

 People’s Democratic Republic of Algeria
 Ministry of Higher Education and Scientific Research

 IBN KHALDOUN UNIVERSITY OF TIARET

 Dissertation

 Presented to:

 FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

 DEPARTEMENT OF COMPUTER SCIENCE

 In order to obtain the degree of:

 MASTER

 Specialty: Software Engineering

 Presented by:

BELHOCINE KHEIRA AMEL

GUELFOUT AMEL

 On the theme:

Defended publicly on: 09 / 07 /2023 in Tiaret in front the jury composed of:

Mr. CHIKHAOUI Ahmed MCB Tiaret University Chairman

Mr. BOUDAA Boudjemaa MCA Tiaret University Supervisor

Mme. LAAREDJ Zohra MAA Tiaret University Examiner

2022-2023

Session-based Recommender Systems

Using Graph Convolutional Networks

ii

Abstract

The rapid growth of online platforms has led to an overwhelming amount of available

information and choices, making personalized recommendations crucial for enhancing

user experience and satisfaction. In this thesis, we focus on session-based recommender

systems, which aim to provide accurate recommendations by considering users' sequential

behaviour and short-term interests.

To address the challenges posed by session-based recommendations, we leverage the

power of Graph Convolutional Networks (GCNs). GCNs have shown remarkable

effectiveness in modelling complex relationships and capturing the underlying structure of

data. By exploiting the graph-like nature of user sessions, we harness the potential of GCNs

to capture the intricate dependencies between items and uncover latent patterns within

sessions.

Keywords: Recommender systems, Session-based recommendations, Graph

Convolutional Networks, Sequential behaviour, Personalization.

 الملخص
لى توفر كمية هائلة من المعلومات والخيارات المتاحة، مما يجعل ت الأنظمة العاملة عبر نم الإنترنت بسرعة، مما أأدى اإ

التوصيات الشخصية أأمرًا حاسًما لتعزيز تجربة المس تخدم ورضاه. في هذه الأطروحة، نركز على أأنظمة التوصية القائمة

لى تقديم توصيات دقيقة من خلال النظر في س لوك المس تخدمين التسلسلي واهتماماتهم على الجلسات، التي تهدف اإ

 القصيرة المدى.

 للتغلب على التحديات التي تطرحها التوصيات القائمة على الجلسات، نس تغل قوة ش بكات التكرار الرسومية

(GCNs). أأظهرت ش بكات التكرار الرسومية فعالية ملحوظة في نمذجة العلاقات المعقدة واس تخلاص الهيكل

مكانات الأساسي للبيانات . من خلال اس تغلال طبيعة الجلسات الشبيهة بالرسوم البيانية للمس تخدمين، نس تخدم اإ

 .ش بكات التكرار الرسومية للتقاط التبعيات المعقدة بين العناصر واكتشاف الأنماط الكامنة داخل الجلسات.

تكرار الرسومية، السلوك : أأنظمة التوصية، التوصيات القائمة على الجلسات، ش بكات ال الكلمات المفتاحية

 التسلسلي، التخصيص الشخصي.

iii

Acknowledgments

Foremost, praises and thanks to Allah, the Almighty, for His showers of blessings

throughout my research work, which allowed me to complete it successfully.

I would like to extend my sincere gratitude to my thesis advisor, Mr. Boudaa

Boudjemaa. His unwavering support and expertise have been invaluable throughout my

research. I am truly grateful for his patience, mentorship, and the freedom he granted me

to explore and develop my ideas.

I am deeply indebted to my mom, my dad and my aunt, whose constant support has

been a pillar of strength throughout my years of study and in every aspect of my life. Their

unwavering belief in my abilities, their encouragement, their love, guidance, and their

sacrifices has played a vital role in my achievements.

I would also like to acknowledge my binome, Amel. This work wouldn't have been

accomplished without your hard work and dedication.

To all those who have supported me, teachers, innovation team, friends, or followers, I

extend my deepest thanks. Your contributions, whether big or small, have left an indelible

mark on my life. Your presence has been instrumental in shaping my character.

This accomplishment would not have been possible without you. Thank you all.

Belhocine Kheira Amel

First and foremost, I am deeply thankful to Allah for His guidance, blessings, and

reconciliation in my life.

To my family, especially my parents, I would like to offer a special dedication for

everything they have given me.

I would like to express my utmost respect and appreciation to my supervisor, Mr.

Bouadaa Boudjemaa. Your guidance, expertise, and mentorship have been instrumental in

shaping this thesis.

I would also like to acknowledge my binome, Nesrine. This work wouldn't have been

accomplished without your hard work and dedication.

To my university professors who have supported me throughout my journey, I am

incredibly grateful. You have provided me with invaluable knowledge and experiences that

words cannot express.

Lastly, I want to express my gratitude to all those names may not be mentioned here

but have played a part in my academic and personal growth. Your friendship,

encouragement, and positive influence have been invaluable.

Thank you, each and every one of you, for your profound impact on my life and for

being an integral part of this remarkable journey.

Guelfout Amel

iv

Table of Content

Abstract .. ii

Acknowledgments ... iii

Table of Content ... iv

List of Figure ... viii

List of tables .. ix

Acronyms ... x

General Introduction ... 1

A. Background .. 2

B. Problem Statement ... 2

C. Delimitation ... 2

D. Approach .. 2

E. Outline .. 2

Chapter 1. Session-Based Recommender Systems ... 4

1.1. Introduction .. 5

1.2. Recommender Systems .. 5

1.3. Overview of Recommender Systems Types ... 6

1.3.1. Content-based filtering ... 6

1.3.2. Collaborative-filetring .. 7

1.3.3. Hybrid-filtering ... 8

1.3.4. Knowledge-based recommender systems .. 8

1.3.5. Demographic-based filtering .. 8

1.3.6. Context-aware filtering (CARS).. 8

1.4. Evaluation Metrics for Recommender Systems ... 8

1.4.1. Predictive Accuracy Metrics ... 8

1.4.2. Mean reciprocal rank (MRR) ... 9

1.4.3. Novelty Metrics ... 9

1.4.4. Diversity Metrics ... 9

1.4.5. Serendipity Metrics... 9

1.4.6. Coverage Metrics .. 10

1.5. Experimental Settings .. 10

1.5.1. Offline Experiments .. 10

1.5.2. User Studies .. 10

1.5.3. Online evaluation ... 11

1.6. Limitations and Challenges of Recommender Systems ... 11

v

1.6.1. Cold Start ... 11

1.6.2. Scalability ... 11

1.6.3. Data Sparsity .. 11

1.6.4. Synonymy .. 11

1.6.5. Shilling attacks .. 12

1.6.6. Privacy Concern .. 12

1.7. Session-based Recommender Systems .. 12

1.7.1. Overview ... 12

1.7.2. Session and Session Properties .. 12

1.7.3. Sub-area of SBRS .. 13

1.7.4. Characteristics and Challenges ... 14

1.8. Conclusion ...17

Chapter 2. Graph Convolutional Networks ... 18

2.1. Introduction .. 19

2.2. Deep learning .. 19

2.2.1. Overview ... 19

2.2.2. Learning processes ... 20

2.3. Artificial Neural Networks ... 21

2.3.1. Overview ... 21

2.3.2. ANNs architecture .. 23

2.3.3. Activation functions .. 23

2.3.4. Feed-forward Neural Network ... 26

2.4. Recurrent Neural Networks ... 27

2.4.1. Overview ... 27

2.4.2. RNNs Architecture ... 28

2.5. Convolutional neural networks .. 29

2.5.1. Overview ... 29

2.5.2. CNN Architecture ... 29

2.6. Graph fundamentals ... 30

2.6.1. Overview ... 30

2.6.2. Graph representation ... 30

2.6.3. Algebra representation of graphs ... 31

2.6.4. Computational Tasks on Graphs .. 32

2.6.5. Graph applications ... 33

2.7. Graph Neural Networks ... 33

vi

2.7.1. Overview ... 33

2.7.2. GNNs architecture .. 34

2.7.3. GNNs types ... 34

2.7.4. GNNs tasks ... 35

2.7.5. GNNs advantages and limitations .. 36

2.8. Graph Convolutional Networks .. 36

2.8.1. Main ideas ... 36

2.8.2. Definition and principals .. 36

2.8.3. GCN architecture .. 37

2.8.4. GCN variations .. 39

2.8.5. GCN types ... 40

2.8.6. An explanation example ... 41

2.9. Conclusion .. 42

Chapter 3. Graph Convolutional Networks for the Development of Session-based

Recommender Systems ... 43

3.1. Introduction .. 44

3.2. Presentation of our GCN-based Model .. 44

3.2.1. Main idea .. 44

3.2.2. Session representation ... 44

3.2.3. GCN model .. 44

3.2.4. Recommendation step .. 45

3.3. Implementation .. 46

3.3.1. Python. .. 46

3.3.2. Libraries .. 47

3.3.3. IDE Google Collab .. 47

3.3.4. Model implementation ... 47

3.4. Experiments and Analysis .. 48

3.4.1. Datasets ... 48

3.4.2. Data processing... 49

3.4.3. Session Construction .. 50

3.4.4. Training & Testing .. 50

3.5. Evaluation Metrics.. 52

3.5.1. Baseline ... 53

3.6. Conclusion .. 56

General Conclusion.. 57

A. Summary .. 58

vii

B. Direction for future research ... 58

Bibliography ... 59

viii

List of Figure

FIGURE 1 - MAIN APPROACHES TO BUILDING RECOMMENDER SYSTEMS. .. 6
FIGURE 2 - CONTENT-BASED FILTERING EXAMPLE .. 7
FIGURE 3 - COLLABORATIVE-FILTERING EXAMPLE .. 7
FIGURE 4 - THE RELATION BETWEEN AI, ML AND DEEP LEARNING ... 19
FIGURE 5 - NEURON IN ARTIFICIAL NEURAL NETWORK COMPONENTS ... 22
FIGURE 6 - NEURAL NETWORKS BASIC ARCHITECTURE ... 23
FIGURE 7 - SIGMOID ACTIVATION FUNCTION .. 24
FIGURE 8 - TANH ACTIVATION FUNCTION ... 25
FIGURE 9 - RELU ACTIVATION FUNCTION .. 26
FIGURE 10 - FORWARD PROPAGATION IN NEURAL NETWORKS ... 27
FIGURE 11 - A SIMPLE RNNS ARCHITECTURE ... 28
FIGURE 12 - A SIMPLE CONVOLUTIONAL NEURAL NETWORKS ARCHITECTURE 30
FIGURE 13 - DIRECTED AND UNDIRECTED GRAPH .. 31
FIGURE 14 - ADJACENCY MATRIX OF A GRAPH ... 31
FIGURE 15 - GRAPH NEURAL NETWORK ARCHITECTURE ... 34
FIGURE 16 - GRAPH NEURAL NETWORKS TASKS .. 35
FIGURE 17 - CONVOLUTION IDEA FROM IMAGES TO GRAPHS .. 36
FIGURE 18 - ILLUSTRATION OF GRAPH CONVOLUTIONAL NETWORKS .. 37
FIGURE 19 - CONVOLUTION METHOD IN GCN .. 38
FIGURE 20 - GCN WITH TWO LAYERS ... 39
FIGURE 21 - SBRSS BASED GCN MODEL.. 44
FIGURE 22 - PYTHON LOGO .. 46
FIGURE 23 - MOVILLENS 100K TRAIN ACCURACY AND TRAIN LOSS .. 52
FIGURE 24 - MOVILLENS 1 MILLION TRAIN ACCURACY AND TRAIN LOSS .. 52
FIGURE 25 - COMPARISON OF MRR@20 FOR DIFFERENT .. 55
FIGURE 26 - COMPARISON OF RECALL@20 FOR DIFFERENT .. 55

file:///C:/Users/Amel/Downloads/Chaps.docx%23_Toc139092795
file:///C:/Users/Amel/Downloads/Chaps.docx%23_Toc139092796
file:///C:/Users/Amel/Downloads/Chaps.docx%23_Toc139092797
file:///C:/Users/Amel/Downloads/Chaps.docx%23_Toc139092798
file:///C:/Users/Amel/Downloads/Chaps.docx%23_Toc139092799
file:///C:/Users/Amel/Downloads/Chaps.docx%23_Toc139092800
file:///C:/Users/Amel/Downloads/Chaps.docx%23_Toc139092801
file:///C:/Users/Amel/Downloads/Chaps.docx%23_Toc139092802
file:///C:/Users/Amel/Downloads/Chaps.docx%23_Toc139092803
file:///C:/Users/Amel/Downloads/Chaps.docx%23_Toc139092805
file:///C:/Users/Amel/Downloads/Chaps.docx%23_Toc139092806
file:///C:/Users/Amel/Downloads/Chaps.docx%23_Toc139092807
file:///C:/Users/Amel/Downloads/Chaps.docx%23_Toc139092808
file:///C:/Users/Amel/Downloads/Chaps.docx%23_Toc139092809
file:///C:/Users/Amel/Downloads/Chaps.docx%23_Toc139092813
file:///C:/Users/Amel/Downloads/Chaps.docx%23_Toc139092814

ix

List of tables

TABLE 1- A COMPARISON OF DIFFERENT SUB-AREAS IN SBRSS ... 14

TABLE 2 - COMPARISION BETWEEN THE LEARNING PARADIGMS .. 21

TABLE 3 - DATASETS BASIC INFORMATIONS ... 50

TABLE 4 – THE ACCURACY RESULTS ... 51

TABLE 5 - COMPARISION OF METRICS BETWEEN DIFRENT ARCHITECTURES……….....………65

x

Acronyms

ANN Artificial Neural Network

AI Artificial Intelligence

CARS Context-aware Filtering

CB Content-based Filtering

CF Collaborative Filtering

CNN Convolutional Neural Network

DL Deep Learning

FNN Feed-forward Neural Network

GCN Graph Convolutional Network

GNN Graph Neural Network

GNN Graph Neural Network

ML Machine Learning

RNN Recurrent Neural Network

RS Recommender System

SBRS Session-based Recommender System

1

General Introduction

Introduction

2

A. Background

In recent years, the rapid growth of online platforms and the abundance of available

information have presented both opportunities and challenges for recommender systems.

Recommender systems play a crucial role in assisting users in navigating through vast

amounts of content to find relevant and personalized recommendations. Traditional

recommender systems often focus on item-to-item or user-to-user interactions, neglecting

the temporal nature of user behaviour. However, users' preferences and interests are not

static; they evolve over time, and capturing this temporal aspect is essential for delivering

accurate recommendations.

