lower than the 0.05 threshold suggesting therefore that the dataset is unlikely

to be linear.

Motivated by these results we bilieve that this time series is a proper assessment of

models’ ability to model and predict non-linearity in the data.

3.2.2.3 Brent spot price dataset

To finalize our selection of datasets we decided to include a financial time series, as

these types of time series are known for having several characteristics that make them

challenging to model such as high volatility, non-linearity and non-stationarity. Our

selected financial dataset is the weekly Brent crude oil spot price time series, it consists

of 1500 observations from 1987 to 2016 and is available on the DataHub website.
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Figure 3.5: Plot of Covid-19 new daily casualties time series.

Figure 3.6: Plot of Brent oil spot price time series.

3.2.2.4 Data preprocessing and splitting

Feature scaling

Throughout our experimentation process, we employed feature scaling as a crucial

preprocessing step of the time series datasets. It is a technique that transforms the

numerical features of a dataset ensuring that they are all on an identical scale. This is
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particularly helpful with time series data as it metigates against the presence of outliers

and the variable magnitude across observation values.

Additionally, feature scaling plays an important role in improving deep learning mod-

els performance and helps reaching better and faster convergence [62] which is a phe-

nomenon we experienced empirically during the training process of the models we

implemented as some of them were persistently underfitting the non-scaled data.

All three datasets employed in this work were scaled between 0 and 1 using the Min-

Max scaler from the Scikit-learn library [43]. The transformation formula is given

by:

xscaled =
x− xmin

xmax − xmin
(3.1)

Where xmin, xmax are the minimum and the maximum values of the time series re-

spectively.

Train-Test data split

For models fitting and evaluation, a train-test split of 70% and 30% was used to

partition the datasets. It’s a common split ration in machine and deep learning appli-

cations as it provides a good balance between providing an adequate amount of data for

training while reserving a sufficient portion for independent evaluation. The training

portion constituting of 70% of the data is used for training and optimizing the models

parameters, by being exposed to a significant portion of the data, the models can learn

the patterns and dependencies underlying the time series. On the other hand, the re-

maining unseen 30% of the data is large enough to test the models generalization and

expose any underfitting while providing a good assessment to the forecast accuracy.

Figure 3.7: Train-Test split visualization.

3.3 Implemented baseline models

3.3.1 Classic models

Classic time series forecasting models are well established techniques conceived

with thoughtful considerations and strong foundations in mathematics and statistics,

in this section we will present the classic model we included in this work:
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Figure 3.8: Data preprocessing steps.

3.3.1.1 ARIMA

ARIMA is the first and the only classic baseline model we have implemented in

this comparative study. The Statsmodels library provides ARIMA class which we

used to initiate the model, the p, d and q parameters were then obtained using the

auto arima function provided by PmdARIMA library, given a time series to fit the

function estimates the parameters by searching and testing for the optimal values that

minimize the information criterion provided.

Figure 3.9 depicts the general process of building and forecasting with ARIMA model.

3.3.2 Deep learning models

Deep learning models leverage the power of neural networks flexibility and their

ability to capture non-linearity, memorize long data history as well as their sophisti-

cated architectures and computing mechanisms, this section presents our selection of

deep learning models to be implemented and evaluated:
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Figure 3.9: High-level view of the ARIMA model building and forecasting process.

3.3.2.1 LSTM/GRU

The second and third baseline models we implemented are the LSTM and GRU

neural networks.The memory gating mechanism alongside with the inherent recursion

qualify these two models to be powerful tools for sequence modeling and they are widely

used in time series forecasting tasks.

The model consists of 1 to N stacked LSTM/GRU network layers followed by a fully-

connected layer, which maps the network’s output from a hidden size dimension to a

single dimension. N is a hyperparameter to be tuned for each dataset.

3.3.2.2 TCN

Deep Temporal Convolution Networks are a raising architecture in the domain of

sequence modeling and time series forecasting, therefore we decided to include it in

this comparative study and test their efficiency against other state-of-the-art models.

Our implementation of the deep TCN network consists of stacking N residual blocks ,

each of which comprises four stacked causal dilated 1D-convolutional layers. We

use convolution kernels of fixed size = 2 and a dilation of factor 2i at each layer where

i is the 0-based order of the layer in question.

A non-linear activation function of type ReLU is applied to the outputs of the first
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Figure 3.10: LSTM/GRU model architecture.

three layers followed by an optional dropout layer across all four layers.

