
PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA MINISTRY
OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

IBN KHALDOUN UNIVERSITY - TIARET

Thesis
Introduced to :

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

To obtain the degree of :

MASTER

Specialty: Computer science Engineering

Presented by:

Merouane Mohamed Elamine

On the subject

Publicly defended on 4 /7/ 2022 in Tiaret before the jury composed of:

Mr BENDAOUD Mebarek Grade University PR President

Mr SIABDELHADI Ahmed Grade University MAA Supervisor

Mr ALEM Abdelkader Grade University MAA Examiner

2022-2023

�
	
jÊÓ

ÈðA
	
J
�
�
�
K .H. ñ�Am

Ì'@ ÐñÊ« QK
ñ¢
�
�ð

�
Hñm�'. ú

	
¯

�
HA

	
KAJ
J. Ë @

�
HA«ñÒm.

× ZA
�
�
	
�B

@ �Qº
�
JJ.Ó @ �PA£@

�
éJ
ÒÊªË@

�
èQ»

	
YÖÏ @ è

	
Yë ÐY

�
®
�
K

	
àðAª

�
JË @ð YJ
kñ

�
JË @ H. AJ

	
«ð

�
éJ
ËAª

	
®ËAK.

�
é
�
®Êª

�
JÖÏ @

�
HAJ
ËA¾

�
�B

@

�
ém.
Ì'AªÖÏ

	
¬YîE
 ø

	
YË@ð hQ��

�
®ÖÏ @ PA£B

@

�
éJ
ÒÊªË@

�
èQ»

	
YÖÏ @

	á�
ÓY
	
j
�
J�ÒÊË hA

�
JK

�
IJ
k ,

�
éÊ
�
JÓ

B@

�
é¢�@ñK. h.

	
XAÒ

	
JË @

�
HCK
ñm

�
�
' úÎ« PA£B

@ YÒ

�
JªK
 . ø

YJ
Ê

�
®
�
JË @ i. î

	
DË @ ú

	
¯ XðYjÖÏ @

AêÓ@Y
	
j
�
J�@

�
èXA«@

ð h.

	
XAÒ

	
JË @

�
é»PA

�
�Ó iJ

�
�K
 A

�
«Xñ

�
J�Ó PA£B

@ ÉÒ

�
��
 . Ñî

�
EAg. AJ

�
Jk@ úÍ@

@
�
XA
	
J
�
��@

�
HCK
ñj

�
JË @ YK
Ym

�
�
'

	áÓ h.
	
XAÒ

	
JË @ ñÒÒ�Ó 	áºÒ

�
JK

�
IJ
k ,

�
I

	
KQ
�
�
	
KB

@ Q�.«

�
éJ

	
KðQ

�
�ºË@

�
é�

	
JÓ ÈC

	
g 	áÓ

	
àðAª

�
JË @ Q�
��

�
K Õ

�
æK
 .

�
HCK
ñj

�
JË @ð

ÈC
	
g 	áÓ é

�
KZA

	
®»ð PA£B

@
�
éJ
ËAª

	
¯ Õæ

J

�
®
�
K Õ

�
æK
 .

�
HA

	
KAJ
J. Ë @

�
HA«ñÒm.

× �
èXñk.

	á�
�m�
�
'ð

�
HA

	
¢kCÓ Õç'
Y

�
®
�
Kð A

�
ªÓ ÉÒªË@

¨Qå��
 ÉÓA
�
� PA£@

Õç'
Y

�
®
�
K ù

ë

�
èQ»

	
YÒÊË

�
éJ
��

KQË @

�
éÒëA�ÖÏ @ .

	á�
ÓY
	
j
�
J�ÖÏ @

�
HA

	
¢kCÓð

�
éËAmÌ'@

�
HA�@PXð H. PAj.

�
JË @

.H. ñ�Am
Ì'@ ÐñÊ« ©Ò

�
Jm.
× 	áÖÞ

	
� 	

àðAª
�
JË @ 	P 	QªK
ð ,

�
è

A
�
�
	
�ÖÏ @

�
HA«ñÒj. ÖÏ @

�
èXñk.

	P 	QªK
ð ,
�
HA

	
KAJ
J. Ë @

�
HA«ñÒm.

× ZA
�
�
	
� @

�
éJ
ÊÔ

«

�
ék.

	
YÒ

	
JË @ ú

	
¯ Ð@Y

	
j
�
J�@

�
èXA«@

, ÈA

�
JÖÏ AK. h.

	
XñÖ

	
ß ÉK
ñm

�
�
' , A

�
JJ
Ó h.

	
XñÖ

	
ß , ú

æ�Y

	
Jë h.

	
XñÖ

	
ß :

�
éJ
��

KQË @

�
HAÒÊ¾Ë@

�
éJ

	
KðAª

�
JË @

1 / 82

Abstract

This thesis proposes an innovative framework for dataset creation in computer science research and develop-

ment. It addresses inefficiencies, lack of standardization, and limited collaboration in traditional approaches.

The framework utilizes model transformations by examples, allowing users to define transformations based

on their requirements. It includes a repository for sharing and reusing models and transformations. Collab-

oration is facilitated through an online platform, enabling modelers to work together, provide feedback, and

enhance dataset quality. The framework’s effectiveness and efficiency are evaluated through experiments,

case studies, and user feedback. The main contribution is a comprehensive framework that accelerates

dataset creation, enhances dataset quality, and fosters collaboration within the computer science community.

Keywords: Model driven-engineering, Meta-model, Model transformation by example, reuse in

collaborative modeling

2 / 82

Contents

Abstract 1

Dedication 11

Acknowledgments 12

1 General Introduction 13

1.1 Research Context . 13

1.2 Problem Statement . 14

1.3 Contributions . 15

1.4 Thesis structure . 16

2 Related work 17

2.1 Introduction . 17

2.2 Basic concepts . 17

2.2.1 Model-driven engineering (MDE) . 18

2.2.2 Model . 18

2.2.3 Meta-model . 19

2.2.4 Meta-meta-model . 19

2.3 Model transformation . 20

2.3.1 Exogenous Transformation . 21

3 / 82

2.3.2 Endogenous Transformation . 21

2.3.3 Transformation approaches . 22

2.4 Why example . 23

2.4.1 Example-based approaches . 25

2.4.2 Programming by example . 25

2.5 Model transformation by example (MTBE) . 25

2.5.1 Transformation Rules . 27

2.6 Collaboration . 33

2.7 Reuse . 34

2.8 Conclusion . 34

3 Contribution 35

3.1 Introduction . 35

3.2 Examples of modeling language . 35

3.2.1 Class Diagram (UML): . 35

3.2.2 Relational schema diagram: . 36

3.2.3 Systems Modeling Language (SysML): . 37

3.2.4 Petri Net : . 38

3.2.5 Sequence diagram (UML): . 39

3.3 Motivating Example . 41

3.4 Coding the source and target model . 48

3.5 Meta Modeling via the visual editor . 49

3.5.1 Meta-model parts . 50

3.5.2 Gathering meta-model parts . 54

3.6 Conclusion . 55

4 Implementation of our application 57

4.1 Introduction . 57

4.2 Client-server architecture . 57

4 / 82

4.3 Technologies used . 58

4.3.1 Front-end . 58

4.3.2 Back-end . 59

4.3.3 DataBase . 61

4.4 Application Working . 61

4.4.1 MVC design paradigm . 61

4.4.2 Illustrate the application . 64

4.5 Conclusion . 75

5 General conclusion 77

5.1 Conclusion . 77

5.2 Perspectives . 78

5 / 82

List of Tables

2.1 Model transformation approaches by example . 32

6 / 82

List of Figures

2.1 Modling in MDE . 19

2.2 MTBE Process for Exogenous Transformations . 21

2.3 MTBE Process for Endogenous Transformations . 22

2.4 An example of traces between a class diagram and an entity-relationship model 26

2.5 Concept map of MTBE approaches . 30

3.1 Class Diagram (UML) components: concepts, constraints, operation, and relationships . . . 36

3.2 Relational schema diagram components: concepts, constraints, operation, and relationships . 37

3.3 SysML components: concepts, constraints, operation, and relationships 38

3.4 Petri Net components: concepts, constraints, operation, and relationships 39

3.5 Sequence diagram (UML) components: concepts, constraints, operation, and relationships . 40

3.6 Modeling Languages components: concepts, constraints, operation, and relationships 41

3.7 Example of source model (SM) . 43

3.8 Scenario of target model (TM1) . 45

3.9 Scenario of target model (TM2) . 46

3.10 Scenario of target model (TM3) . 47

3.11 Example CDSy3 corresponding to a fragment of TMy3 . 49

3.12 General Meta-model for Modeling Languages . 50

3.13 User part . 51

3.14 Model Transformation Part . 52

7 / 82

3.15 Heuristic part . 53

3.16 Source and Target Model Part . 54

3.17 Gathering the meta-model parts to build the final form . 55

4.1 ReactJs . 59

4.2 ExpressJs . 60

4.3 ExpressJs . 60

4.4 MongoDB . 61

4.5 MVC Architecture Pattern . 62

4.6 File Structure based on MVC . 63

4.7 Register/Login page . 64

4.8 Login alert . 64

4.9 User Dashboard . 65

4.10 Dashboard notification . 65

4.11 Initialize model . 66

4.12 Describe the model . 67

4.13 Create Class . 67

4.14 Create Table . 68

4.15 Create Relationships between classes . 68

4.16 Relationships inform alert . 69

4.17 Relationships error alert . 69

4.18 Search page . 70

4.19 Target Model Representation page . 70

4.20 Table Representation . 71

4.21 Source Model Representation page . 71

4.22 Class Representation . 72

4.23 coding a fragment from the model . 73

4.24 Collaboration page . 73

8 / 82

4.25 Edit page . 74

4.26 Class manipulation . 74

4.27 Table manipulation . 75

4.28 Relationships manipulation . 75

9 / 82

Acronyms

MTBE Model Transformation By Examples

MDE Model Driven Engineering

MT Model Transformation

MDD Model Driven Development

ER Entity Relationship

OCL Object Constraints Language

ECL Embedded Constraint Language

CoSE Software engineering collaboration

VCS Version Control System

ILP Inductive Logic Programming

ARC Relational Analysis of Concepts

PG Programmation Genitic

10 / 82

Dedication

I dedicate this thesis to:

All my family members. Dad may Allah bless his soul, Mom may Allah grant her health and long

life. My teachers, colleagues, and friends: Cherif, Youcef, Oussama, Farouk, Khaled, Ali, Habib and

AbdelBasset, and Karrouch achraf and Toumi Abdelrahman those who helped me to achieve this work.

