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Abstract 

Deep learning-based artificial intelligence has shown promise in a variety of fields applications 

and research areas, compared to traditional machine learning algorithms, it can produce 

extremely high-level data representations making them promising for a wide range of 

applications.  

The primary aim of this study is to present a comprehensive methodology for designing deep 

learning models specifically tailored for addressing complex non-linear regression challenges. 

More specifically, the focus is on developing two advanced models: a Convolutional Neural 

Network (CNN) and a Long Short-Term Memory (LSTM) model. These models will be utilized 

to tackle practical issues, notably simulating a photocatalytic reactor to accurately predict water 

purification efficacy and estimate its lifespan. To ensure the utmost credibility and applicability, 

real-world datasets will be employed in this research endeavor. By harnessing the power of 

cutting-edge deep learning techniques, this study endeavors to advance the understanding and 

optimize the intricate processes involved in water purification. 

As part of this endeavor, two deep learning models were devised to tackle the assigned 

challenge. The training and validation stages of the deep learning model proved fruitful for the 

LSTM model, thus substantiating its efficacy in addressing non-linear regression problems. In 

contrast, the CNN model encountered obstacles during the validation phase, implying that the 

LSTM model is better suited to handle such complexities. 

Key words: Artificial intelligence, Deep learning, linear regression, nonlinear regression, 

neural networks, CNN, LSTM, photocatalytic reactor. 

Résumé 

L'intelligence artificielle basée sur l'apprentissage profond a montré des promesses dans de 

nombreux domaines d'application et de recherche. Comparée aux algorithmes d'apprentissage 

machine traditionnels, elle est capable de produire des représentations de données extrêmement 

avancées, ce qui les rend prometteuses pour une large gamme d'applications.  

Cette étude vise à présenter une méthodologie rigoureuse pour concevoir des modèles 

d'apprentissage profond spécifiquement adaptés à la résolution des défis de la régression non 

linéaire. Une attention particulière est accordée au développement de deux modèles avancés: 

un réseau de neurones convolutifs (CNN) et un modèle à mémoire à court terme et long terme 

(LSTM). Ces modèles sont appliqués à des problèmes concrets, tels que la simulation d'un 



réacteur photocatalytique pour prédire l'efficacité de la purification de l'eau et estimer sa durée 

de vie. Afin de garantir la validité et la pertinence des résultats, des ensembles de données 

réelles sont utilisés dans cette recherche, renforçant ainsi la fiabilité des conclusions obtenues. 

Dans le cadre de ce travail, deux modèles d'apprentissage profond ont été élaborés pour relever 

ce défi spécifique. Les phases d'entraînement et de validation de ces modèles ont abouti à des 

résultats probants pour le modèle LSTM, démontrant ainsi son efficacité dans la résolution de 

problèmes de régression non linéaire. En revanche, le modèle CNN a rencontré des difficultés 

lors de la phase de validation, suggérant que le modèle LSTM est mieux adapté pour traiter ces 

complexités. 

Mots clés : Intelligence artificielle, apprentissage profond, régression linéaire, régression non 

linéaire, réseaux de neurones, CNN, LSTM, réacteur photocatalytique. 

 

 ملخص

تم تحقيق تحول ثوري في مجال الانحدار بفضل الذكاء الاصطناعي القائم على التعلم العميق، حيث يوفر حلاً دقيقًا للمشكلات 

الخطية وغير الخطية على حد سواء. من خلال استغلال القدرات الهائلة للشبكات العصبية العميقة، يمنحنا التعلم العميق 

المعقدة بين المتغيرات، مما يؤدي إلى تحسين دقة التنبؤ. يتمتع هذا النهج المتعدد الاستخدامات القدرة على التقاط العلاقات 

 .بتطبيقات واسعة النطاق في مختلف المجالات

يهدف هذا البحث في المقام الأول إلى تقديم منهجية شاملة لتصميم نماذج تعلم عميق مصممة خصيصًا لمعالجة التحديات 

ر غير الخطي. يتم التركيز بشكل خاص على تطوير نموذجين متقدمين: نموذج شبكة عصبية مترابطة الكبيرة في الانحدا

سيتم استخدام هذه النماذج لمعالجة قضايا عملية،  (LSTM) . ونموذج ذاكرة طويلة الأجل وقصيرة الأجل (CNN) تحويلية

 وتقدير عمر المفاعل. سيتم استخدام مجموعات بياناتبما في ذلك محاكاة مفاعل ضوئي لتنقية المياه وتوقع كفاءة التنقية 

حقيقية لضمان أقصى درجات المصداقية والتطبيقية في هذا البحث. من خلال استغلال قوة تقنيات التعلم العميق الحديثة، 

 .يسعى هذا البحث إلى تعزيز الفهم وتحسين العمليات المعقدة المرتبطة بتنقية المياه

م تصميم نموذجين للتعلم العميق لمواجهة التحدي المحدد. أثبتت مراحل التدريب والتحقق من النموذج كجزء من هذا السعي، ت

، مما يدل على فعاليته في معالجة مشكلات الانحدار غير الخطي. وعلى الجانب LSTM التعلم العميق نجاحها لنموذج

هو الأكثر تواءمًا للتعامل مع  LSTM أن نموذج عقبات خلال مرحلة التحقق، مما يشير إلى CNN المقابل، واجه نموذج

 .تلك التعقيدات

الذكاء الاصطناعي، التعلم العميق، الانحدار الخطي، الانحدار الغير خطي, الشبكات العصبية العميقة  الكلمات المفتاحية:

.. .LSTM , CNN 
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INTRODUCTION 

Artificial intelligence (AI) exerts a profound and wide-ranging impact on contemporary society, 

permeating various domains and applications. It encompasses a diverse array of approaches and 

categories, enabling machines to replicate and even surpass human cognitive processes such as 

perception, reasoning, and learning. Machine learning, a pivotal facet of AI, endows machines 

with the ability to acquire knowledge and make predictions based on data, bypassing the need 

for explicit programming. The efficacy of a machine learning model hinges on the quality of 

the data and the performance of the underlying learning algorithms. Machine learning 

encompasses several techniques including supervised, unsupervised, semi-supervised, and 

reinforcement learning, which facilitate a range of tasks such as classification, clustering, and 

prediction. 

Deep learning, a subfield of machine learning, harnesses the power of multi-layer artificial 

neural networks to emulate the intricate workings of the human brain. It excels in tackling 

complex challenges such as image recognition and natural language processing. By capitalizing 

on deep neural network architectures, deep learning can capture and learn intricate nonlinear 

relationships between input and output variables. This capability empowers the modeling of 

complex phenomena and the generation of highly accurate predictions. 

Nonlinear regression, on the other hand, represents a statistical method employed to model and 

forecast nonlinear relationships between variables. Deep learning techniques can be employed 

to address nonlinear regression tasks by leveraging the hierarchical representations acquired 

through deep neural networks. This enables more precise predictions and the capacity to model 

intricate phenomena that conventional linear regression methods may struggle to capture. 

For completing our project, we have organized our work as follows. 

CHAPTER I: Photocatalytic Reactors. 

CHAPTER II: Deep learning. 

CHAPTER III: Modeling of photocatalytic reactor. 
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1.1 Introduction  

          Water scarcity has emerged as a pressing global concern due to the rapid growth of 

industries, population expansion, and prolonged droughts. The increased demand for safe 

drinking water, combined with limited supply, presents a significant challenge. Furthermore, 

the widespread use of synthetic dyes in various sectors, including textiles, printing, and 

cosmetics, has introduced harmful chemicals that can be detrimental to both human health and 

the environment if not properly disposed of. One such dye, Blue Methylene, commonly 

employed in these industries, poses a potential threat to water sources if not adequately treated. 

Conventional water treatment methods like filtration and chemical treatments often prove 

inadequate in eliminating organic pollutants such as Blue Methylene. Moreover, these methods 

can be costly and yield undesirable byproducts. Consequently, there is a need for more effective 

and environmentally friendly approaches to water treatment. Enter photocatalytic reactors, 

which harness a combination of catalysts and UV light to generate reactive chemical species 

that interact with organic pollutants in water, effectively breaking them down into non-toxic 

compounds. This process facilitates efficient pollutant removal and water purification. 

Photocatalytic reactors offer a sustainable and eco-conscious solution for treating polluted 

water. This chapter will delve extensively into this intricate subject matter. 

1.2 Photocatalytic  

Photocatalysis refers to a chemical reaction in which a catalyst is activated by light to facilitate 

a chemical reaction. In other words, photocatalysis is the process of using light energy to 

stimulate a chemical reaction in a material or substance. This technology has found various 

applications in water purification, air treatment, and energy production [1]. 

Principle of photocatalysis  

The absorption of light radiation (mainly UV) causes excitation of peripheral electrons on the 

photocatalyst made of a semiconductor material (TiO2, ZnO, Fe2O3, ZnS, CdS...), which move 

from the valence band (VB) to the conduction band (CB), creating electron-hole pairs capable 

of reacting with oxygen from the air and/or atmospheric moisture to form radicals and initiate 

redox reactions. Historically, TiO2 has been the most industrially utilized photocatalyst, but in 

recent years, other substances such as ZnO have emerged [2]. 
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Figure 1: Principle of photocatalysis [3]. 

