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Abstract 

The rapid growth of online platforms has led to an overwhelming amount of available 

information and choices, making personalized recommendations crucial for enhancing 

user experience and satisfaction. In this thesis, we focus on session-based recommender 

systems, which aim to provide accurate recommendations by considering users' sequential 

behaviour and short-term interests. 

To address the challenges posed by session-based recommendations, we leverage the 

power of Graph Convolutional Networks (GCNs). GCNs have shown remarkable 

effectiveness in modelling complex relationships and capturing the underlying structure of 

data. By exploiting the graph-like nature of user sessions, we harness the potential of GCNs 

to capture the intricate dependencies between items and uncover latent patterns within 

sessions. 

Keywords: Recommender systems, Session-based recommendations, Graph 

Convolutional Networks, Sequential behaviour, Personalization. 

 

 الملخص
لى توفر كمية هائلة من المعلومات والخيارات المتاحة، مما يجعل ت الأنظمة العاملة عبر نم الإنترنت بسرعة، مما أأدى اإ

التوصيات الشخصية أأمرًا حاسًما لتعزيز تجربة المس تخدم ورضاه. في هذه الأطروحة، نركز على أأنظمة التوصية القائمة 

لى تقديم توصيات دقيقة من خلال النظر في س لوك المس تخدمين التسلسلي واهتماماتهم على الجلسات، التي تهدف اإ

 القصيرة المدى.

 

 للتغلب على التحديات التي تطرحها التوصيات القائمة على الجلسات، نس تغل قوة ش بكات التكرار الرسومية

(GCNs).  أأظهرت ش بكات التكرار الرسومية فعالية ملحوظة في نمذجة العلاقات المعقدة واس تخلاص الهيكل

مكانات الأساسي للبيانات . من خلال اس تغلال طبيعة الجلسات الشبيهة بالرسوم البيانية للمس تخدمين، نس تخدم اإ

 .ش بكات التكرار الرسومية للتقاط التبعيات المعقدة بين العناصر واكتشاف الأنماط الكامنة داخل الجلسات.

 

تكرار الرسومية، السلوك : أأنظمة التوصية، التوصيات القائمة على الجلسات، ش بكات ال الكلمات المفتاحية

 التسلسلي، التخصيص الشخصي.
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A. Background 

In recent years, the rapid growth of online platforms and the abundance of available 

information have presented both opportunities and challenges for recommender systems. 

Recommender systems play a crucial role in assisting users in navigating through vast 

amounts of content to find relevant and personalized recommendations. Traditional 

recommender systems often focus on item-to-item or user-to-user interactions, neglecting 

the temporal nature of user behaviour. However, users' preferences and interests are not 

static; they evolve over time, and capturing this temporal aspect is essential for delivering 

accurate recommendations. 

B. Problem Statement 

The aim of this thesis is to address the limitations of existing recommender systems by 

proposing a session-based approach that incorporates the concept of Graph Convolutional 

Networks (GCN). Session-based recommender systems aim to capture user behaviours 

within a specific session, considering the sequence of items accessed by users and the 

temporal dependencies between them. By utilizing GCN, which has demonstrated 

remarkable performance in various graph-based tasks, we can leverage the rich structural 

information available in user-item interaction graphs to enhance the quality of 

recommendations. 

C. Delimitation 

The challenge we interfere is to capture the dynamic nature of user preferences and 

interests, as well as modelling the complex relationships between items within a session. 

By incorporating GCN, we aim to overcome this delamination problem and develop a 

session-based recommender system that can effectively exploit the temporal and structural 

information present in user-item interaction graphs. 

D. Approach 

To achieve our objective, we will adopt a two-step approach. First, we will collect and pre-

process a large-scale dataset of user-item interactions, capturing the temporal dynamics of 

user behaviour within sessions. Next, we will design and implement a session-based 

recommender system that utilizes GCN to model the sequential dependencies and item 

relationships within sessions. We will evaluate the performance of our proposed system 

using various metrics such as accuracy, recall, and mean average precision, comparing it 

against existing state-of-the-art recommender systems. 