In order to preserve the input size and the causality of the convolution, we left-zero-pad

the input to each layer with an amount equal to its dilation factor, since we have kernels

of size = 2 this approaches ensures the convolution causality and the preservation of

the input size. Finally we employ a residual connection which adds the input to

the first convolutional layer to the output of the last one, thus yielding the final output

of a single residual block which serves as input to the next block.

3.3.2.3 Transformer

Motivated by their success in NLP and computer vision fields and other fruitful

adoptions to time series forecasting (Section 2.2.4) we decided to include the Trans-

former neural network in our list of implemented models. However due its operational

mechanism, the Transformer architectures inherently requires a recursive forecasting

approach, not aligning therefore with our forecast strategy which we’ll discuss in detail
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Figure 3.11: Architecture of the employed TCN Residual Block.

later in this chapter. Thus, we have chosen to rely solely on the encoder part, we used

the canonical encoder from [60] paper.

Figure 3.12: The employed transformer architecture [60].
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The model consists of an input embedding layer followed by positional encoding

followed by N stacked encoder layers and finally a linear layer mapping the output of

the encoder layers from dmodel to one dimension.

3.3.2.4 GAT

Even though graph neural network have been successfully applied to many deep

learning problems, not much work have been done exploring their full potential in time

series forecasting problems [49]. This motivated us to investigate their capabilities and

efficiency in modeling time series and compare them to other state-of-the-art models.

The Graph neural network we chose to implement is the Graph Attention Network

from [61] paper. Our approach to model the time series data we have is to transform

it undirected, unweighted visibility graph using the transformation proposed by

Lacasa et al. [25] which is provided by the TS2VG library. We then initialize our

Graph Attention (GAT) model consisting of three stacked layers of GAT networks each

of which is followed by a ReLU activation layer, finally we employ a fully-connected

layer to map the output from input to output length.

Figure 3.13 shows the visibility scope of the 50 first observations of the Air Pas-

sengers dataset, the final result of the time series to visibility graph transformation is

depicted in Figure 3.14.

Figure 3.13: Time series to visibility graph of first 50 observations of the Air Passengers

dataset.
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Figure 3.14: The visibility graph data structure of the Air Passengers sub-dataset.

Figure 3.15: The Graph Attention model architecture.
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3.3.3 Hybrid models

Models hybridization aims to combine their strengths and overcome their individual

limitations, this section highlights the structures and architectures of the hybrid models

covered in this comparative study:

3.3.3.1 ARIMA-LSTM/GRU

ARIMA-RNN hybridization is a well known combination in time series forecasting

literature, it exploites ARIMA’s great ability to capture linearity and the RNNs capa-

bilities of retaining long history of information and capturing non-linearity in the data.

we implement two separate instances of this hybridization, the first being ARIMA-

LSTM and the second is ARIMA-GRU. The model’s working methodology is illustrated

in Figure 3.16.

Figure 3.16: Visual demonstration of ARIMA-LSTM/GRU forecasting process.
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The model is based on additive decomposition of the time series into Trend, Sea-

sonal and Residual components, each of of these components is then scaled and split

into training and testing portions. The trend component is fed into ARIMA for fit-

ting and forecasting while the seasonal and residual components are handled by two

separate LSTM/GRU models (Figure 3.10). After obtaining the forecast values of the

three models, the forecasts are then added together forming the final predictions.

3.3.3.2 LSTM-GRU

While LSTM and GRU networks belong to the same neural networks family they

have different cell structure as demonstrated in chapter 1, the aim of this combination is

to leverage the strength of both gating mechanisms and strike a good balance between

learning long-term dependencies and low cost, efficient computation.

Our implementation of this model consists of stacking two GRU layers over two LSTM

layers followed by a fully connected layer mapping the output size from hidden size to

one dimension.

Figure 3.17: Hybrid LSTM-GRU model.