In the presence of oxygen and water vapor, ultraviolet radiation activating a semiconductor 

material (𝑊𝑂3, TiO2, ZnO, etc.) allows the molecules that come into contact with the reactive 

surface to be converted into carbon dioxide and water vapor. This technique, called 

photocatalysis, eliminates microorganisms or odors, as well as volatile organic and inorganic 

gas compounds such as nitrogen oxides [3], [4] . 

1.3 Reactor 

A reactor is a device or vessel in which a chemical reaction takes place. It is designed to contain 

and control chemical reactions that occur within it, and can be used for a variety of purposes, 

including chemical synthesis, combustion, and waste treatment. Reactors can come in various 

shapes and sizes, and can be operated under different conditions such as temperature, pressure, 

and mixing intensity to achieve specific reaction outcomes [5], [6]. 

Photocatalytic reaction mechanisms 

The photocatalytic degradation of pollutants in a photocatalytic reactor involves several steps, 

which together make up the reaction mechanism. The following steps provide a general 

overview: 

Light absorption: The photocatalyst absorbs photons of light energy, typically in the UV 

region, and creates electron-hole pairs [7]. 

Charge separation: The generated electron and hole are separated due to the potential gradient 

of the photocatalyst. The electron is typically transferred to an oxygen molecule, creating a  

superoxide radical, while the hole is transferred to a water molecule, creating a hydroxyl radical 

[8]. 
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Radical formation: The superoxide and hydroxyl radicals react with water or oxygen to create 

other reactive species, such as hydrogen peroxide, hydroperoxyl radicals, and hydroxyl ions 

[9]. 

Pollutant oxidation: The reactive species attack the pollutant molecules, breaking them down 

into smaller, less harmful compounds [10]. 

Final product formation: The end products of the reaction depend on the specific pollutant 

being degraded, but typically include carbon dioxide, water, and other innocuous compounds. 

 

 Figure 2: Mechanism of electron-hole pair formation in a 𝑇𝑖𝑂2 particle in the presence of pollutant in 

water [11]. 

Steps of photocatalytic reactions 

    The photocatalytic process can be divided into five independent steps [2]: 

1. Porosity of the photocatalyst; 

2. Adsorption of pollutants on the surface of the catalyst; 

3. Chemical reaction in the adsorbed phase; 

4. Desorption of the products; 

5. Diffusive migration of the products from the surface of the catalyst to the fluid phase. 
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Figure 3: Steps of photocatalytic reactions [12]. 

Reaction kinetics and mass transfer in photocatalytic reactors  

Reaction kinetics and mass transfer are important factors to consider in the design and 

optimization of photocatalytic reactors. 

Reaction Kinetics 

Reaction kinetics is the study of the rate at which chemical reactions occur and the factors that 

influence that rate. In the context of photocatalysis, reaction kinetics can provide insights into 

the underlying mechanisms of the photocatalytic process and help optimize the design of 

photocatalytic reactors.  

The reaction kinetics of photocatalytic processes can be complex and may involve multiple 

intermediate steps and reactive species. Therefore, a comprehensive understanding of the 

reaction kinetics often requires a combination of experimental and theoretical approaches, such 

as kinetic modeling, spectroscopy, and surface science. [13]. 

The main reactions that occur 

Semiconductor (TiO2)  +  ℎ𝜈 →  ℎ⁺ +  𝑒¯ 

The holes react with water and organic pollutants adsorbed on the surface of the 

semiconductor, following the reactions: 

𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 + 𝐻2𝑂 +  ℎ𝜈𝑉𝐵 →  𝐻𝑂͘ −  + 𝐻⁺ 

𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 +  ℎ⁺𝑉𝐵 →  𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡⁺ 
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The hydroxyl radicals formed also participate in the degradation of pollutants: 

𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡⁺ +  𝐻𝑂͘− →  𝐶𝑂2  + 𝐻2𝑂  

The excitation of the semiconductor can be either electrical or photochemical in nature [2]. 

 

Figure 4: Reaction Kinetics[14]. 

Photocatalytic reactor types and configurations 

Mass Transfer 

Mass transfer is the movement of molecules or particles from one location to another in a 

system. In the context of photocatalytic reactors, mass transfer is a critical factor that affects 

the efficiency and performance of the photocatalytic process.[15]  

The transport of reactants and products to and from the photocatalytic surface is influenced by 

various factors, including the physical and chemical properties of the catalyst, the properties of 

the reactants and products (such as molecular weight, size, and solubility), the operating 

conditions (such as temperature, pressure, and flow rate), and the geometry and design of the 

reactor. [16]. 

Photocatalytic reactors are devices used to harness the power of light to catalyze chemical 

reactions. There are several types and configurations of photocatalytic reactors, each with its 

own advantages and disadvantages. Here are some examples: 

Batch reactors: These are the simplest type of photocatalytic reactors, in which illuminated 

with UV or visible light. However, they have low efficiency and are not suitable for continuous 

production [15]. 
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Flow reactors: The flow reactors have higher efficiency than batch reactors and can be easily 

scaled up for industrial applications. However, they are more expensive and complex to operate 

[16]. 

Monolithic reactors: These reactors consist of a single piece of material, such as glass or 

ceramic. Monolithic reactors are highly efficient and can be used for continuous production, 

but they are difficult to fabricate and can be prone to clogging [17]. 

Slurry reactors: Slurry reactors have high efficiency and are easy to operate, but they require 

frequent replacement of the photocatalyst and can be difficult to scale up for industrial 

applications [16]. 

Fixed-bed reactors: Fixed-bed reactors contain a packed bed of photocatalyst particles, 

through which the reactants flow. Fixed-bed reactors are highly efficient and can be used for 

continuous production, but they can suffer from catalyst deactivation and fouling [15]. 

1.4  Applications of photocatalytic reactors 

Photocatalytic reactors have a wide range of applications in environmental remediation, energy 

conversion, and chemical synthesis. Some of the key applications of photocatalytic reactors 

include: 

Water purification: Photocatalytic reactors can be used to remove various pollutants from 

water, such as organic compounds, heavy metals, and microorganisms. They are particularly 

effective for the degradation of organic pollutants, such as pesticides, pharmaceuticals, and dyes 

[17].  

And there are other keys applications like: Air purification, Hydrogen production, Energy 

storage, Chemical synthesis, Self-cleaning surfaces. 

Parameters influencing photocatalysis  

There are several parameters influencing photocatalysis including [18]: 

Effect of oxygen; 

Effect of pH; 

Effect of temperature; 

Effect of pollutant concentration; 

Effect of catalyst concentration; 
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Effect of energy hν; 

Photocatalytic degradation of Methylene Blue (BM) 

Photocatalysis is a promising method for purifying wastewater. Several studies have been 

conducted using suspended catalysts, but our study consists in the use of the material 𝑇𝑖𝑂2 /5% 

curcumin (catalyst) immobilized on a substrate, cellulose paper, to degrade and eliminate a dye, 

Methylene Blue (BM), by a dynamic regime [20]. 

A study model of a photocatalytic device has been constructed and optimized within the 

laboratory of Physical Engineering at the Faculty of SM of Ibn Khaldun University in Tiaret. 

Figure 5 presents the decoloration test of the BM solution performed by this implementation. 

 

Figure 5: Decoloration test of the BM solution conducted in the presence of the F1 film[19]. 

And here are some results that represent some photocatalytic effects. 

Degradation of the pollutant (BM) on film F1  

 

Figure 6: The curve of Ce/C0 as a function of irradiation time for film F1 alone [19]. 

The degradation process of BM on film F1 occurs due to the photocatalytic effect of the catalyst. 

When the film is irradiated with light, it generates electron-hole pairs that participate in redox 
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reactions on the surface of the film. These reactions generate reactive oxygen species that are 

capable of oxidizing the pollutant BM into harmless by products such as carbon dioxide and 

water. The efficiency of the degradation process is influenced by several factors such as the 

concentration of the pollutant, the intensity of the light, and the mass of the deposited material 

on the substrate. Higher pollutant concentrations and lower light intensities can lead to slower 

degradation rates. However, increasing the mass of the deposited material can lead to an 

increase in the surface area available for the redox reactions to occur, which can increase the 

degradation rate [20]. 

 Effect of the deposited material mass on the substrate 

 

Figure 7: Effect of the deposited material mass on the substrate [19]. 

Figure 7 depicts the degradation kinetics of BM at different masses of 𝑇𝑖𝑂2/5% curcumin 

material deposited on the substrate. 

The deposited material mass on the substrate is an important factor that can significantly affect 

the properties and performance of a material. In the context of photocatalysis, the amount of 

catalyst material deposited on the substrate can have a significant impact on the degradation 

rate of pollutants[21]. 

Increasing the deposited material mass can lead to an increase in the surface area available for 

photocatalysis to occur. This can result in more active sites for the adsorption and oxidation of 

pollutants. As a result, the degradation rate of pollutants may increase with an increase in the 

deposited material mass[22]. 
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Effect of pollutant concentration (BM) 

  

Figure 8: Effect of pollutant concentration (BM) [19]. 

Figure 7 depicts the effect of varying the initial pollutant concentration (BM) on the type of 

photocatalytic degradation kinetics is illustrated in Figure 7. Three concentrations were chosen: 

5 ppm, 10 ppm, and 15 ppm. 

The decrease in photocatalytic efficiency at higher pollutant concentrations can be attributed to 

several factors. Firstly, at high pollutant concentrations, the photocatalyst may become 

saturated, leading to a decrease in the rate of pollutant degradation. Secondly, high pollutant 

concentrations may lead to the formation of reaction intermediates that can inhibit the 

photocatalytic reaction. Thirdly, high pollutant concentrations may lead to the formation of by-

products that can accumulate on the photocatalyst surface, leading to a decrease in its activity. 