11 / 82

Acknowledgments

First of all, praise be to God Almighty and thanked Him for His blessings throughout my research work,

which allowed me to complete it successfully. I have tested your guidance day in and day out; you are the

one who allows me to finish my studies. I will continue to trust you for my future

I would like to express my gratitude and special thanks to my supervisor Mr. Siabdelhadi Ahmed who

made this work possible and whose office door was always open whenever I encountered a problem or had

any questions about my research or writing, his guidance and advice carried me through all stages of writing

my project. It was a great honor and privilege that I work under his supervision. I have been inspired by his

dynamism, vision, honesty, and motivation. Thank you sir for your patience with me.

I would like to acknowledge the efforts and contributions of both Mr. Bendaouad Mebarek and Mr.

Alem Abdelkader , as juries in my thesis defense by giving their expertise and constructive criticism have

played a pivotal role in shaping the final outcome of my thesis. Their support and guidance have been

invaluable to me, and I am truly honored to have had the opportunity to benefit from their knowledge and

expertise.

Thank you all

12 / 82

Chapter 1

General Introduction

1.1 Research Context

The field of software engineering is focused on the creation and advancement of intricate, software-based

systems. This encompasses the exploration of theories, techniques, and resources for outlining, structuring,

examining, and up-keeping software systems. Today’s, these software systems have grown considerably

in size, complexity, and importance where model transformation is often used in software engineering to

transform one model into another as part of the software development process. For example, a high-level

design model may be transformed into a low-level implementation model.

Model transformation (MT) refers to the process of converting one model into another model. This can

involve changing the format, structure, or content of the model to better suit a particular purpose or system.

The context for model transformation can vary depending on the specific use case like

• software engineering : we mentioned above, and this is what we will focus on.

• Business process modeling : model transformation serves as a tool to convert a business process

model into a workflow model that can be executed.

• Data integration : Model transformation is also used in data integration to transform data models

from different sources into a common format for analysis or processing.

13 / 82

The transformation of models (MT) has a significant role in facilitating effective communication and

collaboration between different parties, increasing the interoperability of systems, and supporting the process

of model-driven development(MDD).

1.2 Problem Statement

In the field of computer science, the process of creating datasets for research and development purposes

is often time-consuming, resource-intensive, and prone to inconsistencies. Existing approaches for dataset

creation lack a streamlined methodology that combines model transformations by examples, model reuse,

and collaboration between modelers. This results in a fragmented and inefficient dataset creation process,

hindering the progress and effectiveness of computer science research.

Furthermore, the absence of a platform that supports the creation of datasets through model transfor-

mations by examples and facilitates collaboration and model reuse limits the sharing and utilization of best

practices, hindering the development of high-quality and diverse datasets. This creates a significant chal-

lenge for researchers, practitioners, and the broader computer science community, as it restricts the potential

impact and advancement of their work.

Therefore, the problem addressed in this thesis is the lack of a comprehensive framework that enables

the creation of datasets from model transformations by examples, promotes the reuse of existing models

and transformations, and facilitates collaboration among modelers. This problem impedes the efficient and

effective creation of datasets and hampers the ability of the computer science community to leverage collec-

tive knowledge, leading to suboptimal research outcomes and a lack of standardized approaches for dataset

creation.

By addressing this problem, the thesis aims to provide a solution that empowers researchers and practi-

tioners to create datasets more efficiently, encourages the reuse of models and transformations, and fosters

collaboration among modelers. The development of such a framework would enhance the quality, diver-

sity, and availability of datasets, enabling the computer science community to accelerate research, validate

hypotheses, and drive innovation in various domains.

14 / 82

1.3 Contributions

The main contribution of this thesis is to develop a framework that enables the creation of datasets from

model transformations by examples. The framework will empower users to define model transformations

based on their individual perspectives or reuse existing transformations created by others. Additionally, the

thesis aims to facilitate collaboration among users, allowing them to collectively build and refine datasets

through the reuse and collaborative enhancement of each other’s models. By achieving these objectives, the

thesis seeks to contribute to the computer science community by providing a platform that supports dataset

creation, encourages model reuse, and fosters collaboration.

Expected Contributions:

This thesis is expected to make several contributions to the field of model-driven engineering and model

transformation:

1. Dataset Creation through Model Transformations by Examples: The thesis will explore tech-

niques and methodologies for generating datasets through model transformations by examples. Users

will be able to define transformations based on their individual perspectives, specifying the desired

output datasets. This approach leverages the intuitive nature of model transformations by examples,

allowing users to express their intentions and requirements in a more accessible manner.

2. Reuse of Existing Model Transformations: The framework will enable users to reuse model trans-

formations created by others. By providing a repository or a platform for sharing and accessing

pre-defined transformations, the thesis will promote the reuse of models and transformations within

the community. This reuse aspect enhances efficiency and accelerates the dataset creation process, as

users can leverage existing transformations as building blocks for their own datasets.

3. Collaboration and Community Building: The thesis will facilitate collaboration between users by

providing a platform or online environment where they can collaborate, share insights, and collectively

refine their models and datasets. Users will be able to collaborate on transforming models, exchange

ideas, provide feedback, and enhance the quality and reliability of the generated datasets. This col-

15 / 82

laborative aspect fosters community building within the computer science domain and encourages the

collective advancement of dataset creation techniques.

1.4 Thesis structure

Our thesis is organized into three chapters:

1. Chapter 1: General introduction.

2. Chapter 2: Model Driven Engineering, model transformation, and model transformation by exam-

ples.

3. Chapter 3: Presentation of approach.

4. Chapter 4: Implementation of application.

5. Chapter 5: Finally, the last part presents a synthesis of our contributions, the limits, and the perspec-

tives of our proposal.

16 / 82

Chapter 2

Related work

2.1 Introduction

Model Driven Engineering (MDE), first used mainly in the field of software systems, has led to several

significant improvements in the development process of software systems has allowed several significant

improvements in the development process of complex systems by focusing on complex systems by focusing

on more abstract concerns around the models used than on classical programming. It is therefore a form

of generative engineering in which all or part of an application is generated from models. A model is an

abstraction, a simplification of a system that is needed not only to understand the modeled system but also

to guarantee its correct operation.

In this chapter, we will present the generalities of model transformation.

2.2 Basic concepts

This section aims to give a simplified view of the key concepts and terminology related to MDE, by defining

some common concepts such as a model, a meta-model, and a meta-meta-model. What is the relationship

between these concepts?

17 / 82

2.2.1 Model-driven engineering (MDE)

Model Driven Engineering (MDE) is an innovative software engineering approach that emphasizes the use

of models in software development and maintenance procedures. The primary aim of this methodology is

to elevate the level of abstraction in software development, shifting the focus from code-centric to model-

centric operations. This is due to the growing complexity of systems, which necessitates a higher level of

abstraction [1].

Is a technique that aims to reduce the complexity of developing and managing modern applications

through the use of models. Despite being quite a methodology, it is gaining increasing interest from the

industry, which considers it a possible solution to the ever-increasing indicators of quality, efficiency and

maintainability. It allows you to treat models as data and then use them as primary units of the development

process.

According to Rothenberg [2]: ”Modeling in its broadest sense is the cost effective use of something in

place of something else for some purpose. It allows us to use something that is simpler, safer, or cheaper

than reality instead of reality for some purpose. A model represents reality for the given purpose; the model

is an abstraction of reality in the sense that it cannot represent all aspects of reality. This allows us to deal

with the world in a simplified manner, avoiding the complexity, danger and irreversibility of reality”.

This definition perfectly describes the principles and benefits of modeling. A model is an abstraction. It

is a system simplification sufficient to understand the modeled system. Models simplify the management of

systems by presenting requirements and problems in different views. For instance, a class diagram facilitates

the comprehension of an application independently from its platform.

This definitions above provides a broad understanding of the principles and practical applications of

models. Moving forward,we will focus on the meanings of models in the context of MDE.

2.2.2 Model

Definition 1: ”A model is a description of (part of) a system written in a well-defined language”[3].

According to the definition, the notion of model explicitly makes reference to the notion of well defined

language which defines the language concepts of a model: such a language is defined by a meta-model.

18 / 82

2.2.3 Meta-model

Definition 2: ”A meta-model is a model that defines the language for expressing a model”[3]. To handle a

model, which is the goal of MDE, the language of the model must be defined. The models written with this

language are said to conform to a meta-model. A meta-model is also considered as a model. It conforms to

a meta-model: the meta-meta-model.