B. Problem Statement

The aim of this thesis is to address the limitations of existing recommender systems by

proposing a session-based approach that incorporates the concept of Graph Convolutional

Networks (GCN). Session-based recommender systems aim to capture user behaviours

within a specific session, considering the sequence of items accessed by users and the

temporal dependencies between them. By utilizing GCN, which has demonstrated

remarkable performance in various graph-based tasks, we can leverage the rich structural

information available in user-item interaction graphs to enhance the quality of

recommendations.

C. Delimitation

The challenge we interfere is to capture the dynamic nature of user preferences and

interests, as well as modelling the complex relationships between items within a session.

By incorporating GCN, we aim to overcome this delamination problem and develop a

session-based recommender system that can effectively exploit the temporal and structural

information present in user-item interaction graphs.

D. Approach

To achieve our objective, we will adopt a two-step approach. First, we will collect and pre-

process a large-scale dataset of user-item interactions, capturing the temporal dynamics of

user behaviour within sessions. Next, we will design and implement a session-based

recommender system that utilizes GCN to model the sequential dependencies and item

relationships within sessions. We will evaluate the performance of our proposed system

using various metrics such as accuracy, recall, and mean average precision, comparing it

against existing state-of-the-art recommender systems.

E. Outline

The remainder of this thesis is organized into three chapters besides a general introduction

and a general conclusion:

Introduction

3

 General Introduction

An initiation to recommender system, the background, problem statement, and the

delamination of those papers.

 Chapter one: Session-based Recommender Systems

An overview of recommender systems and their types, going into session-based

recommender systems that consider as the core research of our thesis.

 Chapter two: Graph Convolutional Networks

Essential background of artificial intelligence and its sub-fields, digging into neural

networks and their architecture mentioning an overview and architecture of its

standard ANNs types, in the reasons of giving a solid understanding before going

into graph convolutional networks

 Chapter three: Developing a Session-based Recommender Systems

using Graph Convolutional Networks

Present the model proposed for developing a session-based recommender systems

using graph convolutional networks

 General Conclusion

Based on the results and the discussion in the previous chapter, this last part relates

to the research questions and draws a summary of this work. Finally, suggestions

for potential future work are discussed.

4

Chapter 1. Session-Based Recommender

Systems

Chapter 1. Session-based Recommender Systems

5

1.1. Introduction

Session-based recommender systems (SBRSs) are a type of recommender systems that make

recommendations based on users’ short-term interests and preferences. They are becoming popular

in domains such as e-commerce, music streaming, and news recommendation. SBRSs are

challenging to build due to issues such as data sparsity, short-term user behaviour, and the lack of

explicit user feedback. In this chapter, we will provide an overview of RSs, including their

definition, types and challenges. Finally, we will provide a detailed discussion of SBRSs, which is a

type of recommender systems; we will include its definition, sessions and session’s properties and

its limitations and challenges.

1.2. Recommender Systems

Recommender Systems (RSs) have been largely studied for the past decade and have

shown to be suitable for many scenarios. On the arrival of the internet and the era of e-

commerce, companies are opting for having a RS as an attempt to boost sales. RSs provide

predictions of items that the user may find interesting to purchase [1], in which most

algorithms for this purpose focus on providing recommendations that fit the preferences of

the user [2].

RSs have shown to be useful for users and business. Users suffer from what is called the

paradox of choice. Having many options to choose from lead to more difficulty in

effectively making a choice [3]. They provide suggestions for items1 that are of potential

interest for a user. These systems are applied for answering questions such as which book

to buy? , which website to visit next? , and which financial service to choose? » [4] They

are widely used in various applications, such as e-commerce, social media, and

entertainment platforms, to enhance user experience, increase engagement, and drive

sales. Recommender systems have the effect of guiding users in a personalized way to

interesting or useful objects in a large space of possible options [4]. They have evolved into

a fundamental tool for making more informative, efficient and effective choices and

decisions in almost every daily aspect of life, working, business operations, study,

entertaining and socialization. Their roles have become ever important in the increasingly

overloaded age of digital economy where users have to make choices from usually massive

and rapidly increasing contents, products and services (which are uniformly called items)

[5]. Therefore an RS can be seen as a system [6, 7], which consists of multiple basic entities

including users, items and their behaviours, e.g., user-item interactions [5].

There are plenty of examples of companies that use RSs. For instance, Amazon and

many e-commerce have adopted the use of recommendation engines. Other services such

as Netflix, YouTube and Last FM also use recommender systems [2].

1 Is the general term used to denote what the system recommends to users [4]

Chapter 1. Session-based Recommender Systems

6

1.3. Overview of Recommender Systems Types

Recommender systems can be broadly classified into several categories based on the

approach used to generate recommendations, its main approach shown in Figure 1 [8].

1.3.1. Content-based filtering

A content-based recommender system suggests those items that are similar in features

to items user has already liked in past [9]. A typical CB recommender first creates user

profile using user feedback and ratings about items. The user profile is then compared with

item features and the matched items are recommended [10]. Such systems are used in

recommending web pages, TV programs and news articles etc. [11].

To understand this, let’s use a simple example took from [12] shows how a content-

based recommender system might work to suggest movies.

Let’s suppose there are four movies and a user has seen and liked the first two (see

Figure 2).

The model automatically suggests the third movie rather than the fourth, since it is

more similar to the first two. This similarity can be calculated based on a number of

features like the actors and actresses in the movie, the director, the genre, the duration of

the film, etc.

Figure 1 - Main approaches to building recommender systems.

Chapter 1. Session-based Recommender Systems

7

1.3.2. Collaborative-filtering

As shown in Figure 3 [13] ,collaborative filtering recommends items by matching users

with other users having similar interests [14]. It collects user feedback in the form of

ratings provided by user for specific item and finds match in rating behaviours among

users in order to find group of users having similar preferences. Here, a user profile

represents user preferences that the user has either explicitly or implicitly provided [10].

Figure 2 - Content-based filtering example

Figure 3 - Collaborative-filtering example

Chapter 1. Session-based Recommender Systems

8

1.3.3. Hybrid-filtering

In hybrid approach, two or more filtering methods are combined to gain better

performance over CB2 and CF3 approaches when they are applied separately. Several

researchers combined CB and CF techniques for gaining better results and mitigating

various shortcomings faced by these approaches [10]. Burke [15] has categorized

hybridization methods into seven different types including: (1) weighted, (2) switching, (3)

mixed approach, (4) feature combination, (5) cascade, (6) feature, and (7) meta-level

hybridization approach.

1.3.4. Knowledge-based recommender systems

A recommender system is knowledge-based when it makes recommendations based not

on a user’s rating history, but on specific queries made by the user. It might prompt the

user to give a series of rules or guidelines on what the results should look like, or an

example of an item. The system then searches through its database of items and returns

similar results [16].

1.3.5. Demographic-based filtering

Demographic Recommender system generates recommendations based on the user

demographic attributes. It categorizes the users based on their attributes and recommends

the movies by utilizing their demographic data [4]. In contrast to collaborative filtering

and content-based recommender system, it is easy to implement and does not require user

ratings [17].

1.3.6. Context-aware filtering (CARS)

Context is a complex notion that has been studied across different research disciplines

[18]. The definition introduced in [19] has been widely adopted for CARS and states the

following: "Context is any information that can be used to characterize the situation of

an entity. An entity is a person, place, or object that is considered relevant to the

interaction between a user and an application". Consequently, recommender systems

produce suggestions by leveraging previously mentioned context. This methodology

incorporates up-to-date data regarding the user's present circumstances, thereby

enhancing the relevancy of the recommendations generated.

1.4. Evaluation Metrics for Recommender Systems

The evaluation of recommender systems is a fundamental aspect that aims to measure

how effectively they provide personalized recommendations to users based on their

preferences and needs. This section discusses the evaluation metrics and used to assess the

performance of recommender systems.

1.4.1. Predictive Accuracy Metrics

Predictive accuracy or rating prediction metrics embark on the question of how close

the ratings estimated by a recommender are to the true user ratings. This type of measures

2 Content-based Filtering
3 Collaborative Filtering

Chapter 1. Session-based Recommender Systems

9

is very popular for the evaluation of non-binary ratings. It is most appropriate for usage

scenarios in which an accurate prediction of the ratings for all items is of high importance

[20].

1.4.2. Mean reciprocal rank (MRR)

According to [21] MRR is the average of reciprocal rank (RR) over users. The reciprocal

rank is the “multiplicative inverse” of the rank of the first correct item. MRR is an

appropriate choice in two cases:

 There is only one relevant item.

 In the use case, only the first recommended item is the essential one.

It means that MRR doesn’t apply if there are multiple correct responses in the resulting

list. If your system returns 10 items and it turns out there is a relevant item in the third-

highest spot, that’s what MRR cares about. It will not check if the other relevant items

occur between rank 4 and rank 10.

1.4.3. Novelty Metrics

It is a measure of the ability of RS to introduce long-tail items to users. E-commerce

platforms can benefit from high-ranking individualized, niche items. For example, Amazon

makes a great success by selling books that are not available in traditional book stores,

rather than bestsellers.

Novelty can be defined as a fraction of unknown items among all items the user liked.

An ideal way of measuring it would be a customer survey but in most cases, we are unable

to determine whether the user knew the item before. Having implicit data about user

behaviours allows us to measure dissimilarity between recommendations that sometimes

substitutes novelty scores. We have to also remember that too many novel items can result

in a lack of trust from users. It is essential to find the balance between novelty and

trustworthiness [21].

1.4.4. Diversity Metrics

Diversity is a concept concerned with the diversity of items in the recommendation list

[2]. It is a measure of how your recommendations are different from each other. Consider

the customer finished watching the first movie of a trilogy on Netflix. Low diversity

recommender would recommend only the next parts of the trilogy or the films directed by

the same director. On the other hand, high diversity can be achieved by recommending

items completely random [22].

1.4.5. Serendipity Metrics

Serendipity represents surprising recommendations. Iaquinta et al4. [23], mention that

serendipity represent items that the users would difficultly find. It can be concluded that

even though serendipity has a hard-to-understand definition, most authors agree that it

4 is an abbreviation used in academic writing to refer to a group of authors.

Chapter 1. Session-based Recommender Systems

10

represents a delightful surprise and provide useful and surprising items to the user [2].

Common serendipity metrics include mean average precision and unexpectedness.

1.4.6. Coverage Metrics

Coverage is the ability of the recommender system to recommend all items from a train

set to users. Let’s consider the random recommender that selects items as in the lottery

drawing. Such recommender has nearly 100% coverage because it has the ability to

recommend every available item. On the other hand, the popularity-based recommender is

going to recommend just top k items. In such a case, coverage is close to 0%.

Coverage does not evaluate if the user enjoys the recommendation or not, instead, it

measures the RS in terms of its ability to bring unexpectedness to the user. Low coverage

can lead to users’ dissatisfaction [21].

1.5. Experimental Settings

In this section, we discuss three levels of experiments for comparing multiple

recommenders. We start with offline experiments, which are relatively easier to conduct as

they do not require interaction with real users. Next, we describe user studies, where a

small group of subjects is asked to use the system in a controlled environment, and their

experiences are reported. These experiments provide both quantitative and qualitative

information about the systems, but it is essential to consider various biases in the

experimental design.

Lastly, the most reliable type of experiment involves the system being used by a pool of

real users, who are typically unaware of the experiment. Although this type of experiment

allows us to collect only specific types of data, it closely resembles real-world conditions

and provides valuable insights [24], those are used in recommender systems to evaluate

and compare the performance of different recommendation algorithms or approaches.

1.5.1. Offline Experiments

An offline experiment is performed by using a pre-collected data set of users choosing

or rating items. Using this data set we can try to simulate the behaviours of users that

interact with a recommendation system. In doing so, we assume that the user behaviours

when the data was collected will be similar enough to the user behaviours when the

recommender system is deployed, so that we can make reliable decisions based on the

simulation. Offline experiments are attractive because they require no interaction with real

users, and thus allow us to compare a wide range of candidate algorithms at a low cost

[24].

1.5.2. User Studies

A user study is conducted by recruiting a set of test subjects, and asking them to

perform several tasks requiring an interaction with the recommendation system. While the

subjects perform the tasks, we observe and record their behaviours, collecting any number

of quantitative measurements, such as what portion of the task was completed, the

accuracy of the task results, or the time taken to perform the task [24].

Chapter 1. Session-based Recommender Systems

11

1.5.3. Online evaluation

Online evaluation is one of the best ways of seeing user interactions with the

recommendation engine. The real-life performance of the recommendation system

depends on a variety of factors. During the online evaluation, real users interact with the

systems. So, it is possible to understand the correct user intent and the success of the

recommendation model directly [22].

1.6. Limitations and Challenges of Recommender Systems

1.6.1. Cold Start

The “cold start" problem happens in recommendation systems due to the lack of

information, on users or items. The Cold-Start problem is a well-known issue in

recommendation systems: there is relatively little information about each user, which

results in an inability to draw inferences to recommend items to users [11] ,i.e., If you are

building a brand-new recommendation system, you would have no user data to start with.

You can use content-based filtering first and then move on to the collaborative filtering

approach [25].

1.6.2. Scalability

The rate of growth of nearest-neighbour algorithms shows a linear relation with

number of items and number of users. It becomes difficult for a typical recommender to

process such large-scale data [10]. Different techniques have been proposed including

clustering, reducing dimensionality, and Bayesian Network [26].

1.6.3. Data Sparsity

In practice, many commercial recommender systems are based on large datasets. As a

result, the user-item matrix used for collaborative filtering could be extremely large and

sparse, which brings about the challenges in the performances of the recommendation.

One typical problem caused by the data sparsity is the cold start problem. As collaborative

filtering methods recommend items based on users’ past preferences, new users will need

to rate a sufficient number of items to enable the system to capture their preferences

accurately and thus provide reliable recommendations. Similarly, new items also have the

same problem. When new items are added to the system, they need to be rated by a

substantial number of users before they could be recommended to users who have similar

tastes. The new item problem does not limit the content-based recommendation because

the recommendation of an item is based on its discrete set of descriptive qualities rather

than its ratings [11].

1.6.4. Synonymy

Synonymy arises when an item is represented with two or more different names or

entries having similar meanings [27]. In such cases, the recommender cannot identify

whether the terms represent different items or the same item.

Chapter 1. Session-based Recommender Systems

12

1.6.5. Shilling attacks

What happens if a malicious user or competitor enters into a system and starts giving

false ratings on some items either to increase the item popularity or to decrease its

popularity [28]. Such attacks can break the trust on the recommender system as well as

decrease the performance and quality of recommenders [10].

1.6.6. Privacy Concern

The more the algorithm knows about the customer, the more accurate its

recommendations will be. However, many customers are hesitant to hand over personal

information, especially given several high-profile cases of customer data leaks in recent

years. However, without this customer data, the recommendation engine cannot function

effectively. Therefore, building trust between the business and customers is key [29].