Effect of light intensity 

 

 Figure 9: Effect of light intensity [19]. 
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Figure 9 represents the degradation of BM as a function of UV light intensity, where the mass 

of 𝑇𝑖𝑂2 /5% curcumin material deposited on the substrate was fixed at 14 mg, and the initial 

pollutant concentration (BM) was set at 10 ppm. Three tests were conducted using 4 UV lamps, 

3 UV lamps, and 2 UV lamps, respectively. 

The increase in photocatalytic efficiency with increasing light intensity can be attributed to 

several factors. Firstly, higher light intensities can increase the formation of electron-hole pairs, 

which can react with pollutants more efficiently. Secondly, higher light intensities can improve 

the penetration of light into the reactor, leading to more uniform illumination of the 

photocatalyst. Thirdly, higher light intensities can reduce the recombination of electron-hole 

pairs, leading to longer lifetimes and increased reaction rates [23]. 

Conclusion  

   This chapter has provided a comprehensive overview of the vital importance of photocatalytic 

reactors in addressing the global water scarcity challenge. We have delved into intricate details 

regarding their operational mechanisms and impressive capability to degrade organic 

pollutants, establishing their critical role in tackling the worldwide water crisis. With their 

ability to efficiently break down organic pollutants and purify water, photocatalytic reactors 

have emerged as a valuable and promising technological solution. However, in order to fully 

harness their potential, continuous scientific and technological advancements are necessary. 

This entails ongoing research, collaborative efforts among various stakeholders, and dedicated 

initiatives to optimize reactor efficiency, manufacturing costs, and sustainability. By pushing 

the boundaries of this innovative technology, we can effectively secure a sustainable water 

supply for future generations while preserving this invaluable resource. 

 

 



 

13 

 

 

 

 

 

 

 

 

CHAPTER II                            

Deep Learning  

 

 

 

 

 

 

 

 

 

 

 



Chapter II :                                                                                     Deep Learning  

 

14 

 

2.1 Introduction 

         Artificial intelligence occupies a central position in the field of digitalization, generating 

significant interest in the digital world. Its primary resource is data, which it uses to learn and 

improve its performance. The more diverse, rich, and high-quality the data, the better the AI 

can develop accurate and high-performing models. Data collection can occur through various 

means, including sensors, connected devices, databases, or even public online sources. 

Among the different techniques of AI, machine learning plays a crucial role. In recent years, 

machine learning has experienced exponential growth in data analysis, enabling applications to 

make intelligent decisions using algorithms that analyze and learn from data. Additionally, deep 

learning, considered a pillar of AI, machine learning, and data science, has garnered significant 

interest in the computing domain due to its ability to learn from complex data. 

This chapter will provide an exciting exploration of the world of AI, machine learning, and deep 

learning, serving as an essential foundation for our study of implementation and design in the 

final chapter. 

 

Figure 10:  An illustration of the position of deep learning (DL), machine learning (ML) and artificial 

intelligence (AI) [24].  
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 History of Neural Network and Deep Learning Models 

 Neural networks and deep learning models based on the years and developments mentioned in 

the figure 11: 

1984: Boltzmann machines are introduced for unsupervised learning and feature extraction. 

1985: Boltzmann machines are trained using Gibbs sampling by Hinton and Sejnowski. 

1986: Backpropagation algorithm for training feedforward neural networks is introduced by 

Rumelhart, Hinton, and Williams. 

1991: Mixture of Experts is introduced as a way to combine multiple neural networks with 

different architectures. 

2006: Deep learning with autoencoders and neural networks is used to improve speech 

recognition accuracy. 

2008: t-SNE (t-Distributed Stochastic Neighbor Embedding) is introduced as a technique for 

visualizing high-dimensional data. 

2009: Deep Belief Networks (DBNs) are introduced as a way to train deep neural networks 

using unsupervised pre-training. 

2010: Rectified Linear Units (ReLU) are introduced as a way to improve the training of 

Restricted Boltzmann Machines (RBMs). 

2011: Recurrent Neural Networks (RNNs) are used for Natural Language Processing (NLP) 

tasks such as language modeling and machine translation. 

2012: RMSProp is introduced as a way to improve stochastic gradient descent, and AlexNet 

achieves state-of-the-art performance on the ImageNet challenge, using a deep neural network 

architecture. 

2013: RNNs are used for speech recognition tasks, achieving state-of-the-art performance. 

2014: The CIFAR-10 dataset is introduced as a benchmark for image classification tasks. 

2015: Distillation Networks are introduced as a way to transfer knowledge from large, complex 

models to smaller, more efficient models.2016: Layer normalization is introduced as a way to 

improve the training of deep neural networks. 
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2022: The forward-forward algorithm is introduced as a new way to perform probabilistic 

inference in neural networks, allowing for more accurate predictions in uncertain 

environments.[25] 

 

Figure 11: History of Neural Network and Deep Learning since 1884. 

2.2 Artificial Intelligence  

Artificial intelligence (AI) is a broad field of computer science and engineering focus on 

modeling a wide range of topics and functions in the domain of human intelligence. It is mostly 

about understanding and performing intelligent tasks such as acquire new skills, think and adapt 

to new situations and challenges. We explore different types of AI, including analytical, 

functional, interactive, textual, and visual. 

2.3 Machine Learning 

Machine learning is a subfield of artificial intelligence, which is broadly defined as the 

capability of a machine to imitate intelligent human behavior. Artificial intelligence systems are 

used to perform complex tasks in a way that is similar to how humans solve problems. 

Machine learning is one way to use AI. It was defined in the 1950s by AI pioneer Arthur Samuel 

as “the field of study that gives computers the ability to learn without explicitly being 

programmed”[26]. 
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Figure 12: Machine Learning [27]. 

2.3.1,Methods of Machine Learning 

 Supervised learning 

A problem in which a model is used to learn a representation between input examples and a 

target variable is represented by supervised learning[28]. Supervised learning problems are 

known as systems where the training data contains examples of input vectors and the target 

vectors that correspond to them. There are two major types of problems with supervised 

learning: classification involving detection of regression and a class mark involving detection 

of a significant value [29]. Classification is represented as a supervised problem of learning 

which requires the prediction of a class label. Regression is a problem of supervised learning 

involving predicting a numerical label [30]. Algorithms are related to as supervised because, 

when an input data is given, they learn by making predictions, and those models are controlled 

and improved by an approach that can help determine the outcome [31]. Some methods can be 

perfectly suited for classification (e.g., logistic regression) or regression (e.g., linear regression), 

while some are employed for both types of problems with minor modifications (such as artificial 

neural networks)[31]. 
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 Unsupervised learning 

Unsupervised learning identifies some difficulties involving in the use of data relationship 

model that describes or removes data relationships. Unsupervised learning works in comparison 

with supervised learning, only the input data is used, with no outputs or target variables [31]. 

As such, unsupervised learning close to supervised learning doesn’t have an instructor to correct 

the model. There are several ways of unsupervised learning, but they have two key issues which 

a practitioner frequently encounters: clustering involves grouping the data and estimating range, 

which entails a summary of data distribution. Clustering is represented as an unsupervised 

problem of learning which requires finding data for classes [32]. 

Reinforcement learning 

Reinforcement learning is a set of challenges in which an individual must learn to use feedback 

to work in a given context. It is identical to supervised learning, even though feedback maybe 

delayed, and since the model is systematically noisy, it has some responses from which to learn, 

which finds it challenging for the entity and model to link causality. Deep reinforcement 

learning, Q-learning, and temporal-difference learning are some common examples of 

reinforcement learning algorithms [33]. 

Semi-supervised learning 

It can be defined as a hybridization of the supervised and unsupervised methods, as it operates 

on both labeled and unlabeled data. Thus, it falls between learning without supervision and 

learning with supervision .in the real world, labeled data could be rare in several contexts, and 

unlabeled data are numerous, where semi-supervised is useful. The ultimate goal of semi-

supervised learning model is to deliver a better prediction result than that obtained from the 

model’s labeled data alone. Some application areas where semi supervised learning is used 

include machine translation, labeling data, fraud detection and text classification [34]. 

2.4 Neural networks 

     A neural network is a type of machine learning that is modeled after the human brain. It 

consists of layers of interconnected nodes that process information and learn to recognize 

patterns in data[35]. 
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⟨ ⟩ 

Artificial Neural Network 

    Artificial neural network is a subset of machine learning and is the core of deep Learning 

algorithms. A typical neural network mainly consists of many simple, the connected processing 

elements or processors are called neurons, and each neuron produces a sequence of real-valued 

activations for the target outcome [24]. 

 

Figure 13:  Representation of an artificial neuron's mathematical model[24]. 

     Activation functions 

   In artificial neural networks, the activation function defines how the weighted sum of the 

input layer is changed from the input layer to the output layer through the hidden layers in 

between. If the input provided is large enough, the corresponding neuron is fired and passed to 

the next network layer. The goal of this activation function is to introduce non-linearity in the 

network [36]. 

Types of Activation Function 

  1.  Linear Activation Function 

  2.  Binary step function 

  3.  Non-linear Activation Function. 

Activation functions are used at the end of a hidden unit to introduce non-linear complexities 

to the model. Here is a schematic representation of an artificial neuron where: 

𝛴 =    𝑤𝑗, 𝑥 + 𝑏𝑗.
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Here are the most common one 

Table 1: Activation functions[37]. 