3.3.3.3 CNN-LSTM/GRU

As convolutional neural networks revolutionized the image processing field, it wasn’t
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long until their great abilities of extracting spatial features from grid-like data started

being adopted and applied in domains other than computer vision. Time series data

can be represented as one-dimensional grid-like data making them perfectly suitable

for subjecting convolution operations, by combining CNN with LSTM/GRU networks

we obtain a model capable of modeling and extracting spatio-temporal patterns and

dependencies. In order to incorporate this hybridization into our study we’ve built a

Figure 3.18: Hybrid CNN-LSTM/GRU model.

model consisting of 1D-convolutional layer followed by LSTM/GRU model from Sec-

tion 3.3.2.1. The convolution layer ensures spatial feature extracting from the input

sequence and acts as denoising layer and provides the LSTM/GRU with a smoother

signal, thus disposing of rough fluctuations and allowing for better generalization. It

uses default fixed dilation factor and stride size both equal to 1. The convolution ker-

nel size and the number of LSTM/GRU layers need to be tuned separately for each

dataset. Figure 3.18 shows the hybrid CNN-LSTM/GRU model architecture.
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3.3.4 Hyperparameter selection and tuning

Accurate and robust time series forecasting models rely heavily on appropriate hy-

perparameter selection and tuning, this process involves exploration of different com-

binations in order to find the optimal set of value that allows the model to reach its

best performance. The search and selection of optimal hyperparameter values requires

carefull consideration as they play a crucial role in the assessment of the model’s suit-

ability to the forecast task at hand, a poor tuning of a model risks overlooking its true

potential and capabilities.

In order to ensure the attainment of the models best performance possible, we employed

a two steps hyperparameter tuning strategy:

1. Grid search: in order to narrow down the possibilities and minimize the manual

effort we incorporated a grid search, that is, for each hyperparameter to be tuned,

we set a fixed interval of values to be tested, then we apply an extensive search

that explores every possible combination, finally the combination that maximizes

the model’s accuracy is retained.

2. Trial and Error: after obtaining the initial optimal combination we then attempt

to further tune and optimize the selection by applying smaller adjustments to the

parameters.

Model Hyperparameters

ARIMA p, d, q

TCN Nlayers

GAT -

Transformer* Nlayers, Nheads, dval, ffsize
LSTM/GRU Nlayers

LSTM-GRU -

CNN-GRU-TCN k, Nlayers, Nresid block

GNN-CNN-LSTM Nlayers, k

ARIMA-LSTM/GRU p, d, q, Nlayers

CNN-LSTM/GRU k, Nlayers

We would like to note that this process doesn’t apply to ARIMA model as we use

auto arima function provided by PmdARIMA package which helps estimate the best

set of parameters by minimizing the provided information criterion.

3.4 Model evaluation

In this section we will present the evaluation metrics and methodology we used in
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measuring the models performance:

3.4.1 Evaluation metrics

3.4.1.1 Mean squared error

The mean squared error or MSE is a measure that calculates the average squared

difference between true and predicted values, the quadratic operation places a higher

penalty on larger errors and is more forgiving towards smaller ones, making it sensitive

to outliers.

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (3.2)

3.4.1.2 Root mean squared error

The root mean squared error or RMSE as the name indicates is the square root of

MSE, it still penalizes larger errors while providing information in the same scale as

the variable in question.

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (3.3)

3.4.1.3 Mean absolute error

Also known as MAE measures the average absolute difference between true and

predicted values, it provides a straight forward interpretation of the magnitude of the

errors as it tells the average inaccuracy to be expected. MAE is also a scale-dependent

measure, however unlike MSE and RMSE, it is less sensitive to outliers.

MAE =
1

N

N∑
i=1

|yi − ŷi| (3.4)

3.4.1.4 Mean absolute percentage error

Mean absolute percentage error or MAPE measures the average absolute difference

between each actual and forecast values, relative to the actual value. MAPE is a scale-

independent measure since it provides a percentage-based measure of the error making

it suitable for comparing accuracy across multiple use cases and datasets.

MAPE =
1

N

N∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (3.5)
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3.4.2 Evaluation methodology

After careful parameter selection and tuning as well as ensuring chosen hyperpa-

rameters optimality and in order to guarantee fair comparison and models stability

we train and test each model in three distinct instances, the forecast results are saved

alongside with evaluation metrics values for each instance. We then average and save

error values across the three instances, the forecast results from the best iteration are

selected to be plotted and represent the models best performance.

Figure 3.19: Model evaluation process.

3.5 Forecast strategy

The forecast strategy considered in this study is the Direct Multi-Step Ahead

strategy, where models are trained to forecast multiple future time steps simultaneously

instead of recursively forecasting one step at a time.