1.7. Session-based Recommender Systems

1.7.1. Overview

For present e-commerce platforms, it is important to accurately predict users’

preference for a timely next-item recommendation. To achieve this goal, session-based

recommender systems are developed, which are based on a sequence of the most recent

user-item interactions to avoid the influence raised from outdate historical records [30] .

An SBRS aims to predict either the unknown part (e.g., an item or a batch of items) of a

session given the known part, or the future session (e.g., the next-basket) given the

historical sessions via learning the intra- or inter-session dependencies [5].

SBRSs learn users’ preferences from the sessions associated and generated during the

consumption process. Each session is composed of multiple user-item interactions that

happen together in a continuous period of time, e.g., a basket of products purchased in one

transaction visit, which usually lasts for several minutes to several hours [5]

1.7.2. Session and Session Properties

A session refers to a sequence of user engagements with an application or website

within a brief timeframe. These engagements encompass various actions like clicks, views,

purchases, searches, and more. Each session is linked to specific session properties,

including the items viewed, the duration spent on each item, the sequence of item views,

and the time gaps between consecutive interactions.

A session can usually reflect a user’s current preference, a local shift of the user’s

intention within the session may still exist [30]. It is a list of interactions with a clear

boundary [5].

We will discuss five important properties of sessions that have a great impact on SBRSs:

Property 1: session length. The length of a session is defined as the total number of

interactions contained in it [5]. This is a basic property of sessions, which is taken as one of

Chapter 1. Session-based Recommender Systems

13

the statistical indicators of experiment data in most literature [31, 32]. Sessions of different

lengths may bring different challenges for SBRSs and thus lead to different

recommendation performance. The session characteristics related to session length

together with the corresponding challenges for building SBRSs are discussed in detail in

Section 1.7.4.

Property 2: internal order. The internal order of a session refers to the order over

interactions within it. Usually, there are different kinds of order flexibility inside different

sessions. The existence of internal order leads to the sequential dependencies within

sessions which can be used for recommendations [5]. The session characteristics related to

internal order and its challenges for building SBRSs are discussed in detail in Section 1.7.4.

Property 3: action type. In the real world, some sessions contain only one type of

actions. The dependencies over different types of actions are often different. For instance,

the items that are clicked together in a session may be similar or competitive while the

items purchased together in one session may be complementary. Therefore, the number of

action types in a session determines whether the intra-session dependencies are

homogeneous (based on a single type of actions) or heterogeneous (based on multi-type

actions), which is important for accurate recommendations [5]. The session characteristics

related to action type as well as the corresponding challenges for building SBRSs are

discussed in detail in Section 1.7.4.

Property 4: user information. User information of a session mainly refers to the

IDs of the users in the session, and sometimes user attributes are also included. In this

paper, the property of user information refers to the availability of user information in a

session. In the real word, the user information of sessions is given in some cases, while it is

not available in other cases [33, 34, 35] User information plays an important role to

connect sessions from the same user happening at different time and thus its availability

determines the possibility to model the long-term personalized preference across multiple

sessions for a specific user. In practice, SBRSs were initially proposed to handle those

anonymous sessions where user information is not available [36]. The session

characteristics together with the corresponding challenges for building SBRSs are

discussed in detail in Section 1.7.4.

Property 5: session-data structure. Session-data structure refers to the session-

related hierarchical structure consisting of multiple levels [37, 38], which intrinsically

exists in some session data. The interaction level is necessary for a session, while the other

levels depend on the specific session data. This is because either the attribute information

or the historical session information may not be available in all session data. Usually, the

number of levels included in a session data set determines the information volume that can

be used for recommendations [5]. The session characteristics related to session-data

structure as well as the corresponding challenges for building SBRSs are discussed in detail

in Section 1.7.4.

1.7.3. Sub-area of SBRS

The variety of existing work on SBRSs can be generally categorized into three sub-areas

fitting a unified categorization framework to reduce the aforementioned inconsistencies

Chapter 1. Session-based Recommender Systems

14

and confusion. According to the difference on the recommendation tasks, the sub-areas

include next interaction recommendation, next partial-session recommendation, and next

session recommendation [5]. Table 1 illustrates the differences between sub-area in SBRSs

[5]

 Next interaction recommendation. Next interaction recommendation aims to

recommend the next possible interaction in the current session by mainly modelling

intra-session dependencies [5].

 Next partial-session recommendation. Next-partial session recommendation

aims to recommend all the remaining interactions to complete the current session,

e.g., to predict all the subsequent items to complete a basket given the purchased

items in it, by mainly modelling intersession dependencies [5].

 Next session recommendation. Next session recommendation aims to

recommend the next session, e.g., next basket, by mainly modelling inter-session

dependencies [5].

Table1- A comparison of different sub-areas in SBRSs

1.7.4. Characteristics and Challenges

According to [2], gaining a comprehensive understanding of the characteristics of

session data and the challenges associated with modelling it is crucial in order to develop a

well-suited Session-Based Recommender System (SBRS). In this section, we illustrate and

summarize these characteristics and challenges as follows:

 Related to session length

According to session length, sessions can be roughly categorized into three types: long

sessions, medium sessions and short sessions.

Long sessions: A session that is considered long typically consists of a higher number

of interactions, exceeding 10 or more. In essence, longer sessions tend to offer a greater

amount of contextual information, which can contribute to the generation of more precise

recommendations. However, due to the uncertainty of user behaviours’, a long session is

more likely to contain random interactions [39] which are not related or unrelated to other

interactions within it. This brings noisy information and thus reduces the performance of

recommendations [40, 41].Therefore; the first challenge for SBRSs built on long sessions is

how to effectively reduce the noisy information from the irrelevant interactions [5]. In

Chapter 1. Session-based Recommender Systems

15

addition, there are usually more complex dependencies embedded in a long session, e.g.,

long-range dependencies [42] between two interactions that are far from each other in a

session or high-order dependencies [41]across multiple interactions in a session.

Consequently, another challenge for SBRSs built on long sessions is how to effectively

learn complex dependencies for better recommendation performance [5].

Medium session: Sessions of medium duration tend to encompass a moderate

number of interchanges, ranging from approximately 4 to 9 interactions. When compare

medium sessions with long and short sessions, a medium session is less likely to contain

too many irrelevant interactions while it usually contains the necessary contextual

information for Session-Based Recommendation (SBR) [5]. Although less complex in

nature, the development of SBRSs for medium length sessions remains fundamentally

challenged.

Short sessions: It consists of limited interactions that are usually less than 4,

consequently limiting the information available to substantiate recommendations.

 Related to internal order

Sessions can be divided into unordered sessions, ordered sessions and flexible-ordered

sessions:

Unordered sessions: An unordered session contains interactions without any

chronological order between them, namely, whether an interaction happens earlier or later

in the session makes no difference [31]. For example, the shopping sessions are sometimes

unordered since users may pick up a basket of items (e.g., {bread, milk, eggs}) without

following an explicit order [32]. In unordered sessions, the dependencies among the

interactions are based on their co-occurrence rather than the sequences of them, and thus

the generally utilized sequence models are not applicable [5]. Furthermore, most of co-

occurrence-based dependencies among interactions are collective dependencies [43, 44].

Ordered sessions: An ordered session contains multiple interactions with strict

order, and usually strong sequential dependencies exist among them. Although it is

relatively easy to learn the strong sequential dependencies within ordered sessions, it is

challenging to effectively learn the cascaded long-term sequential dependencies which

decay gradually with time in long ordered sessions [5].

Flexibly-ordered sessions: A flexibly-ordered session is neither totally unordered

nor totally ordered, i.e., some parts of the session are ordered while others are not [43].

Therefore, the complex dependencies inside flexibly-ordered sessions must be carefully

considered and precisely learned for accurate recommendation. Consequently, the

challenge for SBRSs built on flexibly-ordered sessions comes from how to effectively learn

the complex and mixed dependencies [5].

 Related to action type

Sessions can be divided into single-type-action sessions and multi-type-action sessions:

Chapter 1. Session-based Recommender Systems

16

Single-type-action sessions: A single-type-action session includes one type of

actions only, e.g., clicks of items, and thus only one type of dependencies comes from the

same type of actions, which is relatively easy to learn [5].

Multi-type-action sessions: A multi-type-action session includes more than one

types of actions [45], leading to multiple types of interactions. Thus, there are complex

dependencies inside a multi-type-action session [46]. Specifically, dependencies not only

exist over the interactions from the same type (e.g., clicks of items), but also exist over

interactions from different types (e.g., clicks and purchases) [5].

Related to user information

According to [5] sessions can be divided into non-anonymous sessions and anonymous

sessions.

Non-anonymous sessions: A non-anonymous sessions contains non-anonymous

interactions with the associated user information, which enables the connections of

different sessions generated by the same user at different time. This makes it possible to

learn the user’s long-term preference as well as its evolution across sessions. However, due

to the relative long time-span and preference dynamics, it is quite challenging to precisely

learn the personalized long-term preference over multiple non-anonymous sessions [5].

Anonymous sessions: In anonymous sessions, due to the lack of user information to

connect multiple sessions generated by the same user, it is nearly impossible to collect the

prior historical sessions for the current session. As a result, only the contextual

information from the current session can be used for recommendations. Therefore, it is

challenging to precisely capture the user’s personalized preference with limited contextual

information to provide accurate recommendation [5].

 Related to session-data structure

According to the number of levels of structures, session data can be roughly divided

into single-level session data and multi-level session data:

Single-level session data: A single-level session data set is usually a set of

anonymous sessions where each consists of several interactions without attribute

information or historical session information. In such a case, only single-level

dependencies, i.e., the inter-interaction dependencies within sessions can be utilized for

recommendations [5]. Hence, due to the lack of auxiliary information from other levels,

SBRSs built on single-level session data may easily suffer from the cold-start or data

sparsity issue [46]. This leads to the challenge of how to overcome the cold-start and

sparsity issues for accurate recommendations when only the inter-interaction

dependencies are available [5].

Multi-level session data: multi-level session data involves a hierarchical structure

of at least two levels, i.e., the interaction level plus attribute level and/or session level. In

this case, both the dependencies within each level and across different levels would affect

the subsequent recommendations. For example, the categories (the attribute level) of

several items may have impact on whether these items would be bought together (the

Chapter 1. Session-based Recommender Systems

17

interaction level) in one session. Consequently, how to comprehensively learn the intra-

and inter-level dependencies for effective and accurate recommendations becomes a key

challenge for SBRSs built on multi-level session data [5].

1.8. Conclusion

In this chapter, we provided an overview of recommender systems and their types. We

also discussed various evaluation metrics for recommender systems. Furthermore, we

highlighted some of the main limitations and challenges facing recommender systems. In

addition, we discussed the concept of session-based recommender systems (SBRSs), by

providing an overview of SBRSs. Moreover, we highlighted some of the limitations and

challenges associated with SBRS. Overall, this chapter aimed to provide a comprehensive

introduction to recommender systems and SBRSs, highlighting their potential and

challenges. In the following chapters, we will focus on Graph convolutional networks

(GCNs).

18

Chapter 2.

 Graph Convolutional Networks

Chapter 2. Graph Convolutional Networks

19

2.1. Introduction

In this chapter we provide an introduction to Graph Convolutional Networks (GCNs).

Which is a powerful tool for analysing graph-structured data in machine learning and data

analysis? It begins by establishing the foundational concepts of graphs, learning processes,

and neural networks. Then, it introduces Graph Neural Networks (GNNs) as a precursor to

understanding GCNs. The core focus is on GCNs, explaining their definition, architecture,

types, and applications. We conclude it by addressing the challenges and future research

directions in the field of GCNs.

2.2. Deep learning

2.2.1. Overview

In this section, we will explore the fascinating field of deep learning, which lies at the

intersection of artificial intelligence (AI) and machine learning (ML). Before delving into

the intricacies of deep learning, let's briefly define these foundational concepts:

Artificial Intelligence (AI) as Jair Ribeiro said « AI is the field of computer science that

enables machines to perform tasks requiring human-like intelligence. It involves creating

intelligent agents that can sense, comprehend, learn, and act in a way that extends human

capabilities »

Machine Learning (ML): Machine learning is a subset of AI that focuses on developing

algorithms and models that enable computers to learn from data and make predictions or

decisions without being explicitly programmed. ML algorithms learn from examples and

iteratively improve their performance as they encounter more data. It has become a crucial

tool for solving complex problems and driving advancements in various domains.

Figure 4 - the relation between AI, ML and Deep Learning

Chapter 2. Graph Convolutional Networks

20

2.2.2. Learning processes

There are three major learning paradigms; supervised learning, unsupervised learning

and reinforcement learning. Usually, they can be employed by any given type of artificial

neural network architecture [47]. The table 2.1 shows a comparison between the three

learning paradigms [48].

Supervised learning: Supervised learning is a machine learning technique that sets

the parameters of an artificial neural network based on training data. The objective of the

learning process is for the artificial neural network to determine the appropriate parameter

values for any valid input, having observed the corresponding output values. The training

data consists of pairs of input and desired output values, typically represented as data

vectors. Supervised learning can also be referred to as classification, where a variety of

classifiers exist, each with its own strengths and weaknesses. Selecting a suitable classifier,

such as Multilayer Perceptron, Support Vector Machines, k-nearest neighbor algorithm,

Gaussian mixture model, Gaussian, naive Bayes, decision tree, radial basis function

classifiers, etc., for a given problem is often more of an art than a science [47].

Unsupervised learning: Unsupervised learning is a machine learning technique

that sets parameters of an artificial neural network based on given data and a cost

function, which is to be minimized. The cost function can be any function and is

determined by the task formulation. Unsupervised learning is frequently employed in

estimation problems such as statistical modelling, compression, filtering, blind source

separation, and clustering. In unsupervised learning, the objective is to determine the

organizational structure of the data. It differentiates itself from supervised learning and

reinforcement learning in that the artificial neural network is provided with only

unlabelled examples. One common form of unsupervised learning is clustering, where the

goal is to categorize data into different clusters based on their similarity. Among the

aforementioned artificial neural network models, self-organizing maps are the most

commonly used unsupervised learning algorithms [47].

Reinforcement learning: Reinforcement learning is a subfield of machine learning

that involves an agent learning to interact with an environment to maximize cumulative

rewards. The agent learns by taking actions in the environment, receiving feedback in the

form of rewards or penalties, and updating its strategy based on this feedback. The

ultimate objective is to discover an optimal policy that maps states to actions, leading to

the highest expected long-term reward [49, 50].

Chapter 2. Graph Convolutional Networks

21

Table2 - comparisons between the learning paradigms

2.3. Artificial Neural Networks

2.3.1. Overview

Artificial Neural Networks (ANN) is algorithms based on brain function and are used to

model complicated patterns and forecast issues. The Artificial Neural Network (ANN) is a

deep learning method that arose from the concept of the human brain Biological Neural

Networks. The development of ANN was the result of an attempt to replicate the workings

of the human brain. The workings of ANN are extremely similar to those of biological

neural networks as shown in Figure 2.2 [51], although they are not identical. ANN

algorithm accepts only numeric and structured data [52].