E. Outline 

The remainder of this thesis is organized into three chapters besides a general introduction 

and a general conclusion:
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 General Introduction 

An initiation to recommender system, the background, problem statement, and the 

delamination of those papers. 

 Chapter one: Session-based Recommender Systems 

An overview of recommender systems and their types, going into session-based 

recommender systems that consider as the core research of our thesis. 

 Chapter two: Graph Convolutional Networks 

Essential background of artificial intelligence and its sub-fields, digging into neural 

networks and their architecture mentioning an overview and architecture of its 

standard ANNs types, in the reasons of giving a solid understanding before going 

into graph convolutional networks  

 Chapter three: Developing a Session-based Recommender Systems 

using Graph Convolutional Networks  

Present the model proposed for developing a session-based recommender systems 

using graph convolutional networks 

 General Conclusion 

Based on the results and the discussion in the previous chapter, this last part relates 

to the research questions and draws a summary of this work. Finally, suggestions 

for potential future work are discussed. 
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1.1. Introduction 

Session-based recommender systems (SBRSs) are a type of recommender systems that make 

recommendations based on users’ short-term interests and preferences. They are becoming popular 

in domains such as e-commerce, music streaming, and news recommendation. SBRSs are 

challenging to build due to issues such as data sparsity, short-term user behaviour, and the lack of 

explicit user feedback. In this chapter, we will provide an overview of RSs, including their 

definition, types and challenges. Finally, we will provide a detailed discussion of SBRSs, which is a 

type of recommender systems; we will include its definition, sessions and session’s properties and 

its limitations and challenges. 

1.2. Recommender Systems  

Recommender Systems (RSs) have been largely studied for the past decade and have 

shown to be suitable for many scenarios. On the arrival of the internet and the era of e-

commerce, companies are opting for having a RS as an attempt to boost sales. RSs provide 

predictions of items that the user may find interesting to purchase [1], in which most 

algorithms for this purpose focus on providing recommendations that fit the preferences of 

the user [2].  

RSs have shown to be useful for users and business. Users suffer from what is called the 

paradox of choice. Having many options to choose from lead to more difficulty in 

effectively making a choice [3]. They provide suggestions for items1 that are of potential 

interest for a user. These systems are applied for answering questions such as which book 

to buy? , which website to visit next? , and which financial service to choose?  » [4]   They 

are widely used in various applications, such as e-commerce, social media, and 

entertainment platforms, to enhance user experience, increase engagement, and drive 

sales. Recommender systems have the effect of guiding users in a personalized way to 

interesting or useful objects in a large space of possible options [4]. They have evolved into 

a fundamental tool for making more informative, efficient and effective choices and 

decisions in almost every daily aspect of life, working, business operations, study, 

entertaining and socialization. Their roles have become ever important in the increasingly 

overloaded age of digital economy where users have to make choices from usually massive 

and rapidly increasing contents, products and services (which are uniformly called items) 

[5]. Therefore an RS can be seen as a system [6, 7], which consists of multiple basic entities 

including users, items and their behaviours, e.g., user-item interactions [5]. 

There are plenty of examples of companies that use RSs. For instance, Amazon and 

many e-commerce have adopted the use of recommendation engines. Other services such 

as Netflix, YouTube and Last FM also use recommender systems [2]. 

 

 

 

                                                   
1 Is the general term used to denote what the system recommends to users [4] 
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1.3. Overview of Recommender Systems Types 

Recommender systems can be broadly classified into several categories based on the 

approach used to generate recommendations, its main approach shown in Figure 1 [8].  