For each dataset, models are adequately provided with a fixed lookback window and

forecast horizon sizes to be trained on.

For both training and testing, we employed a rolling window technique with a

stride size = forecast horizon unlike the convention of sliding by one step at a time.

This technique offers several advantages, first it allows the model to produce perfectly

adjacent forecast sequences, disposing therefore from the need to process overlapping
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Figure 3.20: Horizon-strided rolling window forecast strategy.

Table 3.1: Lookback window and forecast horizon settings for each dataset.

Dataset

Settings
Loockback window Forecast horizon

Covid-19 casaulities 15 5

Air passengers 15 5

Brent spot price 50 12

forecast time points, second by setting the sliding factor equal to the forecast horizon,

we significantly reduce the time amount required for training the models.

To study the influence of strided-rolling window training on test outcomes and training

time, we tested four of the implemented models on each dataset with two different

sliding factors: single step slide and horizon size slide.

The results aligned with our expectations, the training time is significantly affected by

the stride size, on the Brent Spot Price dataset, which is the largest among the three

with 1500 observations, the training time differences were tremendous and went from

less than 10 minutes to nearly and over an hour for certain models, this significant

difference was the first motive for us to discard the conventional one-strided rolling

window.

The unexpected finding regarding the second and more important criterion, forecast
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accuracy, as shown in Figure ?? for all datasets and all four models , the horizon-strided

training yielded more accurate forecasts upon testing.

We then concluded that our choice for the stride factor was beneficial and didn’t require

any Speed/Accuracy trade-offs.

Figure 3.21: Impact of stride size on model training time.

Figure 3.22: Impact of stride size on test forecasts accuracy: Covid-19 casualties

dataset.
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Figure 3.23: Impact of stride size on test forecasts accuracy: Air passengers dataset.

Figure 3.24: Impact of stride size on test forecasts accuracy: Brent spot price dataset.
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3.6 Results

In this section we present, analyse and discuss the results of our comparative study,

where we conducted experiments on three different real world datasets using thirteen

forecasting models. This work compares the performance of classic, deep and hybrid

models as well as our proposed architectures. For each model, visual and quantitative

performance evaluations are provided alongside with their respective hyperparameter

sets and configurations.

The implementation of these models was carried carefully, each model was trained on

the respective datasets, hyperparameter optimization was incorporated to ensure a fair

comparison.

All of the deep-learning models included in this study were trained for 250 epochs using

the Adam optimizer and the MSE as the loss function.

3.6.1 Baseline models performance

3.6.1.1 ARIMA

Table 3.2: ARIMA model hyperparameters.

Parameter

Dataset
Covid-19 casualties Air passengers Brent spot price

p 5 4 1

d 1 1 1

q 2 2 0

Figure 3.25: Forecast results with ARIMA model on Covid-19 casualties dataset.
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Figure 3.26: Forecast results with ARIMA model on Air Passengers dataset.

Figure 3.27: Forecast results with ARIMA model on Brent Spot Price dataset.

Table 3.3: ARIMA performance metrics.

Covid-19 casualties Air passengers Brent oil spot price

MSE MAE RMSE MAPE MSE MAE RMSE MAPE MSE MAE RMSE MAPE

0.0209 0.1089 0.1444 0.2111 0.0302 0.1328 0.174 0.1961 0.0732 0.2143 0.2706 0.4477
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3.6.1.2 LSTM

Table 3.4: LSTM model hyperparameters.

Parameter

Dataset
Covid-19 casualties Air passengers Brent spot price

Learning rate 1e-3 4e-3 5e-5

Hidden size 25 25 25

Number of layers 2 2 2

Figure 3.28: Forecast results with LSTM model on Covid-19 casualties dataset.

Figure 3.29: Forecast results with LSTM model on Air Passengers dataset.
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Figure 3.30: Forecast results with LSTM model on Brent Spot Price dataset.

Table 3.5: LSTM performance metrics.

Covid-19 casualties Air passengers Brent oil spot price

MSE MAE RMSE MAPE MSE MAE RMSE MAPE MSE MAE RMSE MAPE

0.0121 0.1053 0.1093 0.1447 0.0187 0.1078 0.1317 0.1602 0.0386 0.1816 0.1959 0.2989

3.6.1.3 GRU

Table 3.6: GRU model hyperparameters.