Machine learning is the research field of allowing computers to learn to act

appropriately from sample data without being explicitly programmed. Deep learning is a

class of machine learning algorithms that is built upon artificial neural networks.

In fact, most of the vital building components of deep learning have existed for decades,

while deep learning only gains its popularity in recent years [53], From the realm of

Machine Learning and Deep Learning emerges the powerful concept of Artificial Neural

Networks (ANNs), which are a machine learning method evolved from the idea of

simulating the human brain [54].

In case of biological neuron information comes into the neuron via dendrite, soma

processes the information and passes it on via axon. In case of artificial neuron the

information comes into the body of an artificial neuron via inputs that are weighted (each

Chapter 2. Graph Convolutional Networks

22

input can be individually multiplied with a weight). The body of an artificial neuron then

sums the weighted inputs, bias and “processes” the sum with a transfer function. At the

end an artificial neuron passes the processed information via output(s). Benefit of artificial

neuron model simplicity can be seen in its mathematical description below [47]:

𝑦(𝑘) = 𝐹(∑ 𝑤𝑖(𝑘). 𝑥𝑖(𝑘) + 𝑏

𝑚

𝑖=0

)

Where:

 𝑥𝑖(𝑘) is the input value in discrete time

݇ where

݇ goes from 0 to m,

 𝑤𝑖(𝑘) is the weight value in discrete time where goes from 0 to m,

 B is the bias,

 F is the transfer or activation function,

 𝑦𝑖(𝑘) is the output value in discrete time k.

Note that when combining two or more artificial neurons we are getting an artificial

neural network [47].

Figure 5 - Neuron in Artificial neural network components

Chapter 2. Graph Convolutional Networks

23

2.3.2. ANNs architecture

In the Figure 2.4 [51], it is illustrated that a neural network made of interconnected

neurons. Each of them is characterized by its weight, bias, and activation function. Here is

a brief explanation of other elements of this network [55].

Input Layer: The input layer takes raw input from the domain. No computation is

performed at this layer. Nodes here just pass on the information (features) to the hidden

layer.

Hidden Layer: As the name suggests, the nodes of this layer are not exposed. They

provide an abstraction to the neural network.

The hidden layer performs all kinds of computation on the features entered through the

input layer and transfers the result to the output layer.

Output Layer: It’s the final layer of the network that brings the information learned

through the hidden layer and delivers the final value as a result.

All hidden layers usually use the same activation function. However, the output layer

will typically use a different activation function from the hidden layers. The choice depends

on the goal or type of prediction made by the model

2.3.3. Activation functions

An activation function decides whether or to what extent the input signal should pass.

The node (or neuron) is activated if there is information passing through it. It is a kind of

function that maps a real number to a number between 0 and 1 (with rare exceptions).

which represents the activation of the neuron, where 0 indicates deactivated and 1

indicates fully activated [56], We choose it on the basis of problem that artificial neuron

Figure 6 - Neural Networks basic Architecture

Chapter 2. Graph Convolutional Networks

24

(artificial neural network) needs to solve [47] .The purpose of activation functions is to add

the non-linearity to the neural network.

In the following we introduce some commonly used Activation functions.

 Sigmoid or Logistic Activation Function: It is the most widely used

activation function as it is a non-linear function. Sigmoid function transforms the

values in the range 0 to 1 [57]. It can be defined as:

𝑓(𝑥) =
1

𝑒𝑥

The main reason why we use sigmoid function is because it exists between (0 and

1). Therefore, it is especially used for models where we have to predict the

probability as an output. Since probability of anything exists only between the range

of 0 and 1, sigmoid is the right choice [58].

Figure 7 - Sigmoid Activation function

Chapter 2. Graph Convolutional Networks

25

 Tanh Function (Hyperbolic Tangent). It is Hyperbolic Tangent function. Tanh

function is similar to the sigmoid function but it is symmetric to around the origin.

This results in different signs of outputs from previous layers which will be fed as

input to the next layer [57]. It can be defined as:

𝑓(𝑥) = 2𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥) − 1

 ReLU Function. ReLU stands for rectified liner unit and is a non-linear activation

function which is widely used in neural network. The upper hand of using ReLU

function is that all the neurons are not activated at the same time. This implies that

a neuron will be deactivated only when the output of linear transformation is zero

[57]. It can be defined mathematically as:

 𝑓(𝑥) = max (0, 𝑥)

Figure 8 - Tanh activation function

Chapter 2. Graph Convolutional Networks

26

2.3.4. Feed-forward Neural Network

A feed forward neural network (FNN) is a type of artificial neural network where

information propagates in a forward direction, without feedback connections. It consists of

an input layer that receives input data, one or more hidden layers responsible for

processing intermediate representations, and an output layer that produces the final

output. Each layer is composed of interconnected nodes, called neurons, which perform

computations on the received input using activation functions. The network's weights and

biases are adjusted during training to optimize the model's performance [59, 60].

The number of neurons in each layer and the connectivity pattern between layers

determine the architecture of the FNN. In a fully connected FNN, each neuron in a given

layer is connected to every neuron in the subsequent layer. This allows the flow of

information throughout the network, enabling the network to learn complex relationships

within the data [59].

The hidden layers serve as information-processing stages, where each neuron applies a

non-linear activation function to its input. Common activation functions used in FNNs

include the sigmoid function, ReLU (Rectified Linear Unit), and tanh (hyperbolic tangent)

function. These activation functions introduce non-linearity into the network, enabling it

to model complex relationships and capture non-linear patterns in the data [60].

In order to propagate the features representation to the next layer (forward pass), we

perform the equation below [61]:

Figure 9 - ReLU activation function

Chapter 2. Graph Convolutional Networks

27

𝐻[𝑖+1] = 𝜎(𝑊[𝑖]𝐻[𝑖] + 𝑏𝑖)

Equation 1 Forward Pass in Neural Networks

Where:

- H the feature representation at layers

- i the number of layers

- 𝜎 the activation function

- W the weight

- b the bias

Figure 10 - Forward propagation in neural networks

2.4. Recurrent Neural Networks

2.4.1. Overview

Recurrent Neural Networks (RNNs) are a type of artificial neural network specifically

designed to process sequential data by introducing the concept of recurrent connections.

Unlike feed forward neural networks, RNNs have connections that form a directed cycle,

allowing them to retain and utilize information from previous time steps or inputs [60,

62].

RNNs process sequential data by iteratively applying the same set of weights and biases

across multiple time steps. At each time step, the network takes an input, computes the

hidden state based on the previous hidden state and current input, and produces an

output. This recurrent computation enables RNNs to model dynamic temporal

relationships in sequential data, making them suitable for tasks such as speech

recognition, language modelling, machine translation, and time series analysis [60, 62].

However, standard RNNs suffer from the vanishing or exploding gradient problem,

where the influence of past inputs on the current hidden state diminishes or amplifies

exponentially over time. To address this issue, various advanced RNN architectures have

been developed, such as Long Short-Term Memory (LSTM) and Gated Recurrent Units

(GRUs). These architectures incorporate gating mechanisms that allow the network to

selectively retain or forget information, improving its ability to learn and capture long-

term dependencies in sequential data [63, 64]

Chapter 2. Graph Convolutional Networks

28

2.4.2. RNNs Architecture

As shown in Figure 2.7 [65] the architecture of a Recurrent Neural Network (RNN)

consists of input, hidden, and output layers, with a feedback loop that enables the network

to process sequential data by maintaining hidden states capturing contextual information

from previous inputs [60, 62]. In the following section we will discuss them briefly.

 The input layer of an RNN represents the initial input to the network. Each element

of the input sequence is represented as a vector, and the sequence is fed into the

network step by step. This step is similar to the input layer of other neural network

architectures [60].

 The hidden layer of an RNN is responsible for maintaining and updating the hidden

state, which captures information from previous inputs. It takes both the current

input and the previous hidden state as input and produces a new hidden state. This

recurrent connection allows the network to retain memory of past inputs and capture

sequential dependencies [62].

 In the Output Layer of an RNN takes the hidden state as input and produces the

output for the current step. The output can be a prediction, classification, or any

other desired output based on the task at hand. The output layer can be a fully

connected layer or any other appropriate layer for the specific task [66].

 The next step consists of the feedback loop which allows the output from the current

step to be fed back into the network as the input for the next step. This feedback

mechanism is crucial for capturing sequential dependencies and maintaining

memory of past inputs. It enables the RNN to process the entire input sequence

iteratively [67].

 Finally, the Time Unfolding step to process the entire input sequence, the RNN is

time-unfolded into multiple steps, where each step represents a single time step of

the input sequence. This unfolding allows the RNN to process the sequential data

Figure 11 - a simple RNNs architecture

Chapter 2. Graph Convolutional Networks

29

one step at a time and facilitates the application of back propagation through time

(BPTT) for training the network [67].

2.5. Convolutional neural networks

2.5.1. Overview

Convolutional neural networks (CNNs) are special versions of FNNs. FNNs are usually

fully connected networks while CNNs preserve the local connectivity.as shown in figure 2.7

The CNN architecture usually contains convolutional layers, pooling layers, and several

fully connected layers or dense layers [56].

2.5.2. CNN Architecture

As shown in the Figure 2.7 [68] The Convolutional layer applies filters to the input

image to extract features, the Pooling layer down samples the image to reduce

computation, and the fully connected layer makes the final prediction [69], they also

consist of neurons that have trainable weights and bias. Each neuron receives and

transforms some information from previous layers. The difference is that some of the

neurons in CNNs may have different designs from the ones we introduced for feed forward

networks [53], we will provide a brief explanation of every step.

According to [70, 71] :

 The input to a CNN is usually an image or a set of images. An image is represented as

a grid of pixels, where each pixel contains colour information (RGB values). The

dimensions of the input image are typically fixed and known in advance.

 While the convolutional layer is the primary building block of a CNN. It applies a set

of learnable filters (also known as kernels) to the input image to extract features.

Each filter performs a convolution operation by sliding over the input image and

computing dot products between the filter weights and local regions of the input. The

output of this operation is called a feature map or an activation map.

The convolutional layer helps the network learn spatial hierarchies of features by

capturing low-level features in the earlier layers and more complex features in the deeper

layers.

After the convolution operation, an element-wise activation function is applied to

introduce non-linearity into the network. Commonly used activation functions include

Rectified Linear Units (ReLU), sigmoid, and hyperbolic tangent (tanh) [72].

 Then the pooling layer reduces the spatial dimensions of the feature maps while

retaining the most important information. It works by partitioning the input feature

map into small regions (e.g., 2x2 or 3x3) and taking the maximum or average value

within each region. Pooling helps to achieve translation invariance and reduces the

sensitivity of the network to small spatial variations in the input [73, 74].

Chapter 2. Graph Convolutional Networks

30

 Finally, the dense layer connects every neuron from the previous layer to every

neuron in the current layer. It transforms the features learned by the convolutional

layers into a vector of class scores or probabilities. This layer is typically placed at the

end of the network and provides the final classification or regression output [75].

2.6. Graph fundamentals

2.6.1. Overview

Graphs are ubiquitous structures that can be used to model complex relationships

between entities. Graphs have been used in many fields such as social network analysis,

recommendation systems, computer networks, and bioinformatics. In recent years, deep

learning techniques have been applied to graphs to extract features and learn

representations, resulting in Graph Neural Networks (GNNs) that have shown promising

results in various applications, including session-based recommender systems.

 In this section, we will provide an introduction to graphs and their importance in

machine learning. We will discuss the different types of graphs, graph algorithms, and

graph representations. We will also briefly introduce the concept of GNNs and their

application in session-based recommender systems.

2.6.2. Graph representation

In this section, we introduce the definition of graphs. With brief explanations:

Definition 1: A graph is often denoted by G = (V, E), where V is the set of vertices and

E is the set of edges. An edge e = u,v has two endpoints u and v, which are said to be joined

by e. In this case, u is called a neighbour of v, or in other words, these two vertices are

adjacent. Note that an edge can either be directed or undirected. A graph is called a

directed graph if all edges are directed or undirected graph if all edges are undirected. The

degree of vertices v, denoted by d(v), is the number of edges connected with v [56]. The

figure 13 illustrate directed and undirected graph [76] .

Figure 12 - a simple convolutional neural networks architecture

Chapter 2. Graph Convolutional Networks

31

2.6.3. Algebra representation of graphs

Here are a few helpful algebraic representations for graphs:

 Adjacency matrix: For a simple graph with vertex set U = {u1, …, un}, the

Adjacency matrix is a square n × n matrix A such that its element Aij is one

when there is an edge from vertex ui to vertex uj, and zero when there is no edge

[77], the Figure represent an example of adjacency matrix [78] :

 Degree matrix: Given a graph G=(V,E) with iVi =n , the degree matrix D for G in

an n×n diagonal matrix defined as [79]

𝐷𝑖,𝑗 ≔ {
𝑑𝑒𝑔(𝑣𝑖) 𝑖𝑓 𝑖 = 𝑗

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Figure 13 - Directed and undirected graph

Figure 14 - Adjacency matrix of a graph

Chapter 2. Graph Convolutional Networks

32

where the degree 𝒅𝒆𝒈(𝒗𝒊) of a vertex counts the number of times an edge terminates

at that vertex. In an undirected graph, this means that each loop increases the degree

of a vertex by two. In a directed graph, the term degree may refer either to in

degree (the number of incoming edges at each vertex) or out degree (the number of

outgoing edges at each vertex).

 Laplacian matrix: Given a simple graph G with n vertices v1, …, vn, its Laplacian

matrix 𝐿𝑛×𝑛 is defined element-wise as

Ln×n ∶= {

deg(vi) if i = j

−1 if i ≠ j and vi adjacent to

0 otherwise

 vj

Or equivalently by the matrix

L = D - A

Where: D is the degree matrix and A is the adjacency matrix of the graph. Since G is a

simple graph, A only contains 1s or 0s and its diagonal elements are all 0s.

2.6.4. Computational Tasks on Graphs

We've discussed graph examples in the wild, but what tasks can we perform on this

data? There are three types of prediction tasks on graphs: node-level, graph-level, and

edge-level tasks.

 Node-focused tasks: Node-focused tasks involve analysing and understanding

individual nodes in a graph. These tasks aim to extract meaningful information from

each node, such as its properties, attributes, or importance within the graph.

Examples of node-focused tasks include node classification, node clustering, and

node ranking. Node classification aims to assign a category or label to each node

based on its properties. Node clustering involves grouping similar nodes together.