2.2.4 Meta-meta-model

Definition 3: ”A meta-meta-model is a model that defines the language for expressing the meta-modeling

languages. A meta-meta-model may conform to itself. Thus, each modeling platform has a meta-meta-model,

e.g, Ecore [4] is the meta-meta-model of Eclipse, or the meta-object family (MOF) [5] is the meta-model

defined by the Object Management Group (OMG), etc.”

Figure 2.1: Modling in MDE

19 / 82

Figure 2.1 shows an example of modeling. Level M0 consists on the real objects (a person). Level M1

contains the representation which describes the concept of Person with its attribute name. The meta-model

of this representation is shown at level M2. It describes the concepts used in M1 (Table, Attribute). These

concepts are in turn defined at level M3 which presents the meta-meta-model.

MDE encourages models to have a significant role in the development process of software. Models

are written according to meta-models that represent the concepts of the modeling language. For instance,

the UML class diagrams define the concepts of class and attribute, the relational schema models define the

concepts of table and column, etc.

2.3 Model transformation

In 2003 kleppe et al [3] provide the following definitions of Model transformation :

Definition 4: ”A transformation is the automatic generation of a target model from a source model

according to a transformation definition”.

Definition 5: ”A transformation definition is a set of transformation rules that together describe how

a model in a source language can be transformed into a model in a target language”.

Definition 6: ”A transformation rule is a description of how one or more constructs in a source lan-

guage can be transformed into one or more constructs in a target language”.

A model transformation program takes as input a model corresponding to a given source meta-model

and produces as output another model corresponding to a target meta-model. A transformation program

consisting of a set of rules should itself be considered a model. Therefore, it has a corresponding metamodel,

which is an abstract definition of the transformation language used.

we distinguish between two model transformation categories:

20 / 82

2.3.1 Exogenous Transformation

Exogenous transformations are used both to exploit the constructive nature of models in terms of vertical

transformations,thereby changing the level of abstraction and building the bases for code generation, and for

horizontal transformation of models that are at the same level of abstraction [6]. Horizontal transformations

are of specific interest to realize different integration scenarios, e.g., translating a UML class model into an

Entity Relationship (ER) model. In vertical and horizontal exogenous transformations, the complete output

model has to be built from scratch.[7]

Figure 2.2: MTBE Process for Exogenous Transformations

2.3.2 Endogenous Transformation

In contrast to exogenous transformations, endogenous transformation only rewrite the input model to pro-

duce the output model. For this, the first step is the identification of model elements to rewrite, and in the

second step these elements are updated, added, and deleted. Endogenous transformations are applied for

different tasks such as model refactoring, optimization, evolution, and simulation, to name just a few.[7]

21 / 82

Figure 2.3: MTBE Process for Endogenous Transformations

2.3.3 Transformation approaches

Direct-Manipulation Approaches. These approaches offer an internal model representation plus

some API to manipulate it. They are usually implemented as an object-oriented framework, which may

also provide some minimal infrastructure to organize the transformations (e.g., abstract class for transforma-

tions). However, users have to implement transformation rules and scheduling mostly from scratch using a

programming language such as Java. Examples of this approach include Jamda and implementing transfor-

mations directly against some MOF-compliant API (e.g., JMI). [8]

Relational Approaches. This category groups declarative approaches where the main concept is

mathematical relations.

The basic idea is to state the source and target element type of a relation and specify it using constraints.

[8]

Graph-Transformation-Based Approaches. This category of model transformation approaches

draws on the theoretical work on graph transformations. In particular, these approaches operate on typed,

attributed, labeled graphs [AEH+96], which is a kind of graphs specifically designed to represent UML-like

models. Examples of graph-transformation approaches to model transformation include VIATRA, ATOM,

22 / 82

GreAT, UMLX, and BOTL.

Similar to relational approaches, graph-transformation approaches are capable of expressing model trans-

formation in a declarative manner. However, the provision of specialized facilities such as graph patterns

and graph pattern matching differentiates graph-transformation approaches from the relational ones. [8]

Structure-Driven Approaches. Approaches in this category have two distinct phases: the first phase

is concerned with creating the hierarchical structure of the target model, whereas the second phase sets the

attributes and references in the target. The overall framework determines the scheduling and application

strategy; users are only concerned with providing the transformation rules.

An example of the structure-driven approach is the model-to-model transformation framework provided

by OptimalJ. The framework is implemented in Java and provides so-called incremental copiers that users

have to subclass to define their own transformation rules. The basic metaphor is the idea of copying model

elements from the source to the target, which then can be adapted to achieve the desired transformation effect.

The framework uses reflection to provide a declarative interface. A transformation rule is implemented as a

method with an input parameter whose type determines the source type of the rule, and the method returns

a Java object representing the class of the target model element. Rules are not allowed to have side effects

and scheduling is completely determined by the framework. [8]

Operational approach. It is similar to direct manipulation, but provides more specialized support for

model transformations. A typical solution for this class is to extend The meta-modeling formalism used and

the way to express computations. An example is extending query languages such as OCL with imperative

constructs. Examples of systems in this category are Embedded Constraint Language (ECL) [9].

2.4 Why example

The significance of examples in human learning process cannot be overstated. Various learning style theories

have been developed that rely on examples to facilitate understanding. To learn more about the most popular

learning style theories today

23 / 82

All by-example methods share an emphasis on ease of use and reduced learning curves. the by-example

paradigm dates back to 1970, with its roots described in ”Learning Structure Descriptions from Examples”

[10]. In fact the main idea of ”Why examples ?”, is to give the software examples of how things are done or

what the user expects, and let it do the work automatically.

Our work is based on using and reusing past transformation examples. Various “by-example” approaches

have been proposed in the software engineering literature in order to achieve collaboration in the field of

engineering.

Examples are essential in understanding modal transformation as they help to illustrate the transforma-

tion process and demonstrate the practical applications of the technique.

Here are some of the reasons why examples are important in modal transformation:

• Illustrating the transformation process: Examples help to show the transformation process from

start to finish, making it easier to understand how the technique works. Seeing the transformation in

action can help to clarify any confusing or abstract concepts.

• Demonstrating the practical applications: Examples can show how modal transformation can be

used in real-world situations. This can help to illustrate the benefits of the technique and its potential

uses.

• Providing a basis for comparison: Examples can be used to compare different transformation

techniques or to compare the results of modal transformation to other methods. This can help to

validate the accuracy of the technique and provide a better understanding of its limitations.

• Encouraging problem-solving skills: Examples provide an opportunity for learners to practice

applying modal transformation to solve problems. This can help to develop problem-solving skills

and improve understanding of the technique.

Overall, examples are an important tool in understanding modal transformation, helping to clarify the

transformation process, demonstrate practical applications, provide a basis for comparison, and encourage

problem-solving skills.

24 / 82

2.4.1 Example-based approaches

Figure 2.4 shows a kind of transformation based on a series of examples. These transformation traces consist

of an example of pairs with three identified traces (not all traces are shown). For each trace, the target

fragment (bottom) has been determined as corresponding to the source fragment (top). The transformation

mappings can be identified by an expert during the design process or retrieved (semi-) automatically using a

automatically using an example-based computer processing.[11].

2.4.2 Programming by example

Programming by example is a way to program a software system in its own user interface. its own user

interface. The user of the system writes a program by giving an example of what the program should do.

The system records the sequence of actions and can execute it again. The programming by example allows

the user to create programs without doing conventional programming. conventional programming. A user

operates on certain data when creating a program for example, but does not necessarily tell the system why

this data was selected. The user can provide this missing information by using data descriptions, which

are program operands that specify how to select the data to be data to use when running the program. The

system automatically provides reasonable default data descriptions when registering a program; if necessary,

the user program; if necessary, the user can later modify the descriptions to reflect his or her reflect their true

intentions.[11].

2.5 Model transformation by example (MTBE)

MTBE works to automatically derive a transformation program from a set of examples provided as input.

Each sample is a model pair consisting of a source model and a target model. In addition to examples,

the majority of MTBE approaches exploit fine traces of transformation. These traces are many-to-many

links that associate a group of n source elements with a group of m target elements. In each trace, the

target fragment (bottom of the figure) is associated with the source fragment (at the top of the figure).

Transformation traces are usually defined by domain experts.

25 / 82

Figure 2.4: An example of traces between a class diagram and an entity-relationship model

Process The main idea of MTBE for exogenous transformations is the semi-automatic generation of

transformations from so-called correspondences between source and target model pairs. The underlying

process for deriving exogenous model transformations from model pairs is depicted. This process, which is

largely the same for all existing approaches, consists of five steps grouped in two phases[7].

Phase 1: Modeling In the first step, the user specifies semantically equivalent model pairs. Each pair

consists of a source model and a corresponding target model. The user may decide whether she specifies a

single model pair covering all important concepts of the modeling languages, or several model pairs whereby

each pair focuses on one particular aspect. In the second step, the user has to align the source model and the

target model by defining correspondences between source model elements and corresponding target model

elements. For defining these correspondences, a correspondence language has to be available. One impor-

26 / 82

tant requirement is that the correspondences may be established using the concrete syntax of the modeling

languages. Hence, the modeling environment must be capable of visualizing the source and target models

as well as the correspondences in one diagram or at least in one dedicated view [7].

Phase 2: Configuration and Generation After finishing the mapping task,a dedicated reasoning al-

gorithm is employed to automatically derive metamodel correspondences from the model correspondences.

The automatically derived metamodel correspondences might not always reflect the intended mappings.

Thus, the user may revise some metamodel correspondences or add further constraints and computations.