Parameter

Dataset
Covid-19 casualties Air passengers Brent spot price

Learning rate 1e-3 1e-3 2e-4

Hidden size 25 25 25

Number of layers 2 2 2
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Figure 3.31: Forecast results with GRU model on Covid-19 casualties dataset.

Figure 3.32: Forecast results with GRU model on Air Passengers dataset.
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Figure 3.33: Forecast results with GRU model on Brent Spot Price dataset.

Table 3.7: GRU performance metrics.

Covid-19 casualties Air passengers Brent oil spot price

MSE MAE RMSE MAPE MSE MAE RMSE MAPE MSE MAE RMSE MAPE

0.0115 0.0763 0.1069 0.1404 0.0089 0.0736 0.0927 0.1115 0.0329 0.1339 0.1701 0.2455

3.6.1.4 GAT

Table 3.8: GAT model hyperparameters.

Parameter

Dataset
Covid-19 casualties Air passengers Brent spot price

Learning rate 5e-3 5e-3 7e-4

Number of layers 3 3 3

Activation function ReLU ReLU ReLU
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Figure 3.34: Forecast results with GAT model on Covid-19 casualties dataset.

Figure 3.35: Forecast results with GAT model on Air Passengers dataset.
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Figure 3.36: Forecast results with GAT model on Brent Spot Price dataset.

Table 3.9: GAT performance metrics

Covid-19 casualties Air passengers Brent oil spot price

MSE MAE RMSE MAPE MSE MAE RMSE MAPE MSE MAE RMSE MAPE

0.0161 0.0916 0.1268 0.1748 0.0101 0.0889 0.0998 0.1491 0.0335 0.1367 0.1804 0.2726

3.6.1.5 Transformer

Table 3.10: Transformer model hyperparameters.

Parameter

Dataset
Covid-19 casualties Air passengers Brent spot price

Learning rate 5e-3 5e-3 7e-4

Number of layers 4 4 4

Attention heads 6 6 6

dval 24 24 24

Feed forward dimension 64 64 64
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Figure 3.37: Forecast results with Transformer model on Covid-19 casualties dataset.

Figure 3.38: Forecast results with Transformer model on Air Passengers dataset.
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Figure 3.39: Forecast results with Transformer model on Brent Spot Price dataset.

Table 3.11: Transformer performance metrics.

Covid-19 casualties Air passengers Brent oil spot price

MSE MAE RMSE MAPE MSE MAE RMSE MAPE MSE MAE RMSE MAPE

0.0303 0.1353 0.1742 0.2702 0.0374 0.1467 0.1898 0.2205 0.0508 0.1904 0.2238 0.3776

3.6.1.6 TCN

Table 3.12: TCN model hyperparameters.

Parameter

Dataset
Covid-19 casualties Air passengers Brent spot price

Learning rate 4e-3 2e-3 1e-3

Activation function ReLU ReLU ReLU

Number of residual blocks 12 12 12
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Figure 3.40: Forecast results with Deep TCN model on Covid-19 casualties dataset.

Figure 3.41: Forecast results with Deep TCN model on Air Passengers dataset.
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Figure 3.42: Forecast results with Deep TCN model on Brent Spot Price dataset.

Table 3.13: Deep TCN performance metrics.

Covid-19 casualties Air passengers Brent oil spot price

MSE MAE RMSE MAPE MSE MAE RMSE MAPE MSE MAE RMSE MAPE

0.0174 0.1806 0.1308 0.0963 0.0141 0.0939 0.1162 0.1471 0.0159 0.0866 0.1209 0.1708

3.6.1.7 ARIMA-LSTM

Table 3.14: ARIMA-LSTM model hyperparameters.

Parameter

Dataset
Covid-19 casualties Air passengers Brent spot price

p, d, q 2,1,0 2,1,2 2,1,1

Learning rate 1e-3 2e-4 1e-4

Number of layers 2 2 2

Hidden size 25 25 25
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Figure 3.43: Forecast results with ARIMA-LSTM model on Covid-19 casualties

dataset.

Figure 3.44: Forecast results with ARIMA-LSTM model on Air passenger dataset.
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Figure 3.45: Forecast results with ARIMA-LSTM model on Brent Spot Price dataset.

Table 3.15: ARIMA-LSTM performance metrics.