 

1.3.1. Content-based filtering 

A content-based recommender system suggests those items that are similar in features 

to items user has already liked in past [9]. A typical CB recommender first creates user 

profile using user feedback and ratings about items. The user profile is then compared with 

item features and the matched items are recommended [10]. Such systems are used in 

recommending web pages, TV programs and news articles etc. [11]. 

To understand this, let’s use a simple example took from [12] shows how a content-

based recommender system might work to suggest movies. 

Let’s suppose there are four movies and a user has seen and liked the first two (see 

Figure 2). 

The model automatically suggests the third movie rather than the fourth, since it is 

more similar to the first two. This similarity can be calculated based on a number of 

features like the actors and actresses in the movie, the director, the genre, the duration of 

the film, etc. 

 

 

Figure 1 - Main approaches to building recommender systems. 

 



Chapter 1.                                                                            Session-based Recommender Systems 

 

7 
 

1.3.2. Collaborative-filtering 

As shown in Figure 3  [13] ,collaborative filtering recommends items by matching users 

with other users having similar interests [14]. It collects user feedback in the form of 

ratings provided by user for specific item and finds match in rating behaviours among 

users in order to find group of users having similar preferences. Here, a user profile 

represents user preferences that the user has either explicitly or implicitly provided [10]. 

Figure 2 - Content-based filtering example 

Figure 3 - Collaborative-filtering example 
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1.3.3. Hybrid-filtering 

In hybrid approach, two or more filtering methods are combined to gain better 

performance over CB2 and CF3 approaches when they are applied separately. Several 

researchers combined CB and CF techniques for gaining better results and mitigating 

various shortcomings faced by these approaches [10]. Burke [15] has categorized 

hybridization methods into seven different types including: (1) weighted, (2) switching, (3) 

mixed approach, (4) feature combination, (5) cascade, (6) feature, and (7) meta-level 

hybridization approach.    

1.3.4. Knowledge-based recommender systems 

A recommender system is knowledge-based when it makes recommendations based not 

on a user’s rating history, but on specific queries made by the user. It might prompt the 

user to give a series of rules or guidelines on what the results should look like, or an 

example of an item. The system then searches through its database of items and returns 

similar results [16]. 

1.3.5. Demographic-based filtering 

Demographic Recommender system generates recommendations based on the user 

demographic attributes. It categorizes the users based on their attributes and recommends 

the movies by utilizing their demographic data [4]. In contrast to collaborative filtering 

and content-based recommender system, it is easy to implement and does not require user 

ratings [17]. 

1.3.6. Context-aware filtering (CARS) 

Context is a complex notion that has been studied across different research disciplines 

[18]. The definition introduced in [19] has been widely adopted for CARS and states the 

following:  "Context is any information that can be used to characterize the situation of 

an entity. An entity is a person, place, or object that is considered relevant to the 

interaction between a user and an application". Consequently, recommender systems 

produce suggestions by leveraging previously mentioned context. This methodology 

incorporates up-to-date data regarding the user's present circumstances, thereby 

enhancing the relevancy of the recommendations generated.  

1.4. Evaluation Metrics for Recommender Systems 

The evaluation of recommender systems is a fundamental aspect that aims to measure 

how effectively they provide personalized recommendations to users based on their 

preferences and needs. This section discusses the evaluation metrics and used to assess the 

performance of recommender systems. 

1.4.1. Predictive Accuracy Metrics 

Predictive accuracy or rating prediction metrics embark on the question of how close 

the ratings estimated by a recommender are to the true user ratings. This type of measures 

                                                   
2 Content-based Filtering 
3 Collaborative Filtering 
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is very popular for the evaluation of non-binary ratings. It is most appropriate for usage 

scenarios in which an accurate prediction of the ratings for all items is of high importance 

[20]. 

1.4.2. Mean reciprocal rank (MRR) 

According to [21] MRR is the average of reciprocal rank (RR) over users. The reciprocal 

rank is the “multiplicative inverse” of the rank of the first correct item. MRR is an 

appropriate choice in two cases:  

 There is only one relevant item. 