 

     Architecture of neural network 

According to the connection topology of the neurons, they can be classified into two main 

categories: non-looped networks (static or feedforward) and looped networks (dynamic, feed 

back or recurrent) [38].  

Multi-layer Perceptron (MLP) 

The Perceptron consists of an input layer and an output layer which are fully connected.  MLPs 

have the same input and output layers but may have multiple hidden layers in between the 

aforementioned layers, as seen below[38]. 

 

Figure 14 :  Multilayer Perceptron[38]. 

 

Sigmoid functions 
Hyperbolique Tangent 

function (Tanh) 
Rectifier functions ReLU 

𝑔(𝑧) = 
1

1+𝑒−𝑧  

 

𝑔(𝑧)  = 
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𝑒𝑧−𝑒−𝑧 

 
𝑔(𝑧) = 𝑚𝑎𝑥(0, 𝑧) 

 

 

 



Chapter II :                                                                                     Deep Learning  

 

21 

 

       Estimation of the parameters 

Once the architecture of the network has been chosen, the parameters (the weights 𝑤𝑗  and 

biases 𝑏𝑗) have to be estimated from a learning sample. As usual, the estimation is obtained by 

minimizing a loss function with a gradient descent algorithm. We first have to choose the loss 

function[39]. 

Loss Function 

It is classical to estimate the parameters by maximizing the likelihood (or equivalently the 

logarithm of the likelihood). This corresponds to the minimization of the loss function which is 

the opposite of the log likelihood. Denoting θ the vector of parameters to estimate, we consider 

the expected loss function [39]. 

𝐿(𝜃)  =  −𝐸(𝑋, 𝑌 ) ∼ 𝑃 (𝑙𝑜𝑔(𝑝𝜃(𝑌 /𝑋)). 

 

 

Figure 15: The loss function measures the quality of the output of the neural network[40]. 

Penalized empirical risk 

The expected loss can be written as   𝐿(𝜃)  =  𝐸(𝑋, 𝑌 ) ∼ 𝑃 [`(𝑓(𝑋, 𝜃), 𝑌 )]    and it is associated 

to a loss function[39]. 

 

 

 



Chapter II :                                                                                     Deep Learning  

 

22 

 

Backpropagation 

Backpropagation is a method to update the weights in the neural network by taking into account 

the actual output and the desired output. The derivative with respect to weight (w) is computed 

using chain rule[39]. 

Updating weights  

In a neural network, weights are updated as follows: 

 Step 1: Take a batch of training data, 

 Step 2: Perform forward propagation to obtain the corresponding loss, 

 Step 3: Backpropagate the loss to get the gradients, 

 Step 4: Use the gradients to update the weights of the network[39]. 

Initialization 

The input data have to be normalized to have approximately the same range. The biases can be 

initialized to 0. The weights cannot be initialized to 0 since for the tanh activation function, the 

derivative at 0 is 0, this is a saddle point. They also cannot be initialized with the same values, 

otherwise, all the neurons of a hidden layer would have the same behaviour.  

We generally initialize the weights at random: the values 𝑊 (𝑘) 𝑖, 𝑗 is 𝑖. 𝑖. 𝑑. Uniform on [−𝑐, 𝑐] 

with possibly 𝑐 =  
√ 𝜎

𝑁𝑘+𝑁𝑘−1
     

where 𝑁𝑘 is the size of the hidden layer k. We also sometimes initialize the weights with a 

normal distribution N (0, 0.01) [39]. 

Optimization algorithms 

Many algorithms can be used to minimize the loss function, all of them have hyperparameters, 

that have to be calibrated, and have an important impact on the convergence of the algorithms. 

The elementary tool of all these algorithms is the Stochastic Gradient Descent (SGD) 

algorithm[39].  

Stochastic Gradient Descent algorithm (SGD) 

Gradient descent is an iterative algorithm, that starts from a random point on a function and 

travels down its slope in steps until it reaches the lowest point of that function[39]. 
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Figure 16: Stochastic Gradient Descent algorithm (SGD)[41]. 

Momentum 

Momentum is a technique used in the training of neural networks to speed up the learning 

process and help avoid getting stuck in local minima. In the context of neural networks, the 

gradient descent algorithm is used to update the weights and biases of the network to minimize 

the cost function [39]. 

 

Figure 17: Momentum. 

Nesterov Accelerated Gradient (NAG) 

One of the most famous is the RMSProp algorithm or Adam (for Adaptive Moments) algorithm. 

 

Figure 18: Nesterov method [42]. 

 



Chapter II :                                                                                     Deep Learning  

 

24 

 

Dropout 

Dropout is a technique meant to prevent overfitting the training data by dropping out units in a 

neural network [37]. 

 

Figure 19: Neural net with and without dropout[43]. 

     Data preparation 

The preparation of data is indeed an integral part of the parameter estimation process in machine 

learning and statistical modeling. When estimating model parameters, it is crucial to ensure that 

the data used for estimation is suitable and appropriately prepared. Here's how data preparation 

relates to parameter estimation: 

Data Cleaning: The parameter estimation process requires that the dataset be free of any 

inconsistencies. This step is crucial to maintaining data integrity and reducing the likelihood of 

bias. 

Data Transformation: Modifying variables to match particular distributions, applying 

logarithmic or power transformations, or scaling and normalizing features are some of the 

transformations that may be necessary. 

Outlier Detection and Handling: Part of the data preparation process is identifying and 

appropriately handling outliers, as they can greatly impact parameter estimation and model 

performance. 

Feature Engineering: Creating new features or selecting relevant ones from the existing 

dataset is what feature engineering is all about. 

Data Splitting: Dataset is divided into three sets: training, validation, and testing, prior to 

estimating model parameters. The estimation of model parameters is done based on the training 

set while model selection or tuning is done based on the validation set. To evaluate the final 

performance of the model, the testing set is used.  



Chapter II :                                                                                     Deep Learning  

 

25 

 

By appropriately preparing the data, researchers aim to improve the accuracy, reliability, and 

generalizability of the estimated parameters.  

2.5 Deep Learning 

Deep learning is a field of research in machine learning that is based on a particular type of 

learning mechanism. It is characterized by the effort to create a multi-level learning model in 

which the deeper levels take into account the outcomes of the previous levels, transforming 

them and abstracting them further. This hierarchical learning approach is inspired by how the 

brain processes information and learns by reacting to external stimuli. Each level of learning is 

assumed to correspond to one of the different areas that make up the cerebral cortex [44]. 

       Deep Learning Properties and Dependencies 

A Deep Learning model typically follows the same processing stages as machine learning 

modeling. In Figure 2, we have shown a deep learning workflow to solve real-world problems, 

which consists of three processing steps, such as data understanding and preprocessing, DL 

model building, and training, and validation and interpretation[44]. 

 

 

 

 

Figure 20: A typical DL workfow to solve real-world problems[24]. 

which consists of three sequential stages (i) data understanding and preprocessing (ii) DL model 

building and training (iii) validation and   interpretation. 

In the following, we discuss the key properties and dependencies of DL techniques, that are 

needed to take into account before started working on DL modeling for real-world application. 

Srep 1 : 

Data Understanding and 

Preprocessing 

Srep 2: 

DL Model Building and 

Training 

Srep 3 : 

Validation and Interpretation 
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Figure 21: An illustration of the performance comparison between deep learning (DL) and 

other machine learning (ML) algorithms, where DL modeling from large amounts of data can 

increase the performance[24]. 

Deep Learning Techniques   

 

Figure 22: A taxonomy of DL techniques[24]. 

In the following, we briefly discuss one of these techniques shown in Figure 25 according to 

their learning capabilities. 

 Deep Networks for supervised or discriminative Learning 

Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are deep learning algorithms that are particularly well-

suited for processing structured data in the form of matrices or arrays. They are designed to 

automatically extract meaningful features from the data using convolutional operations. 

CNN 

LSTM 
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CNNs can handle different types of data based on their dimensionality. 3D CNNs are capable 

of processing three-dimensional data, such as videos or volumetric images. 2D CNNs are used 

for two-dimensional data, such as images or audio spectrograms. Lastly, 1D CNNs are suitable 

for one-dimensional data, such as signals or sequences. 

The structure of a CNN typically consists of convolutional layers, pooling layers, and fully 

connected layers. The convolutional layer is responsible for feature extraction from the input 

data. It applies a set of filters to the input matrix, where each filter performs a convolution 

operation by calculating the dot product between the filter and a portion of the matrix. This 

convolution operation helps detect local patterns in the data. 

After the convolutional layer, the results are usually passed through a pooling layer. This layer 

aims to reduce the dimensionality of the extracted features while preserving essential 

information. It performs an aggregation operation, such as maximum or average pooling, over 

specific regions of the matrix. 

Next, fully connected layers are used, where each neuron is connected to all neurons in the 

previous layer. These layers are similar to those in traditional neural networks and allow for the 

combination of the extracted features to generate final outputs. Finally, an output layer is used 

to produce the desired results, such as classifications or predictions. 

Training of CNNs is done through error backpropagation. The weights of the filters and layers 

in the network are iteratively adjusted to minimize the difference between the network's 

predictions and the ground truth associated with the training data. This process allows the 

network to adapt to the specific characteristics of the data and generalize to new data, improving 

its performance[37]. 