Covid-19 casualties Air passengers Brent oil spot price

MSE MAE RMSE MAPE MSE MAE RMSE MAPE MSE MAE RMSE MAPE

0.0323 0.1537 0.1791 0.3193 0.1082 0.2792 0.3292 0.4417 0.0196 0.1165 0.1401 0.2201

3.6.1.8 ARIMA-GRU

Table 3.16: ARIMA-GRU model hyperparameters.

Parameter

Dataset
Covid-19 casualties Air passengers Brent spot price

p, d, q 2,1,0 2,1,2 2,1,1

Learning rate 1e-3 1e-3 5e-4

Number of layers 2 2 2

Hidden size 25 25 25
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Figure 3.46: Forecast results with ARIMA-GRU model on Covid-19 casualties dataset.

Figure 3.47: Forecast results with ARIMA-GRU model on Air passenger dataset.
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Figure 3.48: Forecast results with ARIMA-GRU model on Brent Spot Price dataset.

Table 3.17: ARIMA-GRU performance metrics.

Covid-19 casualties Air passengers Brent oil spot price

MSE MAE RMSE MAPE MSE MAE RMSE MAPE MSE MAE RMSE MAPE

0.0368 0.1623 0.1911 0.3341 0.1101 0.2818 0.3318 0.445 0.1161 0.1161 0.1137 0.216

3.6.1.9 LSTM-GRU

Table 3.18: LSTM-GRU model hyperparameters.

Parameter

Dataset
Covid-19 casualties Air passengers Brent spot price

Learning rate 1e-3 1e-3 1e-4

Number of layers 2, 2 2, 2 2, 2

Hidden size 25, 25 25, 25 25, 25
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Figure 3.49: Forecast results with LSTM-GRU model on Covid-19 casualties dataset.

Figure 3.50: Forecast results with LSTM-GRU model on Air passenger dataset.
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Figure 3.51: Forecast results with LSTM-GRU model on Brent Spot Price dataset.

Table 3.19: LSTM-GRU performance metrics.

Covid-19 casualties Air passengers Brent oil spot price

MSE MAE RMSE MAPE MSE MAE RMSE MAPE MSE MAE RMSE MAPE

0.0119 0.0788 0.1089 0.1446 0.0088 0.0731 0.0925 0.1105 0.0163 0.0951 0.1298 0.2017

3.6.1.10 CNN-LSTM

Table 3.20: CNN-LSTM model hyperparameters.

Parameter

Dataset
Covid-19 casualties Air passengers Brent spot price

Learning rate 6e-3 2e-3 4e-5

Hidden size 1 1 1

Number of layers 2 2 2

Kernel size 5/2 5 5
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Figure 3.52: Forecast results with CNN-LSTM model on Covid-19 casualties dataset.

Figure 3.53: Forecast results with CNN-LSTM model on Air passenger dataset.

90



Chapter 3 – Proposition and evaluation

Figure 3.54: Forecast results with CNN-LSTM model on Brent Spot Price dataset.

Table 3.21: CNN-LSTM performance metrics.

Covid-19 casualties Air passengers Brent oil spot price

MSE MAE RMSE MAPE MSE MAE RMSE MAPE MSE MAE RMSE MAPE

0.0102 0.0727 0.1011 0.1292 0.0068 0.0649 0.0814 0.1078 0.0213 0.1251 0.1457 0.1982

3.6.1.11 CNN-GRU

Table 3.22: CNN-GRU model hyperparameters.

Parameter

Dataset
Covid-19 casualties Air passengers Brent spot price

Learning rate 1e-3 3e-3 1e-4

Hidden size 1 1 1

Number of layers 2 2 2

Kernel size 5/2 5 5
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Figure 3.55: Forecast results with CNN-GRU model on Covid-19 casualties dataset.

Figure 3.56: Forecast results with CNN-GRU model on Air passenger dataset.
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Figure 3.57: Forecast results with CNN-GRU model on Brent Spot Price dataset.

Table 3.23: CNN-GRU performance metrics.

Covid-19 casualties Air passengers Brent oil spot price

MSE MAE RMSE MAPE MSE MAE RMSE MAPE MSE MAE RMSE MAPE

0.0104 0.0739 0.1019 0.132 0.0123 0.0899 0.1085 0.1425 0.0187 0.1011 0.1367 0.2183

3.6.2 Proposed models performance

3.6.2.1 CNN-GRU-TCN

Table 3.24: CNN-GRU-TCN model hyperparameters.