 In the use case, only the first recommended item is the essential one. 

It means that MRR doesn’t apply if there are multiple correct responses in the resulting 

list. If your system returns 10 items and it turns out there is a relevant item in the third-

highest spot, that’s what MRR cares about. It will not check if the other relevant items 

occur between rank 4 and rank 10. 

1.4.3. Novelty Metrics 

It is a measure of the ability of RS to introduce long-tail items to users. E-commerce 

platforms can benefit from high-ranking individualized, niche items. For example, Amazon 

makes a great success by selling books that are not available in traditional book stores, 

rather than bestsellers. 

Novelty can be defined as a fraction of unknown items among all items the user liked. 

An ideal way of measuring it would be a customer survey but in most cases, we are unable 

to determine whether the user knew the item before. Having implicit data about user 

behaviours allows us to measure dissimilarity between recommendations that sometimes 

substitutes novelty scores. We have to also remember that too many novel items can result 

in a lack of trust from users. It is essential to find the balance between novelty and 

trustworthiness [21]. 

1.4.4. Diversity Metrics 

Diversity is a concept concerned with the diversity of items in the recommendation list 

[2]. It is a measure of how your recommendations are different from each other. Consider 

the customer finished watching the first movie of a trilogy on Netflix. Low diversity 

recommender would recommend only the next parts of the trilogy or the films directed by 

the same director. On the other hand, high diversity can be achieved by recommending 

items completely random [22]. 

1.4.5. Serendipity Metrics 

Serendipity represents surprising recommendations. Iaquinta et al4. [23], mention that 

serendipity represent items that the users would difficultly find. It can be concluded that 

even though serendipity has a hard-to-understand definition, most authors agree that it 

                                                   
4 is an abbreviation used in academic writing to refer to a group of authors. 
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represents a delightful surprise and provide useful and surprising items to the user [2]. 

Common serendipity metrics include mean average precision and unexpectedness. 

1.4.6. Coverage Metrics 

Coverage is the ability of the recommender system to recommend all items from a train 

set to users. Let’s consider the random recommender that selects items as in the lottery 

drawing. Such recommender has nearly 100% coverage because it has the ability to 

recommend every available item. On the other hand, the popularity-based recommender is 

going to recommend just top k items. In such a case, coverage is close to 0%.  

Coverage does not evaluate if the user enjoys the recommendation or not, instead, it 

measures the RS in terms of its ability to bring unexpectedness to the user. Low coverage 

can lead to users’ dissatisfaction [21]. 

1.5. Experimental Settings 

In this section, we discuss three levels of experiments for comparing multiple 

recommenders. We start with offline experiments, which are relatively easier to conduct as 

they do not require interaction with real users. Next, we describe user studies, where a 

small group of subjects is asked to use the system in a controlled environment, and their 

experiences are reported. These experiments provide both quantitative and qualitative 

information about the systems, but it is essential to consider various biases in the 

experimental design. 

Lastly, the most reliable type of experiment involves the system being used by a pool of 

real users, who are typically unaware of the experiment. Although this type of experiment 

allows us to collect only specific types of data, it closely resembles real-world conditions 

and provides valuable insights [24], those are used in recommender systems to evaluate 

and compare the performance of different recommendation algorithms or approaches. 

1.5.1. Offline Experiments 

An offline experiment is performed by using a pre-collected data set of users choosing 

or rating items. Using this data set we can try to simulate the behaviours of users that 

interact with a recommendation system. In doing so, we assume that the user behaviours 

when the data was collected will be similar enough to the user behaviours when the 

recommender system is deployed, so that we can make reliable decisions based on the 

simulation. Offline experiments are attractive because they require no interaction with real 

users, and thus allow us to compare a wide range of candidate algorithms at a low cost 

[24]. 