 

Figure 23: An example of a convolutional neural network. 
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Convolutional layer  

By noting (W) the input volume size, (F) the size of the convolutional layer neurons, (P) the 

amount of zero padding, then the number of neurons (N) that fit in a given volume is such that:   

𝑁 = ((𝑊 − 𝐹 + 2𝑃)/ (𝑆))  + 1 ; [37]. 

 

Figure 24: Convolutional layer. 

Let’s get into some maths behind getting the feature map in the above image. 

 

As presented in the above figure, in the first step the filter is applied to the green highlighted 

part of the image, and the pixel values of the image are multiplied with the values of the filter 

(as shown in the figure using lines) and then summed up to get the final value. 

In the next step, the filter is shifted by one column as shown in the below figure. This jump to 

the next column or row is known as stride and in this example, we are taking a stride of 1 which 

means we are shifting by one column[37]. 
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Pooling Layer 

The pooling layer is applied after the Convolutional layer and is used to reduce the dimensions 

of the feature map which helps in preserving the important information or features of the input 

image and reduces the computation time. 

The most common types of Pooling are Max Pooling and Average Pooling. The below figure 

shows how Max Pooling works[37]. 

 

 

Fully Connected Layer 

This layer connects the information extracted from the previous steps (Convolution layer and 

Pooling layers) to the output layer and eventually classifies the input into the desired label as 

shown in Figure 25. 
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Figure 25 : The fully connected layer 

Recurrent Neural Networks 

A Recurrent Neural Network (RNN) is another popular neural network, which employs 

sequential or time-series data and feeds the output from the previous step as input to the current 

stage[45]. Like feedforward and CNN, recurrent networks learn from training input, however, 

distinguish by their “memory”, which allows them to impact current input and output through 

using information from previous inputs. Unlike typical DNN, which assumes that inputs and 

outputs are independent of one another, the output of RNN is reliant on prior elements within 

the sequence. However, standard recurrent networks have the issue of vanishing gradients, 

which makes learning long data sequences challenging [24].RNN works on the principle of 

saving the output of a particular layer and feeding this back to the input in order to predict the  

output of the layer.    

 

Figure 26: Recurrent Neural Network[46]. 
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Working of Recurrent Neural Network 

In Recurrent Neural networks, the information cycles through a loop to the middle-hidden 

layer. 

The input layer ‘x’ takes in the input to the neural network and processes it and passes it onto 

the middle layer.  

 

Figure 27: The main difference between a RNN and a feedforward network. 

    A feed-forward neural network allows information to flow only in the forward direction, from 

the input nodes, through the hidden layers, and to the output nodes. There are no cycles or loops 

in the network. 

In a feed-forward neural network, the decisions are based on the current input. It doesn’t 

memorize the past data, and there’s no future scope. Feed-forward neural networks are used in 

general regression and classification problems[46]. 

The different applications of RNNs 

 

Figure 28: The different applications of RNNs[46]. 
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   1.  One to many, The RNN receives a single input and returns multiple outputs, the classic 

example of this process is the image legend 

  2.  Many to one There are several inputs and there is a single output. An illustration of this 

mode is the sentiment analysis of texts. This makes it possible to identify a feeling from a group 

of words, determine the word that is missing to finish the sentence received as input.  

  3.  Many to many, Finally, you can take several inputs and get several outputs. We don’t 

necessarily have the same number of input and output neurons. We can cite, here, the translation 

of text, but we can be ambitious and plan to finish a musical work with its beginning[46]. 

         Two Issues of Standard RNNs 

       1- Exploding Gradient Problem 

While training a neural network, if the slope tends to grow exponentially instead of decaying, 

this is called an Exploding Gradient. This problem arises when large error gradients accumulate, 

resulting in very large updates to the neural network model weights during the training process. 

Long training time, poor performance, and bad accuracy are the major issues in gradient 

problems[46]. 

2-Vanishing Gradient Problem 

 

Figure 28: Vanishing Gradient Problem[46]. 

Recurrent Neural Networks enable you to model time-dependent and sequential data problems, 

such as stock market prediction, machine translation, and text generation. You will find, 

however, RNN is hard to train because of the gradient problem. 
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RNNs suffer from the problem of vanishing gradients. The gradients carry information used in 

the RNN, and when the gradient becomes too small, the parameter updates become 

insignificant. This makes the learning of long data sequences difficult[46]. 

Solution  

 

Variant RNN Architectures 

There are several variant RNN architectures that have been developed over the years to 

address the limitations of the standard RNN architecture. Here are a few examples : 

1. Long Short-Term Memory (LSTM) Networks 

LSTM is a type of RNN that is designed to handle the vanishing gradient problem that can 

occur in standard RNNs. It does this by introducing three gating mechanisms that control the 

flow of information through the network: the input gate, the forget gate, and the output gate. 

These gates allow the LSTM network to selectively remember or forget information from the 

input sequence, which makes it more effective for long-term dependencies[46]. 

2. Gated Recurrent Unit (GRU) Networks 

GRU is another type of RNN that is designed to address the vanishing gradient problem. It has 

two gates: the reset gate and the update gate. The reset gate determines how much of the 

previous state should be forgotten, while the update gate determines how much of the new state 

should be remembered. This allows the GRU network to selectively update its internal state 

based on the input sequence[46]. 
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3. Bidirectional RNNs: 

Bidirectional RNNs are designed to process input sequences in both forward and backward 

directions. This allows the network to capture both past and future context, which can be useful 

for speech recognition and natural language processing tasks[46]. 

4. Encoder-Decoder RNNs: 

Encoder-decoder RNNs consist of two RNNs: an encoder network that processes the input 

sequence and produces a fixed-length vector representation of the input and a decoder network 

that generates the output sequence based on the encoder's representation. This architecture is 

commonly used for sequence-to-sequence tasks such as machine translation[46]. 

5. Attention Mechanisms 

Attention mechanisms are a technique that can be used to improve the performance of RNNs 

on tasks that involve long input sequences. They work by allowing the network to attend to 

different parts of the input sequence selectively rather than treating all parts of the input 

sequence equally. This can help the network focus on the input sequence's most relevant parts 

and ignore irrelevant information[46]. 

Common Activation Functions 

Recurrent Neural Networks (RNNs) use activation functions just like other neural networks to 

introduce non-linearity to their models. Here are some common activation functions used in 

RNNs: 

         Sigmoid Function: 

The sigmoid function is commonly used in RNNs. It has a range between 0 and 1, which makes 

it useful for binary classification tasks. The formula for the sigmoid function is[46]: 

σ(x) = 1 / (1 + 𝑒(−𝑥)). 

        Hyperbolic Tangent (Tanh) Function: 

The tanh function is also commonly used in RNNs. It has a range between -1 and 1, which 

makes it useful for non-linear classification tasks. The formula for the tanh function is[46]: 

Tanh (x) = (𝑒𝑥 – 𝑒(−𝑥)) / (𝑒𝑥 + 𝑒(−𝑥))). 
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       Rectified Linear Unit (Relu) Function: 

The ReLU function is a non-linear activation function that is widely used in deep neural 

networks. It has a range between 0 and infinity, which makes it useful for models that require 

positive outputs. The formula for the ReLU function is[46]: 

ReLU(x) = max (0, x) 

         Leaky Relu Function: 

The Leaky ReLU function is similar to the ReLU function, but it introduces a small slope to 

negative values, which helps to prevent "dead neurons" in the model. The formula for the Leaky 

ReLU function is[46]:         

Leaky ReLU(x) = max (0.01x, x) 

  Softmax Function: 

The softmax function is often used in the output layer of RNNs for multi-class classification 

tasks. It converts the network output into a probability distribution over the possible classes. 

The formula for the softmax function is: 

softmax(x) = 𝑒𝑥 / ∑(𝑒𝑥) 

These are just a few examples of the activation functions used in RNNs. The choice of activation 

function depends on the specific task and the model's architecture[46]. 

Backpropagation Through Time 

    Backpropagation through time is when we apply a Backpropagation algorithm to a Recurrent 

Neural network that has time series data as its input. 

    In a typical RNN, one input is fed into the network at a time, and a single output is obtained. 

But in backpropagation, you use the current as well as the previous inputs as input. This is 

called a timestep and one timestep will consist of many time series data points entering the 

RNN simultaneously.  

    Once the neural network has trained on a timeset and given you an output, that output is used 

to calculate and accumulate the errors. After this, the network is rolled back up and weights are 

recalculated and updated keeping the errors in mind[46]. 
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Long short-term memory (LSTM) 

A long short-term memory (LSTM) network is a type of RNN model that avoids the vanishing 

gradient problem by adding 'forget' gates. LSTM is an implementation of the Recurrent Neural 

Network and was first proposed by Hochreiter et al. in 1997 [41]. Unlike the earlier described 

feed forward network architectures, LSTM can retain knowledge of earlier states and can be 

trained for work that requires memory or state awareness. LSTM partly addresses a major 

limitation of RNN, i.e., the problem of vanishing gradients by letting gradients to pass 

unaltered. As shown in the illustration in the following Figure 29. 

 

Figure 29: LSTM block with memory cell and gates[43]. 

Workings of LSTMs in RNN 

 

Figure 30: How LSTMs work. 
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LSTMs work in a 3-step process. 

      Step 1: Decide How Much Past Data It Should Remember 

The first step in the LSTM is to decide which information should be omitted from the cell in 

that particular time step. The sigmoid function determines this. It looks at the previous state (ht-

1) along with the current input xt and computes the function. 