Note that this step is not foreseen in all MTBE approaches, because it may be argued that this is contradicting

with the general by-example idea of abstracting from the metamodels.

Nevertheless, it seems to be more user-friendly to allow the modification of the metamodel correspon-

dences in contrast to modifying the generated model transformation code at the end of the generation process.

Finally, a code generator takes the metamodel correspondences as input and generates executable model

transformation code [7].

2.5.1 Transformation Rules

Varró [12] originally put up an MTBE method in 2006. In his work, he starts with a series of archetypal

transformation cases that have linked models and then develops transformation rules from them.

The user provides the examples. The analysis of the mappings between the source and target example

models, as well as their corresponding meta-models, is the first step in this semi-automated and iterative

procedure. An ad hoc algorithm is eventually used to construct the transformation rules.

Varró’s method can only provide 1-to-1 transformation rules, which is a significant drawback given that

most transformation issues call for n-to-m rules. The rules produced by this method can evaluate if certain

components in the source models are present or not. Such a strong sense of expression, while sufficient for

many transformation issues, falls short for many widely used issues, such as the conversion of a UML Class

diagram into a Relational model. Although source and destination model examples from earlier manual

transformations might be used, it is challenging to ensure that the embedded model structures have fine-

grained semantic similarity. Lastly, Varró chose not to share the validation data, thus we are unaware of how

27 / 82

the method would operate in a real-world situation.

A method that generates 1-to-1 transformation rules based on transformation examples and their traces

was put out by Wimmer et al [13]. in 2007 in [7]. With the exception of Wimmer’s ability to build executable

ATL [13] rules, the derivation procedure is identical to that suggested by Varró in [12]. As the majority of

the current transformation issues cannot be solved, providing only 1-to-1 transformation rules is a significant

restriction on the application of the technique. Again, the absence of a validation stage prevents evaluation

of how the strategy operates in real-world scenarios.

In 2008, Strommer et al [14]. expanded on Wimmer’s earlier strategy by allowing 2-to-1 rules in a

pattern-matching-based derivation process. In terms of implementation, the authors created a model trans-

formation Eclipse plug-in prototype. This contribution, like the earlier ones, has not been tested in actual

conditions, therefore it is still unknown how well it will work in actual circumstances.

Kessentini et al [15] use analogies to perform a transformation. Unlike the contributions cited above, this

approach does not produce transformation rules, but rather derives the target model directly from the source

model by treating model transformation as an optimization problem. The problem as posed is addressed

using particle swarm optimization

The contribution is then further automated by Balogh et al [16] using inductive logic programming

(ILP). This new approach, although still iterative and incremental, allows for deriving more complex (n - m)

transformation rules. more complex transformation rules (of type n - m).

Another work that fits in the context of model transformations by example is that of Garcia-Magarino et

al [17] who propose an algorithm to generate n - m transformation rules, presumably in several transforma-

tion languages, from a set of interconnected source and target model pairs (decorated by traces). Like [12],

the approach uses graphs. In order to overcome the fact that some transformation languages do not allow

writing many-to-many rules, the rules are first derived in a generic transformation language before being

transformed into the desired transformation language.

Another MTBE contribution that did not initially result in transformation rules is that of Dolques et al.

[18]. This work is based on a relational analysis of concepts (ARC), a variation of the formal analysis of

ideas, to categorize the sources, targets, and entry-level correspondences. less clients Identifications are

arranged in partially ordered trill and analyzed to select the most relevant ones.

28 / 82

In 2012, Saada et al. [19], extend the work of Dolques et al. [18] by proposing a two-step rule derivation

process. In the first step, Dolques’ approach is used to learn transformation patterns from transformation ex-

amples and transformation traces. In the second step, the learned patterns are analyzed and those considered

as pertinent are selected. Selected patterns are, then, translated into transformation rules in JESS language.

As in the produced rules are n-to-m. The approach is finally tested in a ten-fold experimental setting where

precision and recall are calculated.

The most recent works in the framework of MTBE are those of Faunes et al.[20], in which programmable

genetic evolution (PG) is used to make a population of transformations evolve over several generations to

produce the desired transformation. The derivation procedure only accepts pairs of examples of source and

target models (without any signs of transformation) and outputs rules that can be executed of type n m.

The method is improved by Baki et al[21] . where the genetic program attempts to learn both the trans-

formation rules and the execution control that must be applied to them in order to construct an appropriate

transformation program simultaneously. This second version also allows for the derivation of rules.

29 / 82

Figure 2.5: Concept map of MTBE approaches

30 / 82

Summary

Table 2.1 summarizes the main aspects of the related work on general model transformation.

The table aims all the approaches that derive transformation rules use transformation example pairs and,

with the exception of one work, all of them use transformation traces. They use several derivation processes

e.g. pattern matching and heuristic searches. Less than a half of these approaches derive full operational

rules, the others do not. With the exception of two works, none of them derives n-to-m rules. None of

them, neither, are able to derive the target model by performing advanced operations like concatenating two

source model identifiers. They do not implement any kind of rule execution control different than the default

(i.e. every rule triggers when matching the source pattern) and with the exception of two contributions,

none of them presents a comprehensive validation step. The approaches that derive mappings and other

kind of equivalences, also use transformation examples with traces. One of them does not use metamodels

since it derives a transformation equivalence at a model level. They also use several derivation processes.

Both of them derive n-to-m matchings between source and target models and none of them allows advanced

operations or implements execution control. One of them performs a comprehensive validation step.

31 / 82

A
pp

ro
ac

h
A

lg
or

ith
m

In
pu

t
O

ut
pu

t
N

–M
ru

le
s

C
on

tr
ol

C
on

te
xt

V
al

ue
C

on
-

st
ra

in
ts

C
om

pl
ex

de
riv

at
io

ns

A
pp

ro
ac

he
s

by
ex

am
pl

e

V
ar

ró
[1

2]
A

d-
ho

c
E

xa
m

pl
es

an
d

Tr
ac

es
R

ul
es

1-
1

N
o

N
o

N
o

N
o

W
im

m
er

et
al

.[1
3]

A
d-

ho
c

E
xa

m
pl

es
an

d
Tr

ac
es

R
ul

es
1-

1
N

o
N

o
N

o
N

o

St
ro

m
m

er
et

al
.[1

4]
Fi

lte
ri

ng
by

pa
tte

rn
E

xa
m

pl
es

an
d

Tr
ac

es
R

ul
es

N
-M

N
o

N
o

N
o

M
en

tio
ne

d
on

ly

K
as

se
nt

in
ie

ta
l.[

15
]

O
E

P/
O

E
P-

R
S

E
xa

m
pl

es
an

d
Tr

ac
es

M
C

-
N

o
N

o
N

o
N

o

B
al

og
h

et
al

.[1
6]

PL
I

E
xa

m
pl

es
an

d
Tr

ac
es

R
ul

es
N

-M
N

o
N

o
N

o
N

o

G
ar

ci
a

et
al

.[1
7]

A
d-

ho
c

al
-

go
ri

th
m

E
xa

m
pl

es
an

d
Tr

ac
es

R
ul

es
N

-M
N

o
N

o
N

o
N

o

K
as

se
nt

in
ie

ta
l.[

15
]

O
E

P-
R

S
E

xa
m

pl
es

R
ul

es
1-

M
N

o
N

o
N

o
N

o

D
el

oq
ue

s
et

al
.[1

8]
A

R
C

E
xa

m
pl

es
an

d
Tr

ac
es

Pa
tte

rn
s

-
N

o
N

o
N

o
N

o

Sa
ad

a
et

al
.[1

9]
A

R
C

E
xa

m
pl

es
an

d
Tr

ac
es

R
ul

es
1-

M
N

o
N

o
N

o
N

o

Fa
un

es
et

al
.[2

0]
PG

E
xa

m
pl

es
R

ul
es

N
-M

N
o

N
o

N
o

N
o

B
ak

ie
ta

l.[
21

]
PG

E
xa

m
pl

es
R

ul
es

N
-M

Y
es

Y
es

N
o

N
o

Ta
bl

e
2.

1:
M

od
el

tr
an

sf
or

m
at

io
n

ap
pr

oa
ch

es
by

ex
am

pl
e

32 / 82

2.6 Collaboration

Collaboration is a critical component in the field of software engineering. This is due to the following

reasons:

• Improved quality: Collaboration can help to improve the overall quality of software. When develop-

ers work together, they can share their knowledge and expertise, identify and fix bugs more quickly,

and ensure that the software meets the highest standards of quality.

• Better problem-solving: Collaboration can also help to improve problem-solving. When developers

work together, they can bring different perspectives and ideas to the table, which can help to identify

and solve problems more effectively.

• Innovation: can also foster innovation in the software engineering field. When developers work

together, they can come up with new and creative ideas that can help to push the boundaries of what

is possible in software development.

• Increased efficiency: can also help to increase efficiency in the software development process. When

developers work together, they can divide tasks and work on different parts of the project simultane-

ously, which can help to save time and speed up the development process.

collabirative software engineering (CoSE) deals with methods, processes and tools for enhancing col-

laboration, communication, and co-ordination (3C) among team members [22].

Software engineering collaboration is model-based, software project management creates organizational

structures that encourage collaboration, and global software engineering challenges add complexity to col-

laboration. Very important to this study is the first important finding, which emphasizes that model-based

Nature of CoSE. Massive Collaboration in Software Engineering Refers to software-related artifacts (such

as UML diagrams, source code, and bug reports), most of the collaboration in software engineering is over

a set of formal or semi-formal artifacts co-workers collaborate upon.