Parameter

Dataset
Covid-19 casualties Air passengers Brent spot price

Learning rate 1e-3 2e-2 1e-3

Number of residual blocks 12 5 12

Hidden size 25 25 25

Number of layers 2 2 2

Kernel size 3 3 3

93



Chapter 3 – Proposition and evaluation

Figure 3.58: Forecast results with CNN-GRU-TCN model on Covid-19 casualties

dataset.

Figure 3.59: Forecast results with CNN-GRU-TCN model on Air passenger dataset.
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Figure 3.60: Forecast results with CNN-GRU-TCN model on Brent Spot Price dataset.

Table 3.25: CNN-GRU-TCN performance metrics.

Covid-19 casualties Air passengers Brent oil spot price

MSE MAE RMSE MAPE MSE MAE RMSE MAPE MSE MAE RMSE MAPE

0.0094 0.0671 0.0973 0.1195 0.0052 0.0566 0.0709 0.0937 0.0071 0.0614 0.0889 0.1294

3.6.2.2 GNN-CNN-LSTM

Table 3.26: GNN-CNN-LSTM model hyperparameters.

Parameter

Dataset
Covid-19 casualties Air passengers Brent spot price

Learning rate 1e-3 1e-2 1e-3

Number of GNN layers 3 3 3

Hidden size 25 25 25

Number of LSTM layers 2 1 2

Kernel size (CNN) 3 2 5
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Figure 3.61: Forecast results with GNN-CNN-LSTM model on Covid-19 casualties

dataset.

Figure 3.62: Forecast results with GNN-CNN-LSTM model on Air passenger dataset.
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Figure 3.63: Forecast results with GNN-CNN-LSTM model on Brent Spot Price

dataset.

Table 3.27: GNN-CNN-LSTM performance metrics.

Covid-19 casualties Air passengers Brent oil spot price

MSE MAE RMSE MAPE MSE MAE RMSE MAPE MSE MAE RMSE MAPE

0.0114 0.0766 0.1071 0.1408 0.0034 0.0451 0.0583 0.0746 0.0115 0.0771 0.1063 0.1548
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Table 3.28: Model performance summary table.
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Table 3.28 provides a summary of the models performance, best results are in bold,

second best are underlined and third best are noted by an asterisk*.

3.7 Discussion

, we would like to carry the comparative analysis in the following points:

3.7.1 ARIMA vs Deep learning techniques

Based on the findings presented in Table 3.28, it is evident that the ARIMA model

shows inferior performance in direct multi-step ahead forecasting when compared to

deep learning techniques. In fact, with the exception for the Air passengers dataset

where it outperformed the Transformer model, ARIMA has the worst score among all

models. This highlights that the autoregressive nature of ARIMA makes it ill-suited

for direct multi-step ahead forecasting. Instead, ARIMA aligns more effectively with

the recursive strategy.

The performance disparity between ARIMA and deep learning in direct multi-step

ahead forecasting reinforces the limitations of its autoregressive method and emphasizes

the importance of adopting the appropriate forecasting strategy depending on the task’s

specific requirements.

3.7.2 Hybrid vs Individual models

When compared to their individual counterparts, deep learning models demon-

strated a general supremacy in forecasting accuracy as they improved upon their in-

dividual component networks in almost all cases as shown in Table 3.28: LSTM-GRU

combination yielded higher forecasting accuracy in all datasets compared to LSTM

and GRU networks with improvement reaching up to 58% and 51% decrease in MSE

on Brent spot price dataset. Similar results were achieved with CNN-GRU and CNN-

LSTM combinations. As for hybridizations including ARIMA, forecast accuracy didn’t

improve, on the contrary, the forecast accuracy deteriorated and this is probably due

to ARIMA’s influence on the hybridization as it was used to predict future trend val-

ues. This result may also suggests that the component decomposition strategy with

the employment of ARIMA is not be optimal for direct multi-step ahead forecasting.

3.7.3 Comparison against proposed models

To assess the effectiveness and robustness of our proposed models, we tested and

compared them against eleven baseline models, the results were indeed positive, our

novel architectures showcased improved overall accuracy with significant margins on
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some datasets.

In terms of the Covid-19 casualties dataset, the performance results were quite compet-

itive among the models. The CNN-GRU-TCN model emerged as the top performer,

closely followed by the CNN-LSTM model. The CNN-GRU and GNN-CNN-LSTM

models secured the third and fourth positions, respectively, with MSE scores of 0.0094,

0.0102, 0.0104, and 0.0114.