𝑓𝑡 = 𝜎 ( 𝑊𝑓. (ℎ𝑡−1 , 𝑥𝑡  ) + 𝑏𝑓  ) 

𝑓𝑡 = Forget gate, decide which information to delete that is not important from previous time 

step. 

       Step 2: Decide How Much This Unit Adds to the Current State 

In the second layer, there are two parts. One is the sigmoid function, and the other is the tanh 

function. In the sigmoid function, it decides which values to let through (0 or 1). tanh function 

gives weightage to the values which are passed, deciding their level of importance (-1 to 1). 

𝑖𝑡 = 𝜎 ( 𝑊𝑖. (ℎ𝑡−1 , 𝑥𝑡  ) + 𝑏𝑖 ) 

𝐶𝑡  = 𝑡𝑎𝑛ℎ ( 𝑊𝐶 . (ℎ𝑡−1 , 𝑥𝑡 ) + 𝑏𝐶 ) 

𝑖𝑡 = input gate, determines which information to let through based on its significance in the 

current time step. 

        Step 3: Decide What Part of the Current Cell State Makes It to the Output 

The third step is to decide what the output will be. First, we run a sigmoid layer, which decides 

what parts of the cell state make it to the output. Then, we put the cell state through tanh to push 

the values to be between -1 and 1 and multiply it by the output of the sigmoid gate. 

𝑜𝑡 = 𝜎 ( 𝑊𝑜. (ℎ𝑡−1 , 𝑥𝑡 ) + 𝑏𝑜 ) 

ℎ𝑡= 𝑜𝑡 * tanh (𝐶𝑡) 

𝑜𝑡  = output gate, allows the passed in information to impact the output in the current time step. 
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Types of   Gates  

Here are the different types of gates that we encounter in a typical recurrent neural network: 

Input gate Forget gate Gate Output 

gate 

Write to cell 

or not? 

Erase a cell or 

not? 

How much to 

write to cell? 

How much 

to reveal 

cell? 

Tableau 1: Types of gates [37]. 

In standard LSTM, a typical LSTM cell is made of input, forget, and output gates and a cell 

activation component. These units receive the activation signals from different sources and 

control the activation of the cell by the designed multipliers, as described below [26]. 
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Advantages of Recurrent Neural Network 

Recurrent Neural Networks (RNNs) have several advantages over other types of neural 

networks, including:     

 Ability To Handle Variable-Length Sequences: 

RNNs are designed to handle input sequences of variable length, which makes them 

well-suited for tasks such as speech recognition, natural language processing, and time 

series analysis. 

 Memory Of Past Inputs: RNNs have a memory of past inputs, which allows them to 

capture information about the context of the input sequence. This makes them useful for 

tasks such as language modeling, where the meaning of a word depends on the context 

in which it appears. 

 Parameter Sharing: RNNs share the same set of parameters across all time steps, 

which reduces the number of parameters that need to be learned and can lead to better 

generalization. 

 Non-Linear Mapping: RNNs use non-linear activation functions, which allows them 

to learn complex, non-linear mappings between inputs and outputs. 

 Sequential Processing: RNNs process input sequences sequentially, which makes them 

computationally efficient and easy to parallelize. 

 Flexibility: RNNs can be adapted to a wide range of tasks and input types, including 

text, speech, and image sequences. 

 Improved Accuracy: RNNs have been shown to achieve state-of-the-art performance 

on a variety of sequence modeling tasks, including language modeling, speech 

recognition, and machine translation. 

These advantages make RNNs a powerful tool for sequence modeling and analysis, and have 

led to their widespread use in a variety of applications, including natural language processing, 

speech recognition, and time series analysis[46].  
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Disadvantages of Recurrent Neural Network 

Although Recurrent Neural Networks (RNNs) have several advantages, they also have some 

disadvantages. Here are some of the main disadvantages of RNNs 

 Vanishing And Exploding Gradients: RNNs can suffer from the problem of vanishing 

or exploding gradients, which can make it difficult to train the network effectively. This 

occurs when the gradients of the loss function with respect to the parameters become 

very small or very large as they propagate through time. 

 Computational Complexity: RNNs can be computationally expensive to train, 

especially when dealing with long sequences. This is because the network has to process 

each input in sequence, which can be slow. 

 Difficulty In Capturing Long-Term Dependencies: Although RNNs are designed to 

capture information about past inputs, they can struggle to capture long-term 

dependencies in the input sequence. This is because the gradients can become very small 

as they propagate through time, which can cause the network to forget important 

information. 

 Lack Of Parallelism: RNNs are inherently sequential, which makes it difficult to 

parallelize the computation. This can limit the speed and scalability of the network. 

 Difficulty In Choosing the Right Architecture: There are many different variants of 

RNNs, each with its own advantages and disadvantages. Choosing the right architecture 

for a given task can be challenging, and may require extensive experimentation and 

tuning. 

 Difficulty In Interpreting the Output: The output of an RNN can be difficult to interpret, 

especially when dealing with complex inputs such as natural language or audio. This 

can make it difficult to understand how the network is making its predictions. 

 These disadvantages are important when deciding whether to use an RNN for a given 

task. However, many of these issues can be addressed through careful design and 

training of the network and through techniques such as regularization and attention 

mechanisms[46]. 
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 Comparison of DNN networks  

Tableau 3: DNN network comparison table [43]. 

Netwok 

type 

Architecture Network 

model 

Training Type Training 

Algorithm 

Common 

Application 

Popular 

Dataset 

Sample 

 CNN Discrim-

inaive 

Supervisde Gradient 

descent 

based 

backprop-

agation 

Image 

recognition/Cl

assification 

MNIST 

Feed 

Forward 

Neural 

Network 

Residual 

network 

Discrim-

inaive 
Supervised Gd based 

backprop-

agation 

Image 

recognition 

ImageNet 

 Autoencoder Generative Unsupervised backprop-

agation 

Dimensionality 

Reduction; 

Encoding 

MNIST 

 Adversarial 

Networks 

Discrim-

inaive/Gener

ative 

Supervised backprop-

agation 

Generate 

realistic fake 

data 

CIFAR10 

 RBM Generative 

with 

Discrim-

inaive 

finetuning 

Unsupervised Gd based 

Contrastiv

e 

divergence 

Dimentionallit

y Reduction ; 

Feature 

learning 

MNIST 

Recurrent 

nural 

network 

LSTM Discrim-

inaive 
Supervised Gd and 

based 

backprop-

agation 

through 

Time 

NLP; 

Language 

Translation 

MNIST 

Stoke 

Sequence 

Radial 

Basis 

Function 

NN 

RBT 

Network 

Discrim-

inaive 
Super-vised 

/Unsupervised 

k-means 

Clustering

; Least -

square 

Function 

Function 

approximation 

Fisher’s 

Iris data 

set 

Kohonen 

selfOrgani

zing 

Nodes 

arranged in 

hexagonal  

Generative Unsupe-

rvised 

Competiti

ve 

Learning 

Dimentionallit

y Reduction ; 

SPAMbas

e 
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Comparison of deep learning algorithms 

 

Tableau 4: Comparaison of deep learning algorithms[43]. 

In Tableau4, we have compareded between different Deep learning algorithms. 

In Tableau 3, we have compareded between different Deep Neural Network (DNN). 
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2.6 Applications of Deep Learning 

During the past few years, deep learning has been successfully applied to numerous problems 

in many application areas. These include natural language processing, sentiment analysis, 

cybersecurity, business, virtual assistants, visual recognition, healthcare, robotics, and many 

more. In Figure 11, we have summarized several potential real-world application areas of deep  

learning. 

 

Figure 30: Several potential real-world application areas of deep learning[24]. 
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2.7  Challenges and Opportunities 

      Challenges 

As shown in the recent literature, data processing and analysis using deep learning delivers 

satisfactory performance. Yet a lot of issues have yet to be addressed when leveraging deep 

learning. 

A. Data Collection 

The performance of deep learning methods relies on data sources. Without sufficient clean data, 

the deep model cannot play a role, even if the architecture of the model is well designed. 

Therefore, how to implement the data collection equipment is a critical research issue. A cost 

effective, reliable, and trustworthy data collection paradigm plays an important role in 

developing practical deep learning based IoT applications [10]. 

B.  Model Training 

Training a deep network demands cumbersome tasks. As we know, the depths determine the 

capacity of a deep learning network to extract key features. However, the gradient vanishment 

problem appears when models grow deeper, which deteriorates the performance. To this end, 

Hinton et al. [23] propose an approach to pre-train models by stacking RBMs. In addition, the 

ReLU function applied as a substitute for the sigmoid function also contributes to the mitigation 

of the gradient vanishment problem. Overfitting is another serious problem that we face in 

training deep models. The key solution is to enter more data or reduce parameters of the model. 

        Opportunities 

Despite the challenges, there are still opportunities in applying deep learning to solve problems: 

Deep learning liberates our thought 

In the past, we may hesitate to step into some unknown areas and encounter difficulties when 

we carry out some research due to the limitation of related professional knowledge. Now we 

can achieve some guess without the worry of data analysis tools. Deep learning gives us the 

ability to obtain and process data information. It means that we can boldly start more research 

and may promote the process of science and technology.  
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Deep architectures 

Deep architectures have a strong ability in the representation of learning Features that describe 

characteristics of input data used to be designed manually in traditional methods. Deep learning 

allows machines to design features by themselves. improve the final system performance.  