33 / 82

2.7 Reuse

Reusing libraries and components are common practice. most programs are Created by merging several

existing libraries, ranging from standard A library of custom modules built in-house. strong cooperation

Github and other mainstream platforms and special language features, Polymorphism, for example, facil-

itates code reuse in these environments. Most software developers rely on VCS, libraries or repositories

cooperate.

Reuse dimensions. Alam et al(2018) [23]. Study Shows and Summarize the importance of reusing in

order to archive collaboration in the following points :

• Communication :category describes support for communication within the environment.

• Versioning :category describes support for managing versions of models.

• Repository :category describes support for storage, retrieval, ortracking of models.

• Search :category describes support for searching models. The tags can be any combination of the

following.

• Granularity : category describes the granularity of model that may be reused in the environment (this

category considers only environment support and not language level support).

• Relationships :category describes support for analyzing relationships of models to support, for exam-

ple, understanding of existing systems or impact of proposed changes.

2.8 Conclusion

In this chapter we have cited the different contributions in the context of learning to transform models

by example. And for the summary of these approaches, we have classified in a comparative table that

describes the most comparative table that describes the most used approaches in MTBE and summarized in

this chapter.

34 / 82

Chapter 3

Contribution

3.1 Introduction

Creating a meta-model for all modeling languages is a complex task that requires a deep understanding of

various modeling paradigms, modeling languages, and modeling tools.

3.2 Examples of modeling language

We will do a comparative analysis of the most five common modeling languages listed below in order

to extract the common concepts in each that guide us to well define the general meta-model that’s fit all

modeling languages.

3.2.1 Class Diagram (UML):

UML is a general-purpose modeling language used primarily in software engineering. It is used to visualize,

specify, construct, and document the artifacts of a software system. UML is a standardized language and is

widely used in industry.[24]

35 / 82

Figure 3.1: Class Diagram (UML) components: concepts, constraints, operation, and relationships

3.2.2 Relational schema diagram:

is used to illustrate the structure of a relational database. It represents the tables (also called relations) in

the database and shows the relationships between them through the use of lines connecting the tables. The

primary focus of a relational diagram is to demonstrate the tables and their attributes (columns), as well as

the primary and foreign key relationships between tables. It provides an overview of the database schema,

indicating the tables and their associations, but it does not provide detailed information about the attributes

or data types within each table.[25]

36 / 82

Figure 3.2: Relational schema diagram components: concepts, constraints, operation, and relationships

3.2.3 Systems Modeling Language (SysML):

SysML is a modeling language used to model complex systems. It is used to specify, design, and analyze

systems that may include hardware, software, and other components. SysML is a standard language and is

widely used in systems engineering.[26]

37 / 82

Figure 3.3: SysML components: concepts, constraints, operation, and relationships

3.2.4 Petri Net :

Petri net is a graphical modeling tool used to represent and analyze the behavior of concurrent systems.

It consists of places, transitions, and arcs that connect them. Places represent states or conditions, while

transitions represent events or actions. The arcs indicate the flow of tokens, which represent resources

or events, between places and transitions. Petri nets are used to model the interactions and dependencies

between different components in a system and to study their dynamic behavior. They can help identify

potential deadlocks, bottlenecks, or other issues that may arise in a system. Petri nets provide a visual and

intuitive way to understand how different elements of a system interact and can be used to simulate, analyze,

and optimize system processes. They are widely used in various fields, including software engineering,

manufacturing, and workflow management, to model and understand complex systems.[27]

38 / 82

Figure 3.4: Petri Net components: concepts, constraints, operation, and relationships

3.2.5 Sequence diagram (UML):

A sequence diagram is a type of diagram used in Unified Modeling Language (UML) to show the interactions

between objects or participants in a system. It focuses on the order of messages exchanged between these

objects, representing the flow of control and data during the execution of a particular scenario or use case. In

a sequence diagram, objects or participants are represented as vertical lines called lifelines, and messages are

depicted as arrows between these lifelines. The diagram shows the timeline of events, with activation bars

indicating when objects are actively processing messages. By using sequence diagrams, we can visualize

how different objects collaborate, communicate, and respond to each other to achieve specific functionalities

in the system. It provides a clear and concise way to understand the dynamic behavior of a system and is

useful for analyzing, designing, and documenting software systems.[24]

39 / 82

Figure 3.5: Sequence diagram (UML) components: concepts, constraints, operation, and relationships

Remark: If we raise the level of conception, we must delete from each image the variable elements,

and it remains just the constant elements from each image, and we have every image that represents a

programming language, and thus we can deduce a pattern for all modeling languages consisting only of the

static elements of each language.

Figure 3.6 Explain the method used in the Remark section above

40 / 82

Figure 3.6: Modeling Languages components: concepts, constraints, operation, and relationships

3.3 Motivating Example

We present here a motivating example for our research work to highlight the contributions of our approach

for the development of quality-driven model transformations, and especially to clarify different designers’

viewpoints in model transformation (MT) by justifying the logic behind each proposal. Figure 3.7 presents

an example to highlight different designers’ MT scenarios to transform a UML class diagram SMx (i.e.

representing a sales model: Customer, Supplier, Part, Date) into a relational model to be persisted in a

Relational Database System and satisfying some QoS attributes. The selection of a TM is based on the goal

of model transformation that represents user’s requirements.

It is made regarding the satisfaction of one or more QoS performance attributes such as the query execu-

tion time, the consumed energy, and the maintenance or the storage space. The considered QoS performance

attributes are represented by several heuristics to be satisfied by the candidate TMs, each heuristic is associ-

41 / 82

ated to one or more QoS performance attributes in a way it can contribute to its achievement.

Our motivating example consists of transforming a UML SM (i.e. SMx, the fragment of the SM shown

in gray color in Figure 3.7) into a relational model regarding some performance metrics (e.g. response time,

storage size, energy consumption). Let us consider now TMy1 , TMy2, and TMy3 three model transforma-

tion scenarios of SMx based on different Qos considerations.

42 / 82

Figure 3.7: Example of source model (SM)

43 / 82

Scenario 1:

In the first scenario, the modeler follows a clear approach of mapping each composite class in the system

to its corresponding relation. This mapping is specifically designed for analytical reports, where the user,

typically a decision maker, needs to conduct a thorough analysis of sales data at various levels such as

Quarter, Month, Week, and Day.

The primary goal in this scenario is to ensure certain quality of service (QoS) attributes are met. These

QoS attributes include reducing the storage cost, minimizing maintenance overhead, and optimizing the

response time performance for highly selective queries. To achieve these objectives, a Multidimensional

Table (MT) designer employs a specific heuristic.

The heuristic employed is to transform each class within the system into its corresponding relation,

which must adhere to the third normal form (3NF). By structuring the data in this way, the designer aims to

reduce data redundancy, eliminate anomalies, and enhance the efficiency of query execution.

Overall, this approach allows the designer to effectively address the QoS performance attributes while

ensuring the data is properly organized and normalized according to the 3NF principles. By adopting this

strategy, the system can provide the necessary data analysis capabilities required for in-depth sales analysis,

while optimizing storage, maintenance, and query performance.

44 / 82

Figure 3.8: Scenario of target model (TM1)

45 / 82

Scenario 2:

In the second scenario, the MT designer merged all SMx’s classes in a unique relation (see Figure 3.7). This

scenario promotes only one Qos performance attribute, namely, the response time but does not satisfy the

two others, the storage space constraint and the maintenance overhead. In this case, the considered heuristics

are reducing the number of joins required for insert, update, and delete statements.

Figure 3.9: Scenario of target model (TM2)

Scenario 3:

In the third scenario, the designer proposes a compromise to satisfy many QoS performance attributes (re-

sponse time, storage space, and maintenance). In this scenario, the designer considers the following heuris-

tic: Merging/Splitting the SMx’s classes regarding a defined threshold number of relations.

46 / 82

Figure 3.10: Scenario of target model (TM3)

47 / 82

From this motivating example we can see that the designers’ transformation viewpoints can be contra-

dictory or/and complementary, this can be justified by the process of model transformation that is driven by

heuristics of MT experts in order to satisfy some QoS attributes. Also, the integration of solutions with a

refinement process may provide an optimal solution based on domain assumptions or heuristics considered

by the MT designers for developing quality-driven model transformations.

The final solution arises from the confrontation between holding different points of view about MT

decision. It can be categorical, but also a well-mixed balance.

3.4 Coding the source and target model

Our MTBE approach first requires that MTs be encoded in the form of a feature vector capable of ma-

nipulation. Formally, we represent the encoding of a given MTi as a Coding Sequence structure: CDSi =

< Ei, S
E
i , RE

i , l
S
i
E > where we identify three subsets of objects E = Class, Attribute, Association corre-

sponding to the modifiable objects of TM (i.e. objects that can be added, deleted, and replaced). These

objects are divided into properties/sub-properties SE
i (e.g. association constrained multiplicities). The rela-

tionship RE
i represents the relationship (i.e., association, aggregation, composition, dependency, and inher-

itance) between the elements of E,(lRE : Ei −→ Ej , Ei, Ej ∈ ExE), for example. class B is a subclass

of class A. The label function lSiE assigns a unique string label to each sub-property SE
i For example, we

can encode ”the type of an attribute” by the value ”1” if it is a Key attribute and the value ”0” otherwise.

Moreover the relation RiE must retain the model transformation traces that produce TMi of the given SMi.

Finally, our encoding idea allows us to generate the CDS of each TMi solution according to its TMM

By therefore, the method used to code a TM solution must be tailored to each DSL. Indeed, our framework

serves as recommendations to the developer who must manually refine the coding to be be specific to the

DSL in question. Figure 3.11 shows an example of a CDS (CDSy3) corresponding to a fragment of TMy3

from the motivating example.