However, for the Air passengers and Brent spot price datasets, our proposed mod-

els showcased remarkable dominance, outperforming other models by significant mar-

gins. The GNN-CNN-LSTM and CNN-GRU-TCN networks demonstrated exceptional

performance on the Air passengers dataset, achieving a 50% and 23% reduction in

MSE, respectively, compared to the next best model CNN-LSTM. Similarly, on the

Brent spot price dataset, the GNN-CNN-LSTM and CNN-GRU-TCN models achieved

a significant 28% and 55% decrease in MSE, respectively, compared to the third-best

performing model.

These results highlight the superiority of our proposed models in capturing the

intricate patterns and dependencies and in accurately predicting future values and

outperforming competing state-of-the-art approaches.

100



Chapter 3 – Proposition and evaluation

Conclusion

In this chapter we conducted an experimental evaluation and a comparative analysis

to investigate the effectiveness of the single and hybrid approaches to univariate multi-

step ahead time series forecasting. We tested and compared a collection state-of-the-

art models on three real world time series datasets. The covered models range from

classic, deep learning and hybrid models including our two novel hybrid deep learning

frameworks proposed in this thesis.

The experiment results yielded several important findings:

• Classic ARIMA model demonstrated unsatisfactory performance and exhibited

limitations in directly predicting multiple future time points.

• Deep learning models showcased superior performance and succeeded to a satis-

factory degree in modeling complex patterns and relationships and providing an

acceptable forecast accuracy.

• Hybrid deep learning models showed varying degrees of improvement over indi-

vidual models.

Finally our proposed models showcased remarkable improvements and outperformed

both individual and hybrid state-of-the-art models.

The experiment results provide compelling evidence that deep learning models

outperform classic models in terms of forecasting accuracy, adaptability to complex

patterns in direct multi-step ahead univariate time series forecasting. It proves as

well that the hybridization of these models is an effective way to improve models

performance and forecast accuracy.
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General conclusion and future work

The primary aim of this thesis was to investigate the effectiveness of the hybrid

approach to time series forecasting and develop a novel hybrid model that leverages

strengths of different models, enhances forecast accuracy, and eventually outperform-

ing existing methods.

Throughout the course of this thesis we provided a sufficient theoretical background

on time series analysis and forecasting, we then presented a thorough literature review

of the subject where a large selection of forecasting models were showcased, ranging

from classic and machine learning to deep learning and hybrid models, a discussion on

the challenges and considerations to the hybrid approach concluded the review.

The final chapter highlighted our proposition of two novel deep learning based

hybrid architectures (CNN-GRU-TCN and GNN-CNN-LSTM) and the comprehensive

experiment of testing them for direct multi-step ahead univariate time series forecasting

and comparing them against eleven state-state-of-the-art baseline models using three

time series datasets. The evaluation was conducted based on four different regression

performance metrics (MSE, RMSE, MAE, MAPE) and as shown in Table 3.28 our

proposed models outperformed the baseline models in most experimental scenarios,

fulfilling therefore the purpose of this work.

Finally we hope that the findings of this research will have practical impact as the

enhanced accuracy of the proposed model can help improve real world forecasting tasks

and lead to better planning decision-making.

Direction of future research

Based on the findings of this work, the scope of the paper can be extended in

several directions, namely:

• Better hyperparameter optimization: due to the limited hardware, time and

financial resources a limited hyperparameter tuning was employed, we believe that

a more thorough process can be driven to further tune the proposed models.
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• Testing the models on other datasets :the limited time resource had a direct

impact on the number of datasets employed for the comparative analysis, the

models are to be tested on more datasets to solidfy the findings of this study.

• Applications on multivariate time series forecasting: we performed our

experiments and based our results on univariate time series forecasting, further

experiments on different types of time series can be conducted.

• Experiments with variant lookback windows and forecast horizons: in-

vestigating the proposed models performance on varying lookback windows and

forecast horizon is still an open research problem.

• Exploration of other forecasting strategies: This work’s experiments and

results were based on the direct multi-step ahead forecasting strategy, the pro-

posed models can be tested and evaluated with other forecasting strategies such

as the recursive multi-step ahead and hybrid direct-recursive approaches.
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