2.8 Conclusion 

This chapter has provided us with an overview of AI-based modeling, highlighting the 

principles and capabilities of potential techniques such as machine learning and deep learning, 

which play a crucial role in the development of intelligent and high-performing systems. These 

techniques pave the way for significant advancements in solving complex problems and 

contribute to the emergence of smarter systems tailored to the needs of our society. Our specific 

objective is to apply these advanced AI techniques to our photocatalytic reactor simulation in 

order to enhance performance and optimize results. 
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3.1 Introduction 

By harnessing the power of deep learning, neural networks have the ability to learn from data by 

adjusting their weights and parameters. This enables them to capture intricate and abstract 

relationships among variables, which would be challenging using traditional methods. Many real-

world problems involve non-linear interactions between variables, making exact analytical solutions 

unfeasible. Neural networks offer a promising solution by approximating and effectively modeling 

these non-linear relationships. As a result, neural networks have become a valuable tool for addressing 

regression problems, where the objective is to find a function that connects input variables to desired 

outputs. 

In this chapter, we will utilize deep learning techniques to analyze data from photocatalytic reactors. 

We will employ neural networks, specifically CNN and LSTM models, to capture complex 

relationships and optimize the reactor's performance. Validating and comparing the performance of 

each model is crucial in order to make an informed decision. Through thorough experimentation and 

evaluation, we will assess their accuracy, efficiency, and generalization capabilities. By selecting the 

most promising and suitable model, we can minimize the time and costs associated with experimental 

trials while effectively achieving our objectives. 

We will start by providing an overview of the development environment, programming language And 

libraries utilized in the implementation of our system. 
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3.2 Development environment 

Google Colab: also known as Colaboratory or 'Colab', is a platform provided by Google that allows 

users to write and execute Python code directly in their web browser. It is based on Jupyter Notebook 

and is designed for training and research in machine learning. This platform enables users to train 

machine learning models directly in the cloud. Colab offers the following capabilities: 

 Improve coding skills in the Python programming language. 

 Develop deep learning applications using popular Python libraries such as Keras, TensorFlow, 

PyTorch, and OpenCV. 

 Use a development environment (Jupyter Notebook) that requires no configuration. 

 However, the standout feature of Colab compared to other services is its access to a free GPU 

(Graphics Processing Unit), which significantly accelerate the training of machine learning 

models. As a result, the execution is faster compared to local development environments. 

 

Visual Studio Code (VS Code): is a versatile code editor that can be used for developing machine 

learning models. It provides a range of features and extensions that make it suitable for working with 

machine learning frameworks and libraries. 

3.3 Programming Language and Libraries 

Python: In recent years, Python has become the most widely used programming language among 

computer scientists. It has gained popularity in infrastructure management, data analysis, and 

software development. Python allows developers to focus on what they do rather than how they do 

it. It has freed developers from the constraints of older languages, making coding with Python faster 

compared to other languages [49]. 

Used Libraries: 

TensorFlow: We utilized TensorFlow to define the basic components of the CNN-LSTM 

architecture. This library is specifically designed for implementing machine learning and deep 

learning algorithms. It offers great flexibility for developing neural networks [46]. 

Keras: Keras is a library that works in conjunction with TensorFlow. We employed Keras to 

implement different layers, activation functions, and prepare the training dataset [46]. 
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NumPy: We used NumPy to handle input types based on the model's configuration. NumPy is 

designed for manipulating multidimensional arrays and provides mathematical functions to operate 

on these arrays. We used it specifically for image scanning and window extraction [47]. 

Matplotlib: Matplotlib is a Python library used for visualizing and plotting data. We utilized 

Matplotlib to visualize our images in the form of graphs [58]. 

Sklearn: Sklearn is one of the most useful libraries for machine learning in Python. It provides 

various efficient tools for machine learning and statistical modeling, including classification, 

regression, clustering, and dimensionality reduction [49]. 

Pandas: Pandas is an open-source data analysis and manipulation tool. It is fast, powerful, flexible, 

and easy to use. Pandas is built on top of the Python programming language [48]. 

Tkinter: Tkinter is an open-source portable Graphical User Interface (GUI) library designed to be 

used in Python scripts. Tkinter is based on the Tk library, which is also used by Tcl/Tk and Perl and 

is implemented in C. Therefore, we can say that Tkinter is implemented using multiple layers [50]. 

3.4 The Modeling Approach Followed 

To achieve the modeling of the photocatalytic reactor, we followed the following steps: 

a) Data set: Responsible for acquiring and receiving data from various sources, we receive the 

dataset from the research laboratory of the Department of Physics at Ibn Khaldoun University 

in Tiaret. The dataset consists of three sets of conditions:  pollutant concentration, light 

intensity, and material mass. Each dataset contains 900 values.  
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b) Data Processing: Involves processing the inputted data to extract pertinent information and 

perform necessary transformations. This stage encompasses data cleaning, filtering, and 

feature extraction to prepare the data for analysis. we normalize the data using the scaler 

library from Keras machine learning models. This step ensures that the data is on a consistent 

scale and ready for further analysis and modeling. 

c) Deep Learning Models and evaluation: 

First, we have developed three CNN sub-models, than the models are evaluated to assess their 

performance and accuracy. This evaluation involves using separate test datasets that were not part of 

the training phase, helping measure the models' ability to generalize to unseen data and identify areas 

for improvement: 
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             c.a) Convolution neural network models: 

     In the following section, we will introduce the four most successful models that have outperformed 

the others. 

1) CNN material mass sub-model   

 

Figure 32: The four most successful models of material mass. 

 

Figure 33: the prediction of most successful models of material mass. 

In these graphs, the x-axis represents time and the y-axis represents the predicted pollutant 

concentration. We can observe that there are certain x-values that have two different predicted 

y-values. This means that our model has taken values from the same interval of time but 

produced different predictions, confirming that our model is flawed. 
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Table 5: A list of hyperparameters in the 1D CNN mass material submodel.  

Model  Hyperparameters 

1 Convolution layer        Kernel size = 1, filters = 64, strides = 1, padding = valid, activation =  

Relu 

Poolling layer    method: maxpooling, pool size: 2, stride = 2, padding = valid Fully 

connected layer Neurons = 50, activation function = relu 

 

2 Convolution layer        Kernel size = 1, filters = 64, strides = 1, padding = valid, activation = 

relu 

 

Convolution layer        Kernel size = 1, filters = 32, strides = 1, padding = valid, activation = 

relu 

 

Poolling layer    method: maxpooling, pool size: 2, stride = 2, padding = valid Fully 

 

Connected layer Neurons = 64, activation function = relu 

 

Dropout rate=0.2 

Connected layer Neurons = 50, activation function = relu 

3 Convolution layer        Kernel size = 1, filters = 64, strides = 1, padding = valid, activation 

=sigmoid 

 

Poolling layer    method: maxpooling, pool size: 2, stride = 2, padding = valid Fully 

 

Convolution layer        Kernel size = 1, filters = 50, strides = 1, padding = valid, activation =relu 

 

Poolling layer    method: maxpooling, pool size: 2, stride = 2, padding = valid Fully 

 

Connected layer Neurons = 128, activation function = relu 

 

4 Convolution layer        Kernel size = 1, filters = 64, strides = 1, padding = valid, activation 

=sigmoid 

Poolling layer    method: maxpooling, pool size: 2, stride = 2, padding = valid Fully 

 

Convolution layer        Kernel size = 1, filters = 50, strides = 1, padding = valid, activation =relu 

 

Poolling layer    method: maxpooling, pool size: 2, stride = 2, padding = valid Fully 

 

Convolution layer        Kernel size = 1, filters = 32, strides = 1, padding = valid, activation 

=sigmoid 

Poolling layer    method: maxpooling, pool size: 2, stride = 2, padding = valid Fully 

 

Connected layer Neurons = 50, activation function = relu 

 

Connected layer Neurons = 50, activation function = relu 
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2) CNN pollutant concentration sub-model : 

 

Figure 34: The four most successful models of pollutant concentration. 

 

Figure 35: The prediction of most successful models of pollutant concentration. 

In these graphs, the x-axis represents time and the y-axis represents the predicted pollutant 

concentration. We can observe that there are certain x-values that have two different predicted 

y-values. This means that our model has taken values from the same interval of time but 

produced different predictions, confirming that our model is flawed. 
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Table 6: A list of hyperparameters in the 1D CNN pollutant concentration submodel.  

Model  Hyperparameters 

1 Convolution layer        Kernel size = 1, filters = 64, strides = 1, padding = valid, activation = relu 

 

Poolling layer    method: maxpooling, pool size: 2, stride = 2, padding = valid Fully 

 

connected layer Neurons = 50, activation function = relu 

 

2 Convolution layer        Kernel size = 1, filters = 64, strides = 1, padding = valid, activation = relu 

 

Convolution layer        Kernel size = 1, filters = 32, strides = 1, padding = valid, activation = relu 

 

Poolling layer    method: maxpooling, pool size: 2, stride = 2, padding = valid Fully 

 

Connected layer Neurons = 64, activation function = relu 

 

Dropout rate=0.2 

Connected layer Neurons = 50, activation function = relu 

 

3 Convolution layer        Kernel size = 1, filters = 64, strides = 1, padding = valid, activation =sigmoid 

 

Poolling layer    method: maxpooling, pool size: 2, stride = 2, padding = valid Fully 

 

Convolution layer        Kernel size = 1, filters = 50, strides = 1, padding = valid, activation =relu 

 

Poolling layer    method: maxpooling, pool size: 2, stride = 2, padding = valid Fully 

 

Connected layer Neurons = 128, activation function = relu 

 

4 Convolution layer        Kernel size = 1, filters = 64, strides = 1, padding = valid, activation =sigmoid 

 

Poolling layer    method: maxpooling, pool size: 2, stride = 2, padding = valid Fully 

 

Convolution layer        Kernel size = 1, filters = 50, strides = 1, padding = valid, activation =relu 

 

Poolling layer    method: maxpooling, pool size: 2, stride = 2, padding = valid Fully 

 

Convolution layer        Kernel size = 1, filters = 32, strides = 1, padding = valid, activation =sigmoid 

 

Poolling layer    method: maxpooling, pool size: 2, stride = 2, padding = valid Fully 

 

Connected layer Neurons = 50, activation function = relu 

 

Connected layer Neurons = 50, activation function = relu 
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3) CNN light intensity sub-model  

 

Figure 36: The four most successful models of light intensity. 