48 / 82

Figure 3.11: Example CDSy3 corresponding to a fragment of TMy3

3.5 Meta Modeling via the visual editor

This meta-model we are presenting is derived from a generalization of the common characteristics found

in the constants part of various modeling languages that we have analyzed in the previous section of this

chapter. By examining multiple modeling languages, we have identified shared elements and patterns that

are essential to the constants part of these languages.

Figure 3.6 provides a visual representation of the meta-model, showcasing its key components and their

relationships. The purpose of this meta-model is to provide a unified and comprehensive framework that

captures the essential elements and their relationships in the constants part of modeling languages.

By generalizing these common characteristics, we aim to create a higher-level abstraction that can be

applied across different modeling languages. This allows us to analyze and compare the constants part of

various modeling languages in a more systematic and structured manner.

The meta-model serves as a valuable tool for understanding the underlying structure and concepts in the

constants part of modeling languages. It provides a foundation for further analysis, evaluation, and improve-

ment of modeling languages. Additionally, it enables the identification of similarities and differences among

modeling languages, which can inform the development of new modeling languages or the enhancement of

existing ones.

By leveraging this meta-model, researchers, designers, and practitioners in the field of modeling can gain

49 / 82

a deeper understanding of the constants part of modeling languages and make informed decisions regarding

language design, usage, and interoperability.

In summary, the meta-model presented in Figure 3.6 represents a generalized view of the constants part

of various modeling languages, providing a comprehensive framework for analysis and comparison. It forms

a solid basis for further exploration and advancement in the field of modeling languages.

Figure 3.12: General Meta-model for Modeling Languages

3.5.1 Meta-model parts

User

The user is the main engine of this online platform by giving the Model which Source or Target, and engage

with the platform to understand the intricacies of model transformation and its practical applications. They

leverage the provided examples as a source of knowledge and inspiration, learning different techniques and

approaches. Users also act as problem solvers, identifying specific challenges where model transformation

can be applied to enhance existing models or create new ones. They define the desired target models,

specifying the modifications and adaptations they seek. By actively participating in the platform, users

50 / 82

contribute by providing their source models, allowing others to learn from their work. They actively interact

with the examples, experimenting with different transformation techniques and adapting the demonstrated

solutions to their own use cases. Additionally, users collaborate with fellow platform members, forming

a community where they can share experiences, exchange ideas, and provide support. Their engagement

and feedback help in improving the platform’s functionality, ensuring its continuous growth as a valuable

resource for the broader community interested in model transformation.

Figure 3.13: User part

Model Transformation

Model transformation is a crucial step in the process of creating a meta-model that is composed of three

elements: transformation rules, heuristics, and criteria.

51 / 82

Figure 3.14: Model Transformation Part

Figure 3.14 shows the transformation rules that define how the input model (Source Model) should be

transformed into the output model (Target Model), while the heuristics guide the transformation process by

providing additional knowledge and insight. The criteria are used to evaluate the quality of the transformed

model and ensure that it meets the intended requirements and specifications.

Heuristic

QoS attributes and heuristics play a crucial role in the context of model transformation, a process that in-

volves converting a source model into a target model while preserving specific properties or characteristics.

QoS (Quality of Service) attributes represent the desired qualities or performance metrics that need to be

maintained or improved during the transformation process. These attributes can include reliability, scala-

bility, availability, performance, security, and maintainability, among others. Heuristics, on the other hand,

refer to the guidelines or strategies used to guide the model transformation process and achieve the desired

QoS attributes. For example, when transforming a software architecture model, a heuristic may be to prior-

itize scalability by identifying components that can be distributed across multiple nodes. Another heuristic

52 / 82

could be to optimize performance by identifying and eliminating bottlenecks or redundant operations. By

employing appropriate heuristics, model transformation can effectively address the desired QoS attributes

and ensure the resulting target model meets the specified quality requirements.

Figure 3.15: Heuristic part

Source and Target model

The source model represents the system or domain that is being modeled and typically conforms to a partic-

ular modeling language or format. The source model may be created manually or generated automatically

from other sources, such as code or data.

The target model represents the desired output of the transformation process and may be in a different

modeling language or format than the source model. The target model may be used for a variety of purposes,

such as code generation, simulation, or analysis.

53 / 82

Figure 3.16: Source and Target Model Part

3.5.2 Gathering meta-model parts

After thoroughly defining the individual parts illustrated inFigure 3.13, Figure 3.15, Figure 3.16, Figure 3.14,

and Figure 3.6 , we can now draw a comprehensive conclusion. By integrating and connecting these parts, we

have successfully developed an extensible, adaptive, flexible, and general meta-model that can accommodate

the characteristics of various modeling languages. The final result, depicted in Figure 3.17 , represents the

culmination of our efforts to create a unified framework.

Figure 3.17 serves as a visual representation of the interconnectedness of the different parts and their

relationships within the meta-model. It encapsulates the extensibility, adaptability, flexibility, and gener-

ality that we aimed to achieve. The interconnectedness of these parts enables the meta-model to capture

the essential elements and structures found in diverse modeling languages, accommodating their unique

characteristics and requirements.

With this meta-model, we provide a powerful tool that can be utilized across different modeling lan-

guages, facilitating a more comprehensive and unified approach to modeling. It allows designers, re-

searchers, and practitioners to analyze, compare, and understand the fundamental components and rela-

tionships within modeling languages in a systematic and structured manner.

54 / 82

Moreover, the extensibility and flexibility of the meta-model ensure that it can be expanded upon and

adapted to future advancements in modeling languages. It provides a solid foundation for incorporating

new concepts, accommodating domain-specific requirements, and evolving with the changing needs of the

modeling community.

Figure 3.17: Gathering the meta-model parts to build the final form

3.6 Conclusion

In this chapter, we have analyzed five different modeling languages and used this analysis to deduce the

components of a meta-model. We have also described the process of building a meta-model from scratch,

which involves defining the abstract syntax, concrete syntax, and semantics of the meta-model.

Our analysis of the five modeling languages revealed common patterns and structures that are shared

across different modeling domains. By identifying these patterns and structures, we were able to define a set

of core components that are essential to any meta-model. These components include elements, relationships,

55 / 82

attributes, constraints, and operations.

The process of building a meta-model from scratch involves defining the abstract syntax, which specifies

the basic building blocks of the modeling language, such as classes and associations. The concrete syntax,

which specifies how the modeling language is represented visually or textually, and the semantics, which

defines the meaning and behavior of the modeling language, are also defined.

Building a meta-model from scratch is a complex and challenging task that requires a deep understanding

of the domain being modeled and the principles of model-driven engineering. However, by following a

rigorous and systematic approach, it is possible to create a meta-model that accurately represents the desired

system or domain and can be used to generate high-quality models and code.

In conclusion, the process of analyzing multiple modeling languages and building a meta-model from

scratch is an important step in the development of model-driven engineering tools and approaches. By

understanding the common patterns and structures that underlie different modeling languages, it is possible

to create meta-models that are flexible, extensible, and can be used in a wide range of modeling domains

and contexts.

56 / 82

Chapter 4

Implementation of our application

4.1 Introduction

Building a website with the goal of achieving model transformation through online examples opens up excit-

ing possibilities in the realm of Model-Driven Engineering (MDE). The integration of website development

and online examples as a means to enable and empower users to experience model transformations firsthand.

By leveraging the interactive nature of websites and the power of online examples, users can gain a deeper

understanding of model transformation concepts and techniques in a practical and accessible way.

4.2 Client-server architecture

In the computing world today, client-server system has become so popular because it is being used virtu-

ally every day for different applications. Some of the standardized protocols that client and servers use to

communicate with themselves include: File Transfer Protocol (FTP), Simple Mail Transfer Protocol (SMTP)

and Hypertext Transfer Protocol (HTTP). Thus, Client-server system can be define as a software architecture

made up of both the client and server, whereby the clients always send requests while the server responds to

the requests sent[3]. Client-server provides an inter-process communication because it involves the exchange

of data from both the client and server whereby each of them performs different functions [28]

57 / 82

Client-Side (Frontend):

The client-side, or frontend, is responsible for the user interface and presentation layer that users interact

with. It includes HTML, CSS, and JavaScript code that is rendered in the user’s web browser. Common

frontend frameworks and libraries include React, Angular, or Vue.js. The frontend interacts with the backend

through APIs to retrieve and manipulate data.

Server-Side (Backend)

The server-side, or backend, handles the logic and processing of data. It consists of web servers, application

servers, and databases. The backend is responsible for receiving requests from the frontend, performing

operations, and sending back the appropriate responses. Backend technologies can include Node.js, Python

(with frameworks like Django or Flask), Ruby (with Ruby on Rails), or Java (with Spring framework).

Databases:

Data generated by the website is typically stored in a database. Relational databases like MySQL, Post-

greSQL, or Oracle are commonly used for structured data. NoSQL databases like MongoDB or Cassandra

are suitable for unstructured or semi-structured data. The choice of database depends on the specific require-

ments of the website.