1.5.2. User Studies 

A user study is conducted by recruiting a set of test subjects, and asking them to 

perform several tasks requiring an interaction with the recommendation system. While the 

subjects perform the tasks, we observe and record their behaviours, collecting any number 

of quantitative measurements, such as what portion of the task was completed, the 

accuracy of the task results, or the time taken to perform the task [24]. 
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1.5.3. Online evaluation 

Online evaluation is one of the best ways of seeing user interactions with the 

recommendation engine. The real-life performance of the recommendation system 

depends on a variety of factors. During the online evaluation, real users interact with the 

systems. So, it is possible to understand the correct user intent and the success of the 

recommendation model directly [22]. 

1.6. Limitations and Challenges of Recommender Systems 

1.6.1. Cold Start 

The “cold start" problem happens in recommendation systems due to the lack of 

information, on users or items. The Cold-Start problem is a well-known issue in 

recommendation systems: there is relatively little information about each user, which 

results in an inability to draw inferences to recommend items to users [11] ,i.e., If you are 

building a brand-new recommendation system, you would have no user data to start with. 

You can use content-based filtering first and then move on to the collaborative filtering 

approach [25]. 

1.6.2. Scalability 

The rate of growth of nearest-neighbour algorithms shows a linear relation with 

number of items and number of users. It becomes difficult for a typical recommender to 

process such large-scale data [10]. Different techniques have been proposed including 

clustering, reducing dimensionality, and Bayesian Network [26]. 

1.6.3. Data Sparsity 

In practice, many commercial recommender systems are based on large datasets. As a 

result, the user-item matrix used for collaborative filtering could be extremely large and 

sparse, which brings about the challenges in the performances of the recommendation. 

One typical problem caused by the data sparsity is the cold start problem. As collaborative 

filtering methods recommend items based on users’ past preferences, new users will need 

to rate a sufficient number of items to enable the system to capture their preferences 

accurately and thus provide reliable recommendations. Similarly, new items also have the 

same problem. When new items are added to the system, they need to be rated by a 

substantial number of users before they could be recommended to users who have similar 

tastes. The new item problem does not limit the content-based recommendation because 

the recommendation of an item is based on its discrete set of descriptive qualities rather 

than its ratings [11]. 

1.6.4. Synonymy 

Synonymy arises when an item is represented with two or more different names or 

entries having similar meanings [27]. In such cases, the recommender cannot identify 

whether the terms represent different items or the same item. 
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1.6.5. Shilling attacks 

What happens if a malicious user or competitor enters into a system and starts giving 

false ratings on some items either to increase the item popularity or to decrease its 

popularity [28]. Such attacks can break the trust on the recommender system as well as 

decrease the performance and quality of recommenders [10].   

1.6.6. Privacy Concern 

The more the algorithm knows about the customer, the more accurate its 

recommendations will be. However, many customers are hesitant to hand over personal 

information, especially given several high-profile cases of customer data leaks in recent 

years. However, without this customer data, the recommendation engine cannot function 

effectively. Therefore, building trust between the business and customers is key [29]. 

 

1.7. Session-based Recommender Systems 

1.7.1. Overview 

For present e-commerce platforms, it is important to accurately predict users’ 

preference for a timely next-item recommendation. To achieve this goal, session-based 

recommender systems are developed, which are based on a sequence of the most recent 

user-item interactions to avoid the influence raised from outdate historical records [30] . 

An SBRS aims to predict either the unknown part (e.g., an item or a batch of items) of a 

session given the known part, or the future session (e.g., the next-basket) given the 

historical sessions via learning the intra- or inter-session dependencies [5]. 

SBRSs learn users’ preferences from the sessions associated and generated during the 

consumption process. Each session is composed of multiple user-item interactions that 

happen together in a continuous period of time, e.g., a basket of products purchased in one 

transaction visit, which usually lasts for several minutes to several hours [5] 

1.7.2. Session and Session Properties 

A session refers to