 

Figure 37: The most successful models of light intensity. 

In these graphs, the x-axis represents time and the y-axis represents the predicted pollutant 

concentration. We can observe that there are certain x-values that have different predicted       

y-values. This means that our model has taken values from the same interval of time but 

produced different predictions, confirming that our model is flawed. 
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Table 7: A list of hyperparameters in the 1D CNN light intensity submodel.  

Model  Hyperparameters 

1 Convolution layer        Kernel size = 1, filters = 64, strides = 1, padding = valid, activation = relu 

 

Poolling layer    method: maxpooling, pool size: 2, stride = 2, padding = valid Fully 

 

connected layer Neurons = 50, activation function = relu 

 

2 Convolution layer        Kernel size = 1, filters = 64, strides = 1, padding = valid, activation = relu 

 

Convolution layer        Kernel size = 1, filters = 32, strides = 1, padding = valid, activation = relu 

 

Poolling layer    method: maxpooling, pool size: 2, stride = 2, padding = valid Fully 

 

Connected layer Neurons = 64, activation function = relu 

 

Dropout rate=0.2 

Connected layer Neurons = 50, activation function = relu 

 

3 Convolution layer        Kernel size = 1, filters = 64, strides = 1, padding = valid, activation =sigmoid 

 

Poolling layer    method: maxpooling, pool size: 2, stride = 2, padding = valid Fully 

 

Convolution layer        Kernel size = 1, filters = 50, strides = 1, padding = valid, activation =relu 

 

Poolling layer    method: maxpooling, pool size: 2, stride = 2, padding = valid Fully 

 

Connected layer Neurons = 128, activation function = relu 

 

4 Convolution layer        Kernel size = 1, filters = 64, strides = 1, padding = valid, activation =sigmoid 

 

Poolling layer    method: maxpooling, pool size: 2, stride = 2, padding = valid Fully 

 

Convolution layer        Kernel size = 1, filters = 50, strides = 1, padding = valid, activation =relu 

 

Poolling layer    method: maxpooling, pool size: 2, stride = 2, padding = valid Fully 

 

Convolution layer        Kernel size = 1, filters = 32, strides = 1, padding = valid, activation =sigmoid 

 

Poolling layer    method: maxpooling, pool size: 2, stride = 2, padding = valid Fully 

 

Connected layer Neurons = 50, activation function = relu 

 

Connected layer Neurons = 50, activation function = relu 
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When dealing with non-linear regressions, convolutional neural networks (CNNs) have certain 

limitations that should be considered: 

 Modeling complexity: CNNs are primarily designed for image classification tasks and may 

not be the most suitable choice for regression problems. The complex nature of CNN 

models can make it challenging to capture intricate non-linear relationships within 

regression data. 

 Data representation: CNNs excel at extracting local spatial features in images, but this 

may not be optimal for representing regression data, which often involves more abstract and 

global interactions among variables. 

  Sample size: CNNs typically require a large amount of data to achieve reliable results. If 

the regression dataset is relatively small, it can be difficult to train a CNN model that is robust 

and generalizable. 

 Architecture selection: The performance of a CNN model heavily relies on the chosen 

architecture, including the number of layers, filter sizes, activation functions, etc. If the 

architectures you have experimented with did not yield satisfactory results, it may be 

necessary to reconsider and fine-tune these architectural choices. 

It is important to note that these critiques do not imply that CNNs are ineffective for non-linear 

regressions. However, they highlight the need for careful adaptation and optimization to achieve 

reliable results in regression tasks. Exploring alternative approaches, such as LSTM, may be 

beneficial depending on the specific characteristics of your dataset. 

c.b) Long Short Term memory models  

1) LSTM material mass sub-model  

 

Figure 38: LSTM material mass sub-model. 
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Figure 39: Experimental and prediction LSTM sub-model for material mass. 

Table 8: A list of hyperparameters in LSTM material mass submodel.  

Model  Hyperparameters 

 LSTM        Neurons = 50, activation function = tanh 
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Connected layer Neurons = 50, activation function = linear 
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2) LSTM pollutant concentration sub-model  

 

 

Figure 40 : LSTM pollutant concentration sub-model. 

 

Figure 41: Experimental and prediction LSTM sub-model for pollutant concentration. 
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Table 9: A list of hyperparameters in LSTM pollutant concentration submodel.  

Model  Hyperparameters 

 LSTM        Neurons = 50, activation function = tanh 

 

LSTM   Neurons = 50, activation function = tanh 
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Connected layer Neurons = 50, activation function = linear 
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Connected layer Neurons = 50, activation function = linear 

 

3) LSTM light intensity sub-model  

 

Figure 42: LSTM light intensity sub-model. 
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Figure 43: Experimental and prediction LSTM sub-model for light intensity. 

Table 10: A list of hyperparameters in LSTM light intensity submodel.  

Model  Hyperparameters 

 LSTM        Neurons = 50, activation function = tanh 
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         d)Model Evaluation: 

We assessed and validated the model's effectiveness using performance metrics. 

i. Mean Squared Error (MSE): It represents the average of the squared difference between 

the actual values and the predicted values in the dataset. It measures the variance of the 

residual values. It is given by Equation 7. 

 

ii. Mean Absolute Error (MAE): It represents the average of the absolute difference between 

the actual values and the predicted values in the dataset. It measures the average of the 

residual values in the dataset. It is given by Equation 8. 

 

iii. Root Mean Square Error (RMSE): It measures the standard deviation of the residuals. It is 

given by Equation 9. 

 

Table 11: The detailed error rates for each LSTM are as follows: 

Model  err MSE MAE RMSE 

Material mass 0.005 0.002 0.0003 

Pollutant concentration 0.005 0.003 0.0001 

Light intensity 0.004 0.001 0.0002 

 

e)Output Generation: Once the models have been trained and evaluated, they can be deployed to 

generate useful outputs or predictions based on new input data. we generate visual representations, 

such as graphs, to present and interpret the results obtained from the model.  

Interpolation refers to the process of estimating values within a known range of data points. It 

involves using the existing data points to infer or predict values at intermediate positions. In other 

words, interpolation fills in the gaps between observed data points by assuming a smooth or 
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continuous relationship between them. It is commonly used when there is missing or incomplete 

data within a given range. 

Extrapolation, on the other hand, involves estimating values outside the known range of data points. 

It is the process of extending the trend or pattern observed in the existing data beyond the available 

range. Extrapolation assumes that the observed trend will continue in the same manner beyond the 

existing data points. However, it is important to note that extrapolation carries a higher level of 

uncertainty and can be less reliable compared to interpolation, especially when making predictions 

far outside the range of the observed data. 

 

Figure 44: Predictions of LSTM model. 

e) Feedback Loop: In certain cases, the system may incorporate a feedback loop where the 

generated outputs provide feedback to enhance the overall system performance. This may involve 

retraining the models with new data, adjusting parameters, or implementing system-level changes 

based on observed results. 
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Overall, the system architecture follows a cyclical process, commencing with data input, followed by 

processing, training, evaluation, and output generation. This iterative approach facilitates continuous 

learning and improvement of the system's performance over time. 

     User interface  

Following the evaluation and confirmation of LSTM's suitability for this complex non-linear 

regression problem, we have implemented the model within a user-friendly interface to enhance its 

usability and accessibility. 

This interface consists of four buttons, each leading to a separate interface based on the user's specific 

needs. 

 

 

Figure 46: user interface. 
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3.5 Conclusion 

We have developed and validated a deep learning model capable of solving a complex nonlinear 

problem. The model was effective in both the training and validation phases, demonstrating the ability 

to use LSTM for nonlinear regression. 

Our modeling approach allows for time and cost savings. 

This work leads to the conclusion that LSTM is a promising modeling method that can provide a 

significant solution to nonlinear challenges. 
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Conclusion 

The field of Machine Learning and Artificial Intelligence witnessed a surge in interest with the 

emergence of neural networks. These networks, equipped with efficient learning methods and 

network structures, became widely utilized. However, over time, the excitement around neural 

networks diminished. 

It was in 2006 that Hinton et al. introduced a groundbreaking concept called Deep Learning, which 

revolutionized the field. Deep Learning builds upon the foundations of artificial neural networks, 

enabling the exploration of complex non-linear problems. 

This study delves into the realm of deep learning, focusing on its application in solving non-linear 

problems. By selecting the prediction of water pollutant degradation lifetime as a real-world problem, 

it demonstrates the efficacy of deep learning in tackling complex challenges. The findings of this 

research open up new and fascinating avenues, serving as a valuable reference for future research and 

implementation in relevant domains. 
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