4.3 Technologies used

4.3.1 Front-end

ReactJS

React.js is a popular JavaScript library used for building user interfaces. It simplifies the process of creating

interactive and dynamic web applications. With React.js, developers can break down the user interface into

reusable components, each responsible for a specific part of the application. These components can be

combined to build complex UIs, making it easier to manage and maintain code. React.js uses a virtual DOM

(Document Object Model) which efficiently updates and renders only the necessary parts of the UI, resulting

58 / 82

in faster performance. React.js also supports a declarative syntax, allowing developers to describe how the

UI should look based on the application’s state. This helps in building robust and scalable applications with

less code and fewer bugs.[29]

Figure 4.1: ReactJs

4.3.2 Back-end

NodeJs

Node.js is a JavaScript runtime environment that allows developers to run JavaScript code outside of a web

browser. It enables the execution of JavaScript on the server-side, making it possible to build fast and

scalable web applications. Node.js is built on the V8 JavaScript engine, which provides high-performance

execution. One of the key advantages of Node.js is its non-blocking, event-driven architecture, which allows

it to handle a large number of simultaneous connections efficiently. This makes it suitable for building real-

time applications, APIs, and microservices. Node.js has a vast ecosystem of modules and packages available

through its package manager, npm, which makes it easy to integrate third-party libraries into projects. Its

simplicity and flexibility have made Node.js a popular choice for server-side development.[30]

59 / 82

Figure 4.2: ExpressJs

ExpressJs

Express.js is a minimalistic and flexible web application framework for Node.js. It provides a straightfor-

ward and easy-to-use set of features for building web servers and APIs. With Express.js, developers can

handle HTTP requests, define routes, and manage middleware for processing incoming and outgoing data.

It simplifies the process of creating web applications by offering a clean and intuitive API. Express.js also

allows for the integration of additional middleware and modules to extend its functionality. It is known for

its simplicity and lightweight nature, making it a popular choice for building small to medium-sized web

applications. Whether you need to create a simple API or a full-fledged web server, Express.js provides a

solid foundation for developing web applications with Node.js.[31]

Figure 4.3: ExpressJs

60 / 82

4.3.3 DataBase

MongoBD

MongoDB is a popular and flexible NoSQL database that provides a scalable and high-performance solution

for storing and managing data. It is designed to handle large volumes of structured, semi-structured, and

unstructured data across distributed systems. MongoDB uses a document-oriented data model, where data

is stored in flexible JSON-like documents instead of traditional rows and columns. This allows for dynamic

and schema-less data structures, making it easier to adapt to changing application requirements. MongoDB

supports powerful query capabilities, indexing, and aggregation for efficient data retrieval and analysis. It

also offers features like automatic sharding and replication for horizontal scalability and high availability.

With its ease of use, scalability, and versatility, MongoDB is widely used in a range of applications, including

web and mobile development, real-time analytics, and content management systems.[30]

Figure 4.4: MongoDB

4.4 Application Working

4.4.1 MVC design paradigm

Our website is based on model view controller or M-V-C design paradigm is popular and fundamental to

the user interface development, not only in web apps but in front-end applications running on any platform.

DOM represents physical View in case of web-applications. The DOM is made via a HTML template which

itself is fetched from a different file, script block or a precompiled template function. The textual template

is given life as a DOM by the View entity itself. It plays a key role of handling the Events and manipulating

the document object model tree as a part of its life cycle. A view can only be useful if and only if it makes

the user interaction possible as well as display the required data. Data is an entity that is brought from some

61 / 82

Data-Store, which could be a Database ,a web service or a Local Store. Frameworks provide a way to bind

view to the data store in order to make sure that changes made to the database are automatically reflected

back. This process of automatic data updates pushing is commonly referred to as DataBinding. There are

many application program interfaces or API’s which make this process merely a cakewalk. As shown in

Figure 4.5, the M-V-C paradigm is completed by the C component i.e. the Controller which engages the rest

two components i.e. the model and the view and enables the data model flow into the View and user events

out of View, eventually leading to changes in the Model. [29]

Figure 4.5: MVC Architecture Pattern

62 / 82

File Structure

Figure 4.6: File Structure based on MVC

63 / 82

4.4.2 Illustrate the application

Register/Login

User login registration is a fundamental process that allows individuals to create an account and access

various services or platforms. It involves providing necessary information such as a username, password,

and often additional details like email.

(a) Register (b) Login

Figure 4.7: Register/Login page

If the user makes mistakes in the password, the system informs him in the form of alert

Figure 4.8: Login alert

64 / 82

Dashboard

The user dashboard offers three primary options to users: creating meta-models, searching meta-models,

and collaborating.

Figure 4.9: User Dashboard

The notification icon ensures that users stay informed about any updates or actions related to their meta

models. By having this visibility, users can promptly review and respond to changes, stay updated on the

activity surrounding their models, and maintain an active and engaged presence within the platform.

Figure 4.10: Dashboard notification

65 / 82

Create Meta-model

This option allows users to build their own meta-models. Meta models are high-level models that help to

organize and interpret complex systems or datasets. By creating meta-models, users can analyze and under-

stand intricate relationships, patterns, and dependencies within their data. This process often involves defin-

ing variables, establishing connections, and specifying rules or algorithms. Creating meta-models empowers

users to gain valuable insights and make informed decisions based on their unique data and objectives.

First step :Initialize the model by setting his name and the target QoS.

Figure 4.11: Initialize model

66 / 82

Second step :Update the tables/Classes and describe the model.

Figure 4.12: Describe the model

Figure 4.13: Create Class

67 / 82

Figure 4.14: Create Table

Third step : Connect all the Classes the user creates with relationships and corresponding cardinality.

Figure 4.15: Create Relationships between classes

If you connect all your classes the system informs you that You have related all the Classes.

68 / 82

Figure 4.16: Relationships inform alert

If you don’t connect all your classes and click on submit button an alert will appear to inform you

Figure 4.17: Relationships error alert

Searcher Meta-model

This option enables users to explore existing meta-models created by others. Users can leverage the power

of collective knowledge and expertise by searching for meta-models relevant to their domain or interests.

By accessing pre-built meta models, users can save time and effort in constructing models from scratch.

They can study and adapt existing models to their specific needs or integrate them into their own workflows,

69 / 82

accelerating their analysis or problem-solving processes.

Figure 4.18: Search page

Target Model Representation

Figure 4.19: Target Model Representation page

70 / 82

Figure 4.20: Table Representation

Source Model Representation

Figure 4.21: Source Model Representation page

71 / 82

Figure 4.22: Class Representation

When the user clicks the ”See Code” button, they will be redirected to the coding model page. On this

page, the user will have the option to select which fragment of the model they would like to code. The

platform will provide a user-friendly interface where the user can make their selection.

Once the user has chosen the desired fragment, the platform will regenerate the table based on the

selected fragment. The table will be dynamically generated to display the relevant attributes and information

related to the chosen fragment. This allows the user to focus specifically on the code for that particular

section of the model.

The platform aims to provide a seamless coding experience, enabling users to easily navigate through

different model fragments and efficiently work on coding tasks. By offering this level of flexibility and

customization, users can streamline their coding process and efficiently handle different parts of the model

as required.

72 / 82

Figure 4.23: coding a fragment from the model

Collaborate in Meta-model

Collaboration is a crucial aspect of the user dashboard, fostering teamwork and knowledge sharing. Users

can collaborate with other individuals or teams by sharing their meta models, seeking feedback, or engaging

in joint projects. Collaboration encourages diverse perspectives, promotes innovation, and enhances the

quality of models through collective efforts. Users can exchange ideas, refine models, and collectively

tackle complex problems, leading to more robust and accurate results.

Figure 4.24: Collaboration page

73 / 82

First step : After the user choose the model for reuse the application creates a clone of the model classes

and table that allows the user to manipulate table class name, attributes, methods, and describe the changes

.

Figure 4.25: Edit page

Figure 4.26: Class manipulation

74 / 82

Figure 4.27: Table manipulation

Second step : The second step focus on the manipulation of the relationship between classes.

Figure 4.28: Relationships manipulation

4.5 Conclusion

In this chapter, we have provided an in-depth overview of the technical requirements necessary for the

development of our system. We identified and discussed the key components and functionalities that needed

to be implemented to achieve our solution.

75 / 82

Following the discussion of the technical requirements, we proceeded to the realization stage of our

solution. This involved the actual implementation of each component of the system. We meticulously

developed and integrated each component, ensuring that they functioned harmoniously to meet the desired

objectives of the system.

Towards the end of the chapter, we presented the technical architecture of our solution. We outlined the

overall structure and organization of the system, highlighting the relationships and interactions between its

various components. This architectural overview provided a clear understanding of how the different parts

of the system worked together to deliver the desired functionality. we delved into the functionalities and

interactions of the different components of the system. We explained how each component contributed to the

overall system’s functionality, clarifying their roles and responsibilities. This comprehensive understanding

of component functionalities allowed us to demonstrate the cohesive and integrated nature of our solution.

By providing a comprehensive overview of the technical requirements, the implementation process, the

system’s architecture, user interactions, and component functionalities, we have presented a detailed and

holistic perspective of our system. This chapter serves as a foundation for further exploration, evaluation,

and utilization of our solution, enabling users and stakeholders to gain a thorough understanding of its

capabilities and potential benefits.

76 / 82

Chapter 5

General conclusion

In this section, we will present the general conclusion and future work.

5.1 Conclusion

In conclusion, the development of the online platform has demonstrated its effectiveness and efficiency

in real-world scenarios, enhancing the practicality and usability of model transformation by example. By

providing creation, modification, and persistence capabilities, the platform has facilitated a more interactive

and efficient model transformation process. Modelers can now iterate and refine their transformations with

greater effectiveness, leading to improved overall productivity.

This thesis has made significant advancements in the field of model-driven engineering and dataset

creation. The developed framework empowers researchers, practitioners, and the broader computer sci-

ence community to drive innovation and advance the field through standardized, efficient, and collaborative

dataset creation processes. It has improved the efficiency of model transformation, enhanced the quality

of generated datasets, and fostered a collaborative and knowledge-sharing community. The findings of

this research have practical implications and provide a solid foundation for future studies in the domain of

model-driven engineering and online persistence model transformation.

The collaborative features of the framework have promoted teamwork and knowledge sharing among

77 / 82

modelers. The ability to collaborate, reuse models, and share datasets has fostered a collaborative community

within the computer science field. Concurrent access, conflict resolution, and collaborative editing have

enabled modelers to work together, benefiting the entire model-driven engineering community.

5.2 Perspectives

The online platform proposed in this thesis offers several perspectives and potential benefits to the commu-

nity of computer science. These perspectives can be viewed from different angles, including researchers,

practitioners, and the broader community. Here are some perspectives on the online platform:

1. More extensible and adaptive platform : is archived by the increase in the number of modeling

languages in the conception of the online platform by not making it limited to two modeling languages.

2. Community Building and Networking: The online platform fosters a sense of community and net-

working within the computer science domain. Users can connect with like-minded individuals, engage

in discussions, and establish professional relationships. This perspective highlights the potential for

networking opportunities, collaborations, and the development of a strong community that collectively

contributes to dataset creation and other areas of research.

3. Iterative Improvement and Feedback: The platform encourages iterative improvement and feed-

back loops. Users can share their work, receive feedback from peers, and continuously refine their

models and datasets. This perspective underscores the value of ongoing improvement, learning, and

growth within the community, leading to higher-quality datasets and more robust research outcomes.

4. Impact on Computer Science Community: The online platform has the potential to contribute to

the wider computer science community. By fostering collaboration, promoting best practices, and

sharing datasets, the platform can have a lasting impact on the advancement of computer science

research. It can serve as a catalyst for new discoveries, innovative approaches, and cross-disciplinary

collaborations, benefiting the broader community of researchers, practitioners, and students.

78 / 82

Bibliography

[1] Douglas C Schmidt et al. Model-driven engineering. Computer-IEEE Computer Society-, 39(2):25,

2006.

[2] Jeff Rothenberg, Lawrence E Widman, Kenneth A Loparo, and Norman R Nielsen. The nature of

modeling. in Artificial Intelligence, Simulation and Modeling, 1989.

[3] Anneke G Kleppe, Jos B Warmer, Jos Warmer, and Wim Bast. MDA explained: the model driven

architecture: practice and promise. Addison-Wesley Professional, 2003.

[4] Frank Budinsky, Raymond Ellersick, David Steinberg, Timothy J Grose, and Ed Merks. Eclipse mod-

eling framework: a developer’s guide. Addison-Wesley Professional, 2004.

[5] JF Overbeek. Meta object facility (mof): investigation of the state of the art. Master’s thesis, University

of Twente, 2006.

[6] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation. Electronic notes in theoretical

computer science, 152:125–142, 2006.

[7] Gerti Kappel, Philip Langer, Werner Retschitzegger, Wieland Schwinger, and Manuel Wimmer. Model

transformation by-example: a survey of the first wave. Conceptual Modelling and Its Theoretical

Foundations: Essays Dedicated to Bernhard Thalheim on the Occasion of His 60th Birthday, pages

197–215, 2012.

79 / 82

[8] Krzysztof Czarnecki and Simon Helsen. Classification of model transformation approaches. In Pro-

ceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Context of the Model Driven

Architecture, volume 45, pages 1–17. USA, 2003.

[9] Jeffrey Gene Gray. Aspect-oriented domain-specific modeling: A generative approach using a

metaweaver framework. Vanderbilt University, 2002.

[10] Mel Ó Cinnéide and Paddy Nixon. Automated software evolution towards design patterns. In Proceed-

ings of the 4th international workshop on Principles of software evolution, pages 162–165, 2001.

[11] Daniel Conrad Halbert. Programming by example. University of California, Berkeley, 1984.

[12] Dániel Varró. Model transformation by example. In Model Driven Engineering Languages and Sys-

tems: 9th International Conference, MoDELS 2006, Genova, Italy, October 1-6, 2006. Proceedings 9,

pages 410–424. Springer, 2006.

[13] Manuel Wimmer, Michael Strommer, Horst Kargl, and Gerhard Kramler. Towards model transforma-

tion generation by-example. In 2007 40th Annual Hawaii International Conference on System Sciences

(HICSS’07), pages 285b–285b. IEEE, 2007.

[14] Michael Strommer and Manuel Wimmer. A framework for model transformation by-example: Con-

cepts and tool support. In Objects, Components, Models and Patterns: 46th International Conference,

TOOLS EUROPE 2008, Zurich, Switzerland, June 30-July 4, 2008. Proceedings 46, pages 372–391.

Springer, 2008.

[15] Marouane Kessentini, Manuel Wimmer, Houari Sahraoui, and Mounir Boukadoum. Generating trans-

formation rules from examples for behavioral models. In Proceedings of the Second International

Workshop on Behaviour Modelling: Foundation and Applications, pages 1–7, 2010.

[16] Zoltán Balogh and Dániel Varró. Model transformation by example using inductive logic programming.

Software & Systems Modeling, 8(3):347–364, 2009.

[17] Iván Garcı́a-Magariño, Jorge J Gómez-Sanz, and Rubén Fuentes-Fernández. Model transformations

for improving multi-agent system development in ingenias. In Agent-Oriented Software Engineering

80 / 82

X: 10th International Workshop, AOSE 2009, Budapest, Hungary, May 11-12, 2009, Revised Selected

Papers 10, pages 51–65. Springer, 2011.

[18] Xavier Dolques, Marianne Huchard, Clémentine Nebut, and Philippe Reitz. Learning transformation

rules from transformation examples: An approach based on relational concept analysis. In 2010 14th

IEEE International Enterprise Distributed Object Computing Conference Workshops, pages 27–32.

IEEE, 2010.

[19] Hajer Saada, Xavier Dolques, Marianne Huchard, Clémentine Nebut, and Houari Sahraoui. Generation

of operational transformation rules from examples of model transformations. In Model Driven Engi-

neering Languages and Systems: 15th International Conference, MODELS 2012, Innsbruck, Austria,

September 30–October 5, 2012. Proceedings 15, pages 546–561. Springer, 2012.

[20] Martin Faunes, Houari Sahraoui, and Mounir Boukadoum. Generating model transformation rules

from examples using an evolutionary algorithm. In Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering, pages 250–253, 2012.

[21] Islem Baki, Houari Sahraoui, Quentin Cobbaert, Philippe Masson, and Martin Faunes. Learning im-

plicit and explicit control in model transformations by example. In Model-Driven Engineering Lan-

guages and Systems: 17th International Conference, MODELS 2014, Valencia, Spain, September 28–

October 3, 2014. Proceedings 17, pages 636–652. Springer, 2014.

[22] Mirco Franzago, Davide Di Ruscio, Ivano Malavolta, and Henry Muccini. Collaborative model-driven

software engineering: a classification framework and a research map. IEEE Transactions on Software

Engineering, 44(12):1146–1175, 2017.

[23] Omar Alam, Jonathan Corley, Constantin Masson, and Eugene Syriani. Challenges for reuse in collab-

orative modeling environments. In MoDELS (Workshops), pages 277–283, 2018.

[24] Hans-Erik Eriksson, Magnus Penker, Brian Lyons, and David Fado. UML 2 toolkit. John Wiley &

Sons, 2003.

81 / 82

[25] Li Yang and Li Cao. The effect of mysql workbench in teaching entity-relationship diagram (erd) to

relational schema mapping. International Journal of Modern Education and Computer Science, 8(7):1,

2016.

[26] Matthew Hause et al. The sysml modelling language. In Fifteenth European Systems Engineering

Conference, volume 9, pages 1–12, 2006.

[27] Carl Adam Petri and Wolfgang Reisig. Petri net. Scholarpedia, 3(4):6477, 2008.

[28] S Kratky and C Reichenberger. Client/server development based on the apple event object model,

2013.

[29] Sanchit Aggarwal et al. Modern web-development using reactjs. International Journal of Recent

Research Aspects, 5(1):133–137, 2018.

[30] Mithun Satheesh, Bruno Joseph D’mello, and Jason Krol. Web development with MongoDB and

NodeJs. Packt Publishing Ltd, 2015.

[31] Azat Mardan. Express. js Guide: The Comprehensive Book on Express. js. Azat Mardan, 2014.

82 / 82

	 Abstract
	 Dedication
	 Acknowledgments
	General Introduction
	Research Context
	Problem Statement
	Contributions
	Thesis structure

	Related work
	Introduction
	Basic concepts
	Model-driven engineering (MDE)
	Model
	Meta-model
	Meta-meta-model

	Model transformation
	Exogenous Transformation
	Endogenous Transformation
	Transformation approaches

	Why example
	Example-based approaches
	Programming by example

	Model transformation by example (MTBE)
	Transformation Rules

	Collaboration
	Reuse
	Conclusion

	Contribution
	Introduction
	Examples of modeling language
	 Class Diagram (UML):
	 Relational schema diagram:
	Systems Modeling Language (SysML):
	Petri Net :
	 Sequence diagram (UML):

	Motivating Example
	Coding the source and target model
	Meta Modeling via the visual editor
	Meta-model parts
	Gathering meta-model parts

	Conclusion

	Implementation of our application
	Introduction
	Client-server architecture
	Technologies used
	Front-end
	Back-end
	DataBase

	Application Working
	MVC design paradigm
	Illustrate the application

	Conclusion

	General conclusion
	Conclusion
	Perspectives