Node ranking determines the importance or centrality of each node in the graph [80,

81].

 Graph-focused tasks: Graph-focused tasks involve analysing the entire graph

structure as a whole. These tasks aim to understand the overall properties,

characteristics, and patterns present in the graph. Examples of graph-focused tasks

include graph classification, graph generation, and graph similarity. Graph

classification involves assigning a category or label to an entire graph based on its

structure or properties. Graph generation focuses on generating new graphs that

exhibit similar properties or characteristics as the input graph. Graph similarity aims

to quantify the similarity between two or more graphs [82, 83].

 Edge-level tasks: Edge-level tasks involve analysing the connections or

relationships between pairs of nodes in a graph. These tasks focus on understanding

the interactions, dependencies, or patterns that exist between the nodes through their

connecting edges. Examples of edge-level tasks include link prediction, graph

matching, and graph alignment. Link prediction aims to predict missing or future

edges in a graph based on the existing connections. Graph matching involves finding

https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Indegree
https://en.wikipedia.org/wiki/Indegree
https://en.wikipedia.org/wiki/Outdegree
https://en.wikipedia.org/wiki/Simple_graph
https://en.wikipedia.org/wiki/Degree_matrix
https://en.wikipedia.org/wiki/Adjacency_matrix

Chapter 2. Graph Convolutional Networks

33

correspondences between nodes in two or more graphs. Graph alignment aims to

align or map nodes between different graphs based on their structural similarities

[84, 85].

2.6.5. Graph applications

Graphs can be used to model many types of relations and processes in physical,

biological [86, 87], social and information systems [88]. Graphs can effectively depict

numerous practical issues. By placing a strong focus on their relevance to real-life systems,

the notion of a network can be defined as a graph where attributes (such as names) are

linked to the vertices and edges. The field those studies and comprehends real-world

systems as networks is known as network science. The following sections discuss several

real-world applications of graphs:

 Computer science: Graphs are used to model many problems and solutions in

computer science, such as representing networks, web pages, and social media

connections. Graph algorithms are used in path finding, data compression, and

scheduling or it might be used in Artificial intelligence to model and analyse data in

many AI applications, such as machine learning, Artificial Intelligence, and natural

language processing [89].

 Citation networks as graphs: Scientists routinely cite other scientists’ work when

publishing papers. We can visualize these networks of citations as a graph, where

each paper is a node, and each directed edge is a citation between one paper and

another. Additionally, we can add information about each paper into each node, such

as a word embedding of the abstract.

 Social science: Graph theory is also widely used in sociology as a way, for example,

to explore rumour spreading, notably through the use of social network

analysis software [90]. Under the umbrella of social networks are many different

types of graphs [91].

 Mathematics: In mathematics, graphs are useful in geometry and certain parts of

topology such as knot theory. Algebraic graph theory has close links with group

theory. Algebraic graph theory has been applied to many areas including dynamic

systems and complexity [90].

2.7. Graph Neural Networks

2.7.1. Overview

Graph Neural Networks are a subclass of Deep Learning techniques that are specifically

built to do inference on graph-based data. They are applied to graphs and are capable of

performing prediction tasks at the node, edge, and graph levels [92]. GNN is a neural

network that is directly applied to graphs, giving a handy method for performing edge,

node, and graph level prediction tasks.

https://en.wikipedia.org/wiki/Sociology
https://en.wikipedia.org/wiki/Rumor_spread_in_social_network
https://en.wikipedia.org/wiki/Social_network_analysis
https://en.wikipedia.org/wiki/Social_network_analysis
https://en.wikipedia.org/wiki/Knot_theory
https://en.wikipedia.org/wiki/Algebraic_graph_theory
https://en.wikipedia.org/wiki/Group_theory
https://en.wikipedia.org/wiki/Group_theory

Chapter 2. Graph Convolutional Networks

34

2.7.2. GNNs architecture

GNN architecture’s primary goal is to learn embedding that contains information about

its neighbourhood. We may use this embedding to tackle a variety of issues, including node

labelling, node and edge prediction, and so on [92].

Figure 2.8 shows the general architecture of a graph neural network where the input

graph is fed into the hidden nodes to learn the representations of graph-structured data,

and the output graph is generated from the learned graph-structured representations. It

works by propagating information along the edges of a graph to update the node

representations. In other words, the network iteratively aggregates the information from a

node’s neighbouring nodes and uses this information to update its own representation.

This process is repeated for multiple iterations until the nodes converge to a stable

representation.

2.7.3. GNNs types

Graph neural networks are classified into three types [92] :

 Recurrent Graph Neural Network: Consider as the most powerful GNN variant,

also known as RecGNN

 Spatial Convolutional Network: Spatial Convolutional Networks have a similar

idea to CNNs. As is well known in CNN, convolution is performed by summing the

neighbouring pixels around a central pixel using a filter and learnable weights.

Spatial Convolutional Networks operate on a similar principle, aggregating the

properties of neighbouring nodes toward the centre node.

Figure 15 - Graph Neural Network architecture

Chapter 2. Graph Convolutional Networks

35

 Spectral Convolutional Network: In comparison to other types of Graph Neural

Networks, this sort of GNN is built on a solid mathematical foundation. It is based on

the theory of Graph Signal Processing. It simplifies by the use of Chebyshev

polynomial approximation.

2.7.4. GNNs tasks

According to [93] , Graph neural networks tasks can be described as follow:

 Graph Classification: We use this to classify graphs into various categories. Its

applications are social network analysis and text classification.

 Node Classification: this task uses neighbouring node labels to predict missing

node labels in a graph.

 Link Prediction: predicts the link between a pair of nodes in a graph with an

incomplete adjacency matrix. It is commonly used for social networks.

Figure 16 - Graph Neural Networks tasks

 Community Detection: Divides nodes into various clusters based on edge

structure. It learns from edge weights and distance and graph objects similarly.

 Graph Embedding: Maps graphs into vectors, preserving the relevant information

on nodes, edges, and structure.

 Graph Generation: Learns from sample graph distribution to generate a new but

similar graph structure.

Chapter 2. Graph Convolutional Networks

36

2.7.5. GNNs advantages and limitations

 The main advantage of using graph neural networks is their ability to handle complex

graph-structured data. Additionally, GNNs can be used for both supervised and

unsupervised learning tasks, making them a versatile tool for many applications [92].

According to [92] graph neural networks have one limitation is that they can be

computationally expensive, especially for large graphs. Additionally, GNNs can suffer from

over fitting, especially when the graph structure is noisy or incomplete. Finally, the

interpretability of GNNs can be a challenge, as it is often difficult to understand how the

network arrives at its predictions.

2.8. Graph Convolutional Networks

2.8.1. Main ideas

As the name “Convolutional” suggests, the idea was from Images and then brought to

Graphs. However, when Images have a fixed structure, Graphs are much more complex.

Figure 17 - Convolution idea from images to graphs

2.8.2. Definition and principals

Graph Convolutional Networks (GCNs) are a class of deep learning models designed to

operate on graph-structured data. Unlike traditional neural networks that process grid-like

data, GCNs extend neural network architectures to handle non-Euclidean domains

represented by graphs or networks [94, 95], The core idea behind GCNs is to generalize the

concept of convolutional layers from grid-like data (such as images) to graphs. In

traditional convolutional neural networks (CNNs), convolutions operate on local

neighbourhoods of pixels, exploiting the grid structure. In GCNs, convolutions are defined

in the spectral or spatial domain of graphs, leveraging the connectivity patterns between

nodes [94, 95] , GCNs typically operate in a message-passing framework, where each node

receives and aggregates information from its neighbouring nodes. This aggregation process

Chapter 2. Graph Convolutional Networks

37

is analogous to the receptive field in CNNs, allowing nodes to gather information from

their local graph neighbourhood. The gathered information is then used to update the

node's representation or features. By iteratively propagating and aggregating information

across the graph, GCNs learn to capture the graph structure and perform node-level or

graph-level predictions [94, 95] .

2.8.3. GCN architecture

As the Figure 18 [61] show an illustration of Graph convolutional networks we can

consider that GCN is similar to the filter in convolution and denotes the definition of

convolution from the regular grid to irregular structures like graphs [96]. The node

embedding are updated as follows [97]:

𝐻[𝑙+1] = δ (𝐷−1/2𝐴𝐷−1/2𝐻𝑙𝑤𝑙)

Where 𝐻𝑙
 represent the embedding matrix of 𝑙 - 𝑡ℎ layer convolution, 𝑑 is the

embedding dimension. A is the adjacency matrix with self-loops, and 𝐷𝑖𝑖 = ∑𝑗 𝐴𝑖𝑗 is the

degree matrix. All these operations are making sure that all the neighbours are receiving

an aggregated message from multiple hop neighbours. The weights 𝑊𝑙
 in the GCN are

trained using gradient descent.

GCNs are the simplified version of Graph Convolutional Neural Networks (GCNNs). A

typical GCN consist of three steps

1) Feature propagation,

2) Linear transformation,

3) Application of a non-linear activation function [98].

Feature propagation is achieved using convolutional matrix computed from graph

topology. For the linear transformation different parameters are learned to minimize a loss

function and for that typical activation functions such as sigmoid or ReLU are used [97].

 Figure 18 - Illustration of Graph Convolutional Networks

Chapter 2. Graph Convolutional Networks

38

Let’s explain the GCNs steps more deeply:

Convolution and message passing (feature propagation): In the feature

propagation step, GCNs aim to capture and propagate information across the graph

by considering the features of neighbouring nodes. This is achieved by computing a

weighted sum of the features of each node's neighbours and incorporating it into the

node's own feature representation. The weights are typically determined based on the

graph structure or learned through a training process. This aggregation of

neighbouring features helps to capture the local context and dependencies in the

graph [99].

As shown in the Figure 19 [100] , for each node, we get the feature information from

all its neighbours and of course, the feature of itself. Assume we use the average ()

function. We will do the same for all the nodes. Finally, we feed these average values

into a neural network.

Note that the main idea of GCN. Consider the green node (see Figure 19). First, we

take the average of all its neighbours, including itself. After that, the average value is

passed through a neural network. Note that, in GCN, we simply use a fully connected

layer. In this example, we get 2-dimension vectors as the output (2 nodes at the fully

connected layer).

Figure 19 - convolution method in GCN

Chapter 2. Graph Convolutional Networks

39

An important note to consider is shown in Figure 20 [100] that illustrates an

example of 2-layer GCN: The output of the first layer is the input of the second layer.

Again, note that the neural network in GCN is simply a fully connected layer.

 Linear transformation: After the feature propagation step, a linear

transformation is applied to the updated node features. This transformation aims to

learn a more expressive and task-specific representation by mapping the aggregated

features to a new feature space. The linear transformation is typically implemented as

a matrix multiplication between the updated features and a learnable weight matrix.

The weight matrix captures the relationships between the input features and the

desired output [95].

 Application of a Non-linear Activation Function: To introduce non-

linearity and capture more complex patterns, an activation function is applied

element-wise to the transformed features. This non-linear mapping allows the GCN

to model non-linear relationships between features and enables the network to learn

more expressive representations. Common activation functions include the rectified

linear unit (ReLU), sigmoid, or hyperbolic tangent (tanh) [101].

2.8.4. GCN variations

In the field of Graph Convolutional Networks (GCNs), there are several methods and

variations that have been developed to enhance the performance and address specific

challenges in graph-based learning tasks. In this section we will discuss some of them.

 GraphSage. GraphSage (Graph Sample and Aggregated) is a scalable GCN method

that performs inductive learning on large-scale graphs. It aggregates information

from a node's local neighbourhood by sampling and aggregating features, allowing

generalization to unseen nodes during inference [99].

 Graph Attention Network (GAT). GAT introduces an attention mechanism into

GCNs, allowing nodes to assign different importance weights to their neighbours

during the aggregation step. Attention mechanisms enable the network to focus on

more relevant information, enhancing the representation learning process [102].

Figure 20 - GCN with two layers

Chapter 2. Graph Convolutional Networks

40

 ChebNet. ChebNet utilizes Chebyshev polynomial filters to approximate the spectral

filters in GCNs. This approach enables efficient graph convolution by avoiding the

computationally expensive Eigen decomposition step, making it scalable for large

graphs [103].

 Graph Isomorphism Network (GIN). GIN is a variant of GCN that operates by

aggregating information from the neighbouring nodes and updating node features

using a sum-aggregation function. It applies multiple graph isomorphism network

layers to capture higher-order structural information in the graph [104].

These are just a few notables’ variants of GCNs. The field of graph representation learning

is evolving rapidly, and new variants and improvements are continuously being developed.

2.8.5. GCN types

GCNs mainly include two categories: spectral-based GCNs and spatial-based GCNs

[105]

 Spectral-based GCNs. The first notable spectral-based graph convolutional

network is proposed by Bruna et al [106], it operate in the spectral domain by

leveraging the graph Laplacian eigen basis. They utilize the graph Fourier transform

to transform the graph signals into the spectral domain, where convolutions are

applied. The graph Laplacian Eigen basis captures the global structure of the graph.

Spectral-based GCNs utilize the graph Laplacian eigenvalues and eigenvectors to

define the graph convolution operation [103, 107]

It can be defined as fellow:

𝑌 = ∑ 𝑈𝛬𝑘𝑈𝑇𝑋𝑊𝑘

𝐾

𝑘=0

Where:

Y is the output feature matrix,

X is the input feature matrix,

W represents the trainable weight matrix for the k-th graph convolutional layer,

U and Lambda denote the eigenvectors and eigenvalues of the graph Laplacian,

respectively,

K is the number of layers.

 Spatial-based GCNs. Spatial-based GCNs, also known as neighbourhood

aggregation or message-passing GCNs operate in the spatial domain by aggregating

information from the local neighbourhood of each node. They propagate information

through message passing between neighbouring nodes, which captures the local

structure and relationships in the graph. Spatial-based GCNs update the node

features by aggregating and transforming the features of neighbouring nodes [94, 99]

Chapter 2. Graph Convolutional Networks

41

Its operation can be defined as fellow:

𝑌 = 𝜎(𝐷−1𝐴𝑋𝑊)

Where:

Y is the output feature matrix,

X is the input feature matrix,

W represents the trainable weight matrix,

A denotes the adjacency matrix of the graph,

D is the degree matrix, which is a diagonal matrix with the node degrees as its diagonal

entries,

𝜎 Represents the activation function.

2.8.6. An explanation example

We will provide a simple example to explain how GCN works according to the steps

mentioned earlier.

Consider a social network graph where nodes represent individuals and edges represent

their connections. Each node has associated features such as age, gender, and interests.

The task at hand is to predict whether two individuals are likely to be friends based on

their shared interests.

Feature Propagation: During feature propagation, a GCN would aggregate the features

of each node's neighbours to update its own feature representation. In the social network

context, this could involve summing or averaging the features of a node's immediate

friends to capture the common characteristics within their social circles. For instance, if

Alice and Bob share similar interests and have several mutual friends, their features would

be updated to reflect this shared information.

Linear Transformation: After the feature propagation step, a linear transformation is

applied to the updated node features. The linear transformation aims to learn a weighted

combination of the features that is relevant for the prediction task. In our example, the

weights would capture the importance of different features (e.g., age, gender, interests) in

determining the likelihood of friendship. By applying this transformation, the GCN can

extract more discriminative representations from the updated features.

Application of a Non-linear Activation Function: To introduce non-linearity, an

activation function is applied to the transformed features. This activation function can

capture complex relationships and patterns within the data. For instance, it can model that

individuals with similar interests and close ages are more likely to form friendships. By

applying the activation function, the GCN can learn and represent these non-linear

relationships, allowing for more accurate predictions.

Chapter 2. Graph Convolutional Networks

42

By combining these steps, a GCN can effectively leverage the graph structure and the

shared information between nodes to predict friendships in the social network.

2.9. Conclusion

In conclusion, this chapter provided an extensive overview of key concepts and

techniques in graph analysis and neural networks. We began by introducing the

fundamentals of graphs; Next, we delved into the field of machine learning, discussing the

three main learning processes: supervised learning, unsupervised learning, and

reinforcement learning. We emphasized the importance of artificial neural networks

(ANNs) and their architecture, activation functions, and explain their types (FNNs, RNNs,

CNNs, and finally GNNs) briefly, note that a major focus of this chapter was on graph

neural networks (GNNs), which are specifically designed to handle graph-structured data.

Furthermore, we introduced graph convolutional networks (GCNs), a type of GNN that

utilizes graph convolution operations.

Overall, this chapter serves as a solid foundation for the subsequent chapter of this

thesis, as it has covered fundamental concepts in graph analysis and provided insights into

the neural network architectures that are specifically designed for graph data. The

knowledge gained here will be crucial for design and implement a session-based

recommender system using GCNs in the following chapter.

43

Chapter 3.

Graph Convolutional Networks for the

Development of Session-based

Recommender Systems

Chapter 3. GCNs for the Development of SBRSs

44

3.1. Introduction

In this chapter, we will present our algorithm and its underlying principles for session-

based recommendation. We will then compare its performance with existing works in the

field, specifically those using graph neural networks. Finally, we will discuss the results

obtained from our experiments, providing insights into the strengths and limitations of our

approach.

3.2. Presentation of our GCN-based Model

3.2.1. Main idea

Our model proceeds in three main phases: session presentation phase, GCN Model phase,

and Recommendation phase.

Figure 21 - Overview on GCN-Based SBRSs Model

3.2.2. Session representation

Each session sequence s can be modelled with the adjacency matrix as a directed graph

G = (I ; E). In this session graph, each node represents an item i and each edge means that

a user clicks item i1 after i2 in the session.

3.2.3. GCN model

It consists of an embedding layer, followed by two convolutional layers with ReLU

activation functions. The key layers and operations in the model are:

 Embedding Layer: The self-Embedding layer maps item indices to dense vectors of

hidden dimensions. It learns meaningful representations for the items in the graph.

 Convolutional Layers: The model has two convolutional layers: self.conv1 and

self.conv2.These layers perform 1-dimensional convolutions on the input data. Each

convolution is followed by a Rectified Linear Unit (ReLU) activation function, applied

using F.relu. The convolutions help capture the local relationships and patterns in the

data.

 Message Aggregation: After the convolutions, the model performs message

aggregation from neighbouring nodes. The adjacency matrix is multiplied with the

Chapter 3. GCNs for the Development of SBRSs

45

output of the convolutions using torch.matmul (adj, x). This operation combines

information from connected nodes to enrich the representation of each item.

 Mean Pooling: The model uses mean pooling to aggregate the messages from

neighbors. The output of the message aggregation step is permuted, and then the

mean is taken along the second dimension using x.mean (dim=1). This results in a

single representation for each item in the graph.

3.2.4. Recommendation step

The SessionRec model combines the graph convolutional capabilities of the GCN model

with a fully connected layer and log-SoftMax activation to generate recommendations.

The fully connected layer: also known as the linear layer or dense layer is a

fundamental component in neural networks. It performs a linear transformation on the

input data, mapping it to a different dimensional space.

In the context of the provided code, the fully connected layer self.fc takes the item

representations generated by the GCN component as input. It applies a linear

transformation to these representations, mapping them to the number of output items.

The purpose of the fully connected layer is to learn and capture complex relationships

between the input data and the desired output. It introduces non-linearity and helps the

model make more complex predictions by combining and weighting the input features.

Mathematically, the fully connected layer computes the following operation:

 Output = input * weights + bias

Here, input represents the item representations from the GCN component, weights are

learnable parameters that the model optimizes during training, and bias is an additional

learnable parameter. The output of the fully connected layer is a tensor that undergoes

further processing, such as activation functions, to produce the final predictions or

features for subsequent layers.

In summary, the fully connected layer adds flexibility and non-linearity to the model,

allowing it to learn and capture complex patterns in the data. It plays a crucial role in

transforming the intermediate representations from earlier layers into meaningful

predictions or features.

The softmax function: is applied after the fully connected layer in the provided

code. Its role is to convert the output of the fully connected layer into a probability

distribution over the different output classes.

In the context of the recommendation system, the softmax function is used to

determine the likelihood or probability of each item being the next recommended item. It

assigns higher probabilities to items that are more likely to be relevant or preferred by the

user based on the given input.

Chapter 3. GCNs for the Development of SBRSs

46

3.3. Implementation

 The implementation was written in Python 3.x versions with Google-Collab IDE and

it should work with any Python 3 version, such as Python 3.6, 3.7, 3.8, or 3.9. It utilizes

several libraries for different functionalities. Here's an overview of the languages and

libraries used in the implementation:

3.3.1. Python. The entire code is written in Python, a popular

programming language for data analysis and machine learning.

Figure 22 - python logo

Python is a high-level, interpreted programming language known for its simplicity and

readability. It was created by Guido van Rossum and first released in 1991. Python

emphasizes code readability and uses indentation as a key part of its syntax, making it easy

to write and understand5.

Key features of Python include:

 Easy-to-read syntax: Python uses a clean and straightforward syntax, making it

easier for beginners to learn and understand. It uses whitespace indentation to define

code blocks, eliminating the need for braces or other delimiters.

 Versatility: Python is a versatile language that can be used for various purposes,

including web development, data analysis, machine learning, scientific computing,

automation, and more. It has a large standard library and a vast ecosystem of third-

party packages that extend its capabilities.

 Cross-platform compatibility: Python is available on multiple platforms,

including Windows, macOS, Linux, and various other operating systems. This allows

developers to write code once and run it on different platforms without significant

modifications.

 Large community and ecosystem: Python has a thriving and supportive

community of developers worldwide. This community contributes to the development

of libraries, frameworks, and tools that make Python suitable for a wide range of

applications. Some popular libraries and frameworks in the Python ecosystem

include NumPy, Pandas, Django, Flask, TensorFlow, and PyTorch.

 Interpretation and scripting: Python is an interpreted language, meaning that

code is executed line by line at runtime without the need for compilation. This allows

5 https://www.python.org/

Chapter 3. GCNs for the Development of SBRSs

47

for rapid development and prototyping, as well as easy integration with other

languages and systems.

3.3.2. Libraries

 PyTorch: It is a deep learning framework used for building and training neural

networks. The code leverages PyTorch6 to define and train the session-based

recommendation model.

 Pandas: It is a data manipulation and analysis library. Pandas7 are used to load and

preprocess the MovieLens 100k dataset, as well as perform various data operations

such as sorting, grouping, and filtering.

 Scikit-learn: It is a machine learning library that provides various tools for model

selection and evaluation. In the code, scikit-learn8 is used to split the dataset into

train and test sets using the train_test_split function.

 NumPy: It is a fundamental library for numerical computing in Python. The code

uses NumPy9 to create and manipulate arrays for storing the adjacency matrix and

session lengths.

 These are the main libraries used in the code snippet you provided. Make sure you have

these libraries installed if you plan to run the code. You can typically install them using

package managers like pip or conda.

3.3.3. IDE Google Collab

 Google Collab, short for Google Collaboratory, is a cloud-based development

environment provided by Google. It allows users to write and execute Python code in a

Jupiter Notebook-like interface directly on the cloud, without requiring any local

installation. Collab provides free access to computational resources, including CPU, GPU,

and even TPU (Tensor Processing Unit), enabling users to leverage the power of Google's

infrastructure for their computational tasks10.

3.3.4. Model implementation

This is the main code representation of our model that we explained before:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

 class GCN(nn.Module):

 def __init__(self, num_items, hidden_dim):

 super(GCN, self).__init__()

 self.embeddings = nn.Embedding(num_items, hidden_dim)

 self.conv1 = nn.Conv1d(hidden_dim, hidden_dim, kernel_size=2, padding=1)

 self.conv2 = nn.Conv1d(hidden_dim, hidden_dim, kernel_size=2, padding=1)

 def forward(self, adj, x):

 x = self.embeddings(x)

 # Permutes the dimensions of x to prepare it for the convolutional layers

 x = x.permute(1, 2, 0)

6 https://pytorch.org/
7 https://pandas.pydata.org/docs/getting_started/install.html
8 https://scikit-learn.org/stable/install.html
9 https://numpy.org/install/
10 https://colab.research.google.com/?utm_source=scs-index

Chapter 3. GCNs for the Development of SBRSs

48

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

 # message passing

 x = self.conv1(x)

 x = F.relu(x)

 x = self.conv2(x)

 x = F.relu(x)

 # Permutes the dimensions of x back to the original

 x = x.permute(2, 0, 1)

 # Aggregate messages from neighbors

 x = torch.matmul(adj, x)

 x = x.permute(1, 0, 2)

 x = x.mean(dim=1)

 return x

 class SessionRec(nn.Module):

 def __init__(self, num_items, hidden_dim):

 super(SessionRec, self).__init__()

 self.gcn = GCN(num_items, hidden_dim)

 self.fc = nn.Linear(hidden_dim, num_items)

 def forward(self, adj, x):

 x = self.gcn(adj, x)

 x = self.fc(x)

 x = F.log_softmax(x, dim=1)

 return x

Listing: implementation of GCN-SBRS Model

3.4. Experiments and Analysis

In this section, we first describe the datasets and compared methods, and evaluation

metrics used in the experiments. Then, we compare our proposed model GCN-SBRS with

other comparative methods. Finally, we make a detailed analysis of GCN-SBRS under

different experimental settings.

3.4.1. Datasets

We evaluate the effectiveness of our model on three standard transaction datasets:

MOVILENS, YOOCHOOSE and DIGINETICA, which are publicly accessible and vary in

terms of domain, size, and sparsity.

MOVILENS 1M:

MovieLens 1 million (ML-1M)11 is one variant of the MovieLens dataset. It consists of

approximately 1 million ratings given by 6,040 users to 3,706 movies. The ratings range

from 1 to 5, with 5 being the highest rating. In addition to ratings, ML-1M also provides

demographic information about the users, including age and occupation. The dataset is

divided into three main files: ratings.dat (user-item ratings), users.dat (user information),

and movies.dat (movie information).

11 https://grouplens.org/datasets/movielens/1m/

Chapter 3. GCNs for the Development of SBRSs

49

MoviLens 100k:

MovieLens 100K (ML-100K)12 is another popular variant of the MovieLens dataset. It is

a smaller version compared to ML-1M and contains 100,000 ratings from 943 users on

1,682 movies. Like ML-1M, the ratings in ML-100K range from 1 to 5. The dataset is also

divided into three main files: u.data (user-item ratings), u.user (user information), and

u.item (movie information). ML-100K has been widely used as a benchmark for evaluating

recommender systems due to its manageable size.

The MovieLens datasets can be obtained from the official MovieLens website or other

platforms such as Kaggle and GitHub.

Yoochoose1/64:

 The Yoochoose13 dataset is a widely used e-commerce dataset that contains clickstream

data from an online retail platform. It typically consists of user sessions, each containing a

sequence of interactions (clicks) made by a user during their visit to the online store.

 "Yoochoose1/64" refers to a specific fraction or subset of the original Yoochoose

dataset; it might mean that it contains only a portion (1/64th) of the full dataset, possibly

for the purpose of reducing the data size for experimentation or testing.

3.4.2. Data processing

 Sorting the dataset

 The dataset is sorted based on two columns: 'user_id' and 'timestamp'.

Sorting the dataset in this order ensures that the data for each user is grouped together

and ordered by timestamp.

 Handling missing values

The 'prev_item_id' column is created by shifting the 'item_id' column for each user by

one position.

Rows with missing values (NaN) are dropped from the dataset using the dropna()

function.

 Limiting the dataset size

The code limits the number of rows in the dataset to 15,000 by selecting the first 15,000

rows.

This step is useful for reducing the size of the dataset, which can be beneficial for faster

execution or testing purposes.

 Splitting the data into training and testing sets

The train_test_split () function from scikit-learn is used to split the data into training

and testing sets.

12 https://grouplens.org/datasets/movielens/100k/
13 https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015

Chapter 3. GCNs for the Development of SBRSs

50

The test_size=0.2 argument specifies that 20% of the data should be allocated for

testing.

The random_state=42 argument fixes the random seed for reproducibility.

 Mapping item IDs to indices

Unique item IDs from both the training and testing data are obtained.

The np.union1d () function is used to find the union of the unique item IDs.

Item IDs are mapped to indices using a dictionary comprehension.

The 'item_idx' column is created in both the training and testing data by mapping the

'item_id' column to the corresponding item index.

 Conversion to PyTorch tensors

The data is converted to PyTorch tensors using the torch.LongTensor () function.

The 'item_idx' values are used as inputs, and the last 'item_idx' value is used as the

target for each sequence.

3.4.3. Session Construction

We apply the same conditions to construct the sessions (min_sessions_lenght =3,

max_sessions_lenght= 10 with time_threshold = 1hour).We summarizes the statistics of

these datasets in Table1:

Table 3 - Datasets basic information

3.4.4. Training & Testing

 Hyper parameters

At this part we used the hyper parameters that were explored and optimized after

using the grid search algorithm include the hidden dimension size (hidden_dim),

learning rate (lr), and the number of epochs (num_epochs). These hyper parameters

have a significant impact on the model's ability to capture complex patterns in the

session data and make accurate predictions.

 Loss function

The NLLLoss (Negative Log Likelihood Loss) is a commonly used loss function in

classification tasks. It measures the negative log likelihood of the predicted

Dataset Rows Train Sessions Test Sessions Avr-L

MovieLens 100k

MovieLens 1M

Yoochoose1/64

99057

994169

371160

6530

99360

15919

1970

26530

2785

4.50

4.29

4.62

Chapter 3. GCNs for the Development of SBRSs

51

probabilities for the correct class. It assumes that the model's output follows a

softmax distribution, which converts the raw scores into probabilities that sum up to

1. The loss is calculated as the negative logarithm of the predicted probability

assigned to the true class label.

Mathematically, for a single sample, the NLLLoss is calculated as follows:

NLLLoss = −log (P (correct_class))

Where:

P (correct_class) is the predicted probability assigned to the correct class by the

softmax activation function.

The NLLLoss is commonly used as the loss function in the final layer of a neural

network model for classification tasks. During training, the model aims to minimize

this loss by adjusting its parameters to improve the probability assigned to the correct

class and reduce the likelihood of misclassification.

 Optimizer

The Adam optimizer is an optimization algorithm commonly used for training neural

networks. It is an extension of the stochastic gradient descent (SGD) algorithm that

combines the benefits of adaptive learning rates and momentum.

The key idea behind the Adam optimizer is to adaptively adjust the learning rate for

each parameter based on the estimated first and second moments of the gradients.

This adaptive learning rate helps the optimizer converge faster and handle different

types of parameters with varying magnitudes. Additionally, Adam incorporates the

concept of momentum, which helps accelerate the learning process by accumulating

the previous gradients.

 Results

This is the result we obtained after applying the same Hyper parameters and loss

function and optimizer on the four datasets:

Table 4 – the accuracy results

Dataset
Train

Accuracy/Loss
 Test Accuracy/Loss time

MovieLens 100k 0.7643/1.4574 0.7197/2.0935 2h

MovieLens 1M 0.6766/2.5720 0.8292 /1.4095 12h

Yoochoose1/64 0.6001/1.4984 0.1116/4.2414 3h

Chapter 3. GCNs for the Development of SBRSs

52

Figure 23 - MovieLens 100k train accuracy and train loss

Figure 24 - MovieLens 1 million train accuracy and train loss

3.5. Evaluation Metrics

In our experiments, we use the following two widely-used evaluation protocols:

Recall@K and MRR@K. By default, we set K=20.

Chapter 3. GCNs for the Development of SBRSs

53

 Recall@20: Recall@K represents the proportion of test cases which has the

correctly recommended items in a top K position in a ranking list. In this paper,

Recall@20 is used for all the tests, defined as:

Where N denotes the number of test data in the Session-based Recommender

systems, nhit denotes the number of cases which have the desired items in top K ranking

lists, a hit occurs when t appears in the top K position of the ranking list of |I|

 MRR@20: The correct ranking of search results values in search results to

evaluate the performance of the search system. The reciprocal rank is set to zero

if the rank is above 20.

Where rank (it) is for the t -th item. The MRR is a normalized score of range [0, 1], an

increase in its value reflects that the majority will appear higher in the ranking order of the

recommendation list, which indicates a better performance of the corresponding

recommender system.

3.5.1. Baseline

 POP: This baseline model recommends the top-N ranked items based on their

popularity in the training data. It serves as a straightforward and robust baseline,

especially in specific domains.

 S-POP: A variation of the baseline model that recommends the top-N most frequent

items in both the entire training set and the current session.

 Item-KNN: This traditional item-to-item model suggests items similar to the ones

already present in the user's history by calculating cosine similarity between

candidate item A and existing item B.

 GRU4Rec [reference of the model]: Utilizing recurrent neural networks, GRU4Rec is

designed for session-based recommendations. It adopts a session-parallel mini-batch

training process and employs ranking-based loss functions during training.

 SR-GNN [reference of the model]: In this model, separate session sequences are

aggregated into a graph structure, and Graph Neural Networks (GNNs) are applied to

generate latent item vectors. Each session is then represented using a traditional

attention network.

Chapter 3. GCNs for the Development of SBRSs

54

 GACOforRec [29]: Built upon GCNs, this algorithm accounts for user preferences in

the application scenario. By incorporating Convolutional LSTM (ConvLSTM) and

Orthogonal LSTM (ON-LSTM), it handles long-term and stable user preferences

while preserving preference hierarchy.

 AUTOMATE: Keyed on the ARMAConv layer, AUTOMATE combines long-term

preferences with current session interests to obtain graph transfer signals, resulting

in personalized recommendations.

 In this table we compare of different obfuscations in terms of their transformation

capabilities:

Table 5 Comparison of metrics between different architectures

Model
Class

Methods MovieLens 1M Yooshoose1/64 MovieLens 100k

Recall@20 MRR Recall@20 MRR@20 Recall@20 MRR@20

Standard

Baseline

POP

S-POP

0.0646

0.0634

0.0133

0.0132

0.0671

0.3044

0.001

0.002

0.1034

0.0776

0.0209

0.0166

Traditional Item-KNN 0.0016 0.0014 0.5660 0.003 0.0045 0.0033

Neural

Networks

GRU4Rec

SR-GNN

GACOforRec

AUTOMATE

/

/

/

/

0.3041

0.3683

/

/

0.6064

0.7003

0.6879

0.7015

0.2289

0.3008

0.2938

0.3072

/

/

/

/

/

/

/

/

Our Model GCN-SBRS 0.34 0.48 0.5154 0.1396 0.44 0.19

As it shown in this table that our model performs very well with both MovieLens Datasets

but with yoochoose gave as bad results and that because the differences between the two

datasets MovieLens and Yoochoose:

Data Distribution: The MovieLens and Yoochoose datasets likely have different data

distributions. These differences could affect how well our model generalizes from one

dataset to another. Models trained on one dataset may not perform as well on a different

dataset if the underlying data patterns are dissimilar.

Feature Engineering: The features (attributes) in the two datasets may have distinct

characteristics. Our model might be well-suited to capturing the patterns present in the

features of the MovieLens dataset but struggle to do so with the features in the Yoochoose

dataset.

We aim to ameliorate these results in near future.

Chapter 3. GCNs for the Development of SBRSs

55

 Result of the dataset MovieLens 100K

Figure 25 - Comparison of MRR@20 for different

Recommender Models

Figure 26 - Comparison of Recall@20 for Different

Recommender Models

Chapter 3. GCNs for the Development of SBRSs

56

 Result of the dataset MovieLens 1 million

 Figure 27 - Comparison of MRR for different

 Recommender model

 Figure 28 - Comparison of Recall@20 for different recommender models

3.6. Conclusion

In this chapter, we have discussed the underlying principle of our algorithm named

GCN-SBRS, and provided an overview of its functionality. We then proceeded to present

various experimental scenarios that were carefully designed to evaluate the performance of

our algorithm. Finally, we thoroughly discussed the results obtained from these

experiments, and we are pleased to report that they were highly satisfactory.

57

General Conclusion

General Conclusion

58

A. Summary

In this thesis, the focus was on exploring the application of Graph Convolutional Networks

(GCN) in Session-based Recommender Systems (SBRS). The research was conducted in

three chapters. In Chapter 1, we introduced the concept of session-based recommender

systems. Chapter 2 provided an in-depth understanding of Graph Convolutional Networks,

showcasing their ability to capture graph-structured data. Lastly, in Chapter 3, we

presented the design and implementation of an SBRS utilizing GCN, demonstrating its

effectiveness in generating accurate and personalized recommendations based on users'

session history.

The findings of this research highlight the potential of GCN in improving the performance

of session-based recommender systems. By leveraging GCN, the SBRS was able to provide

more accurate and personalized recommendations to users. The thesis contributes to the

understanding of session-based recommender systems and demonstrates the applicability

and effectiveness of GCN in this context.

B. Direction for future research

While this study has made a contribution to the field of session-based recommender

systems using GCN, there are several avenues for future research:

Dataset Understanding: Thoroughly understand the differences between MovieLens

and Yoochoose datasets with various appropriate metrics. Analyse their characteristics,

feature distributions, and temporal aspects to identify potential sources of performance

discrepancy. After that we will apply it on other datasets such as Diginetica…

Graph Convolutional Network Variants: Explore and compare various GCN variants

(GraphSAGE, HyperGCN, …) or advanced graph neural network architectures to examine

their suitability and effectiveness in session-based recommender systems. This includes

investigating methods for handling the sparsity and scalability challenges often

encountered in large-scale recommendation scenarios.

Hybrid Recommender Systems: Investigate the integration of GCN-based session-

based recommender systems with other recommendation approaches, such as

collaborative filtering or content-based methods. This hybrid approach may leverage the

strengths of different algorithms to provide more accurate and diverse recommendations

to users.

Real-world Deployment and Evaluation: Conduct extensive evaluations of the

developed SBRS using GCN in real-world scenarios, considering factors such as scalability,

robustness, and user satisfaction. Additionally, perform comparative studies with other

state-of-the-art session-based recommendation algorithms to establish benchmarks and

further validate the effectiveness of GCN-based approaches.

By exploring these research directions, future studies can contribute to the advancement

and practical implementation of session-based recommender systems using GCN,

ultimately enhancing the user experience and providing valuable recommendations in

various domains and applications.

59

Bibliography

[1] G. T. A. Adomavicius, "Toward the next generation of recommender systems: a

survey of the state-of-the-art and possible extensions," IEEE Transactions on

Knowledge and Data Engineering, vol. 17, no. 6, pp. 734-749, 2005.

[2] T. S. ·. M. Z. ·. X. L. ·. Y. L. ·. S. Ma, "How good your recommender system is? A

survey on evaluations," International Journal of Machine Learning and

Cybernetics, 2017.

[3] B. Schwartz, The paradox of choice: why less is more, New York: Ecco, 2004.

[4] F. R. ·. L. R. ·. B. S. ·, Recommender Systems, 2011.

[5] L. C. Y. W. Q. Z. S. M. A. O. L. SHOUJIN WANG, A Survey on Session-based

Recommender Systems, 2021.

[6] L. Cao, "Coupling learning of complex interactions," Information Processing &

Management, vol. 51, no. 2, p. 167–186, 2015.

[7] L. Cao, "Non-IID recommender systems: a review and framework of

recommendation paradigm shifting," Engineering, vol. 2, no. 2, p. 212–224, 2016.

[8] "Recommender Systems: Behind the Scenes of Machine Learning-Based

Personalization," altexsoft, 27 july 2021. [Online].

[9] G. T. A. Adomavicius, "Toward the next generation of recommender systems: A

survey of the state-of-the-art and possible extensions," IEEE Transactions on

Knowledge and Data Engineering, vol. 17, pp. 734-749, 2005.

[10] Z. A. a. I. U. Shah Khusro, "Recommender Systems: Issues, Challenges,".

[11] M. Madhukar, "Challenges & Limitation in Recommender," IBM India Pvt. Ltd., p.

5.

[12] Turing, "A Guide to Content-Based Filtering In Recommender Systems," [Online].

Available: https://www.turing.com/kb/content-based-filtering-in-recommender-

systems.

[13] A. Kumar, "Recommender Systems in Machine Learning: Examples," 26 May 2023.

[Online]. Available: https://vitalflux.com/recommender-systems-in-machine-

learning-examples/.

[14] M. L. B. D. L. R. J. Montaner, "A taxonomy of recommender agents on the internet,"

Artificial Intelligence Review, vol. 19, pp. 285-330, 2003.

[15] R. Burke, "Hybrid recommender systems: Survey and experiments," User Modeling

and User-Adapted Interaction, vol. 12, pp. 331-370, 2002.

Chapter 3. GCNs for the Development of SBRSs

60

[16] J. Wu, "Knowledge-Based Recommender Systems: An Overview," 27 mai 2019.

[Online]. Available: https://medium.com/@jwu2/knowledge-based-recommender-

systems-an-overview-536b63721dba.

[17] D. .. R. M.Sridevi, "A Simple and Efficient Demographic," vol. 10, no. 7, 2017.

[18] G. M. B. R. F. T. A. Adomavicius, "Context-Aware Recommender Systems," AI

Magazine, vol. 32, no. 3, 2011.

[19] A. K. Dey, "Understanding and Using Context," Personal and Ubiquitous

Computing, vol. 1, no. 5, 2001.

[20] M. T. W. L. Gunnar Schröder, "Setting Goals and Choosing Metrics for

Recommender," p. 8.

[21] Z. Deutschman, "Recommender Systems: Machine Learning Metrics and Business

Metrics," neptune.ai, 19 april 2023. [Online]. Available:

https://neptune.ai/blog/recommender-systems-metrics.

[22] Z. Ahmed, "Automatic Evaluation of Recommendation Systems: Coverage, Novelty

and Diversity," MLearning.ai, 26 february 2021. [Online]. Available:

https://medium.com/mlearning-ai/automatic-evaluation-of-recommendation-

systems-coverage-novelty-and-diversity-

cc140330d3e7#:~:text=Diversity%20is%20a%20measure%20of,directed%20by%2

0the%20same%20director..

[23] L. G. M. L. P. S. G. F. M. M. P. Iaquinta, "Introducing serendipity in a content-based

recommender system," in Proceedings of the 2008 8th international conference on

hybrid intelligent systems (HIS '08), 2008.

[24] F. R. ·. L. R. ·. B. S. ·, Recommender Systems.

[25] V. Ankam, "Limitations of a recommendation system," O’Reilly learning platform,

[Online]. Available: https://www.oreilly.com/library/view/big-data-

analytics/9781785884696/ch08s02.html.

[26] C. C. Y.-S. Shahabi, Web information personalization: challenges and approaches,

Springer, 2003, pp. 5-15.

[27] X. K. T. Su, "A survey of collaborative filtering techniques," Advances in Artificial

Intelligence, no. 4, 2009.

[28] I. K. C. B. A. P. H. Gunes, "Shilling attacks against recommender systems: a

comprehensive survey," Artificial Intelligence Review, no. 42, pp. 767-799, 2014.

[29] Unknown, "7 Critical Challenges of Recommendation Engines," appier, 2 2 2021.

[Online]. Available: https://www.appier.com/en/blog/7-critical-challenges-of-

recommendation-engines.

[30] Z. H. T. C. Y. RUIHONG QIU, Exploiting Positional Information for Session-based,

Chapter 3. GCNs for the Development of SBRSs

61

2021.

[31] L. C. S. W. e. a. Liang Hu, "Diversifying personalized recommendation with user-

session context," in IJCAI, 2017.

[32] L. H. L. C. Shoujin Wang, "Perceiving the next choice with comprehensive

transaction embeddings for online recommendation," in ECML-PKDD, 2017.

[33] A. K. L. B. T. Balazs Hidasi, SESSION-BASED RECOMMENDATIONS WITH

RECURRENT NEURAL NETWORKS, 2016.

[34] E. S. A. C. Flavian Vasile, "Meta-Prod2Vec: product embeddings using side-

information for recommendation," in RecSys, 2016.

[35] Y. T. Y. Z. e. a. Shu Wu, "Session-based recommendation with graph neural

networks," in AAAI, 2019.

[36] A. K. Balázs Hidasi, "Recurrent neural networks with top-k gains for session-based

recommendations," in CIKM, 2018.

[37] e. a. Massimo Quadrana, "Personalizing session-based recommendations with

hierarchical recurrent neural networks," in RecSys, 2017.

[38] L. C. L. H. S. B. X. H. L. X. W. L. "Shoujin Wang, "Jointly modeling intra- and inter-

transaction dependencies with hierarchical attentive transaction embeddings for

next-item recommendation," IEEE Intelligent Systems, pp. 1-7, 2020.

[39] L. C. S. W. e. a. Liang Hu, "Diversifying personalized recommendation with user-

session context.," in IJCAI, 2017.

[40] L. H. L. C. e. a. Shoujin Wang, "Attention-based transactional context embedding

for next-item recommendation.," in AAAI, 2018.

[41] L. H. Y. W. e. a. Shoujin Wang, "Sequential recommender systems: challenges,

progress and prospects," in IJCAI, 2019.

[42] A. K. e. a. Fajie Yuan, "A simple convolutional generative network for next item

recommendation.," in WSDM, 2019.

[43] K. W. Jiaxi Tang, "Personalized top-n sequential recommendation via convolutional

sequence embedding," in WSDM, 2018.

[44] A. K. e. a. Fajie Yuan, "A simple convolutional generative network for next item

recommendation," in WSDM, 2019.

[45] H. Z. Q. L. Z. H. T. M. E. C. Zhi Li, "Learning from history and present: next-item

recommendation via discriminatively exploiting user behaviors," in SIGKDD, 2018.

[46] D. Y. Y. X. Wenjing Meng, "Incorporating user micro-behaviors and item knowledge

into multi-task learning for session-based recommendation," in SIGIR, 2020.

Chapter 3. GCNs for the Development of SBRSs

62

[47] K. Suzuki, ARTIFICIAL NEURAL NETWORKS ͳ METHODOLOGICAL ADVANCES

AND BIOMEDICAL APPLICATIONS, India, March, 2011.

[48] S. Kumar, "Supervised vs Unsupervised vs Reinforcement," 29 january 2020.

[Online]. Available: https://www.aitude.com/supervised-vs-unsupervised-vs-

reinforcement/.

[49] R. S. a. B. A. G. Sutton, Reinforcement Learning: An Introduction, MIT Press, 2018.

[50] L. P. L. M. L. a. M. A. W. Kaelbling, "Reinforcement learning: A survey," Journal of

Artificial Intelligence Research, vol. 4, pp. 237-285, 1996.

[51] harkiran78, "Artificial Neural Networks and its Applications," [Online]. Available:

https://www.geeksforgeeks.org/artificial-neural-networks-and-its-applications/.

[52] G. Singh, "Introduction to Artificial Neural Networks," 2021. [Online]. Available:

https://www.analyticsvidhya.com/blog/2021/09/introduction-to-artificial-neural-

networks/.

[53] Y. M. a. J. Tang, Deep Learning on Graphs.

[54] Y. H. P. &. S.-S. S. P. Jinming Zou PhD, "Overview of Artificial Neural Networks,"

[Online].

[55] P. Bahati, "Activation Functions in Neural Networks [12 Types & Use Cases]," 27

March 2021. [Online]. Available: v7labs.com/blog/neural-networks-activation-

functions#:~:text=drive%20V7's%20tools.-

,What%20is%20a%20Neural%20Network%20Activation%20Function%3F,predicti

on%20using%20simpler%20mathematical%20operations..

[56] J. Z. Zhiyuan Liu, Introduction to Graph Neural Networks, the Morgan & Claypool

Publishers series, 2020.

[57] S. S. S. S. Anidhya Athaiya, "ACTIVATION FUNCTIONS IN NEURAL," IJEAST, vol.

4, no. 12, pp. 310-316, April 2020.

[58] S. SHARMA, "Activation Functions in Neural Networks," 6 Sep 2017. [Online].

Available: https://towardsdatascience.com/activation-functions-neural-networks-

1cbd9f8d91d6.

[59] C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press,

1995.

[60] I. B. Y. a. C. A. Goodfellow, Deep Learning, MIT Press, 2016.

[61] I. Mayachita, "Understanding Graph Convolutional Networks for Node

Classification," Towards Data Science, 10 june 2020. [Online]. Available:

https://towardsdatascience.com/understanding-graph-convolutional-networks-

for-node-classification-a2bfdb7aba7b.

Chapter 3. GCNs for the Development of SBRSs

63

[62] A. Graves, "Generating Sequences with Recurrent Neural Networks," 2013.

[Online]. Available: arXiv:1308.0850.

[63] S. a. S. J. Hochreiter, " Long Short-Term Memory," Neural Computation, vol. 9, no.

8, pp. 1735-1780, 1997.

[64] K. V. M. B. B. D. a. B. Y. Cho, "On the Properties of Neural Machine Translation:

Encoder-Decoder Approaches," arXiv preprint, 2014. [Online]. Available:

arXiv:1409.1259.

[65] A. Biswal, "Recurrent Neural Network(RNN) Tutorial: Types, Examples, LSTM and

More," 10 April 2023. [Online]. Available:

https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn.

[66] M. Nielsen, Neural Networks and Deep Learning, Determination Press.

[67] R. M. T. a. B. Y. Pascanu, "On the difficulty of training recurrent neural networks,"

in International Conference on Machine Learning (ICML), 2013.

[68] [Online]. Available: Upgrad.com.

[69] GeeksforGeeks, "Introduction to Convolution Neural Network," [Online]. Available:

https://www.geeksforgeeks.org/introduction-convolution-neural-network/.

[70] Y. B. Y. a. H. G. LeCun, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444,

2015.

[71] A. S. I. a. H. G. E. Krizhevsky, "ImageNet classification with deep convolutional

neural networks," in Advances in neural information processing systems, 2012.

[72] V. a. H. G. E. Nair, "Rectified linear units improve restricted Boltzmann machines,"

in Proceedings of the 27th International Conference on Machine Learning (ICML-

10), 2010.

[73] Y. B. L. B. Y. a. H. P. LeCun, " Gradient-based learning applied to document

recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

[74] D. M. A. a. B. S. Scherer, "Evaluation of pooling operations in convolutional

architectures for object recognition," in International conference on artificial

neural networks, 2010.

[75] K. a. Z. A. Simonyan, "Very deep convolutional networks for large-scale image

recognition," arXiv preprint , [Online]. Available: arXiv:1409.1556.

[76] N. &. Z. H. &. P. M. &. P. J. &. S. M. Herakovic, "Distributed Manufacturing Systems

with Digital Agent," no. 65, pp. 650-657, 2019.

[77] N. Biggs, Algebraic Graph Theory, Cambridge University Press, 1993.

[78] UC Berkeley data structures course, "Graphs," [Online]. Available:

Chapter 3. GCNs for the Development of SBRSs

64

https://guides.codepath.com/compsci/Graphs#introduction.

[79] F. Chung, L. Lu and V. Vu, "Spectra of random graphs with given expected degrees,"

Proceedings of the National Academy of Sciences of the United States of America,

vol. 100, no. 11, p. 6313–6318, 2003.

[80] W. L. Hamilton, R. Ying and J. Leskovec, "Representation learning on graphs:

Methods and applications," IEEE Data Engineering Bulletin, vol. 40, no. 3, pp. 52-

74, 2017.

[81] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner and G. Monfardini, "The graph

neural network model," IEEE Transactions on Neural Networks, vol. 20, no. 1, pp.

61-80, 2009.

[82] C. Cangea, M. Aziz, M. Hinz and T. Lukasiewicz, " Neural networks for graphs: A

survey," IEEE Transactions on Neural Networks and Learning Systems, vol. 30,

no. 11, pp. 3243-3258, 2018.

[83] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu and M. Sun, "Graph neural networks: A

review of methods and applications," arXiv preprint, [Online]. Available:

https://arxiv.org/abs/1812.08434.

[84] M. Zhang, Z. Cui, M. Neumann and Y. Chen, "An end-to-end deep learning

architecture for graph classification," in Thirty-Second AAAI Conference on

Artificial Intelligence, 2018.

[85] M. Zitnik, M. Agrawal and J. Leskovec, "Modeling polypharmacy side effects with

graph convolutional networks.," Bioinformatics, vol. 34, no. 13, pp. i457-i466.,

2018.

[86] A. Mashaghi and e. al., "Investigation of a protein complex network," European

Physical Journal B, vol. 41, no. 1, pp. 113-121, 2004.

[87] P. Shah, A. Ashourvan, F. Mikhail, A. Pines, L. Kini, K. Oechsel, S. R. Das, J. M.

Stein and R. T. Shinohara, " Characterizing the role of the structural connectome in

seizure dynamics," Brain, vol. 142, no. 7, p. 1955–1972, 2019-07-01.

[88] T. Adali and A. Ortega, "Applications of Graph Theory [Scanning the Issue],"

Proceedings of the IEEE, vol. 106, no. 5, p. 784–786, May 2018.

[89] A. Mishra, "Application of Graph Data Structure," [Online].

[90] Wikipedia, "Graph theory," [Online]. Available:

https://en.wikipedia.org/wiki/Graph_theory#.

[91] K. H. Rosen, Discrete mathematics and its applications, New York: McGraw-Hill,

2011-06-14.

[92] P. Sharma, "What are Graph Neural Networks, and how do they work?," 1 March

2022 . [Online]. Available: https://www.analyticsvidhya.com/blog/2022/03/what-

Chapter 3. GCNs for the Development of SBRSs

65

are-graph-neural-networks-and-how-do-they-work/.

[93] A. A. Awan, "A Comprehensive Introduction to Graph Neural Networks (GNNs),"

Jul 2022. [Online]. Available:

https://www.datacamp.com/tutorial/comprehensive-introduction-graph-neural-

networks-gnns-tutorial.

[94] T. N. a. W. M. Kipf, "Semi-Supervised Classification with Graph Convolutional

Networks.," in Proceedings of the International Conference on Learning, 2017.

[95] Z. P. S. C. F. L. G. Z. C. a. Y. P. S. Wu, "A Comprehensive Survey on Graph Neural

Networks," IEEE Transactions on Neural Networks and Learning Systems, vol. 32,

no. 1, pp. 4-24, 2020.

[96] D. K. Hammond, P. Vandergheynst and R. Gribonval, "Wavelets on Graphs via

Spectral Graph Theory," Applied and Computational Harmonic Analysis, pp. 129-

150, 2011.

[97] A. ÖZCAN1*, "Applying graph convolution networks to recommender systems

based on graph," 12 April 2022.

[98] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang and P. S Yu, "A Comprehensive Survey on

Graph Neural Networks," IEEE Transactions on Neural Networks and Learning

Systems, vol. 32, no. 1, pp. 4-24, 2020.

[99] W. Y. R. a. L. J. Hamilton, "Inductive Representation Learning on Large Graphs," in

Advances in Neural, 2017.

[100] C. Pham, "Graph Convolutional Networks (GCN)," 22 10 2020. [Online]. Available:

https://www.topbots.com/graph-convolutional-networks/?fbclid=IwAR2fg-

900x7AsvDyQbW1XADT0JGnTZqsxVwFJV_TZ7O-Thadavpt5lVjZd0.

[101] M. Zhang, Y. Chen and M. Li, "Large-scale and Deep Graph Convolutional

Networks," in Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, 2018.

[102] P. C. G. C. A. R. A. L. P. a. B. Y. Velickovic, "Graph Attention Networks," in

Proceedings of the International Conference on Learning Representations (ICLR),

2018.

[103] M. B. X. a. V. P. Defferrard, "Convolutional Neural Networks on Graphs with Fast

Localized Spectral Filtering," in Advances in Neural Information Processing

Systems (NeurIPS), 2016.

[104] K. H. W. L. J. a. J. S. Xu, "How Powerful are Graph Neural Networks?," in

Proceedings of the International Conference on Learning Representations (ICLR),

2018.

[105] Y. Liu, Y. Liu and C. Yang, "Modulation recognition with graph convolutional

network," IEEE Wireless Communications Letters, vol. 9, no. 5, pp. 624-627, 2020.

Chapter 3. GCNs for the Development of SBRSs

66

[106] Z. W. S. A. L. Y. Bruna J, "Spectral networks and locally connected networks on

graphs," 2013.

[107] L. S. G. R. L. a. P. V. Bruno, "A Comprehensive Review of Graph Convolutional

Networks," Applied Sciences, vol. 10, no. 21, p. 7685, 2020.

[108] A. K. L. B. D. T. Balázs Hidasi, "Session-based recommendations with recurrent

neural networks," in ICLR, 2016.

[109] E. S. A. C. Flavian Vasile, "Meta-Prod2Vec: product embeddings using side-

information for recommendation," in RecSys, 2016.

[110] H. T. J. X. a. R. M. Si Zhang1*, "Graph convolutional networks:," 2019.

[111] B. D. M. J. R. E. S. J. B. M. Monti F, "Geometric deep learning on graphs and

manifolds using mixture model cnns," in CVPR, 2017.

[112] B. X. V. P. Defferrard M, "Convolutional neural networks on graphs with fast

localized spectral filtering," in NIPS, 2016.

[113] B. J. Garcia V, "Few-shot learning with graph neural networks," 2017.

[114] C. Y. L. X. W. H. Z. Y. X. E. Kampffmeyer M, "Rethinking knowledge graph

propagation for zero-shot learning," 2018.

[115] L. S. S. A. Narasimhan M, "Out of the box: reasoning with graph convolution nets

for factual visual question answering," in Advances in neural information

processing systems, 2018.

[116] X. C. Z. W. Y. J. Cui Z, "Context-dependent diffusion network for visual relationship

detection," in 2018 ACM multimedia conference on multimedia conference, New

York, 2018.

[117] P. Y. L. Y. M. T. Yao T, "Exploring visual relationship for image captioning," in

Proceedings of the European conference on computer vision (ECCV), 2018.

[118] Z. Y. C. C. F.-F. L. Xu D, "Scene graph generation by iterative message passing," in

Proceedings of the IEEE conference on computer vision and pattern recognition,

2017.

[119] Z. Y. L. D. Dai B, "Detecting visual relationships with deep relational networks," in

Proceedings of the IEEE conference on computer vision and Pattern recognition,

2017.

[120] X. Y. L. D. Yan S, "Spatial temporal graph convolutional networks for skeleton-

based action recognition," in Thirty-second AAAI conference on artificial

intelligence, 2018.

[121] G. A. Wang X, " Videos as space-time region graphs," in Proceedings of the

European conference on computer vision (ECCV).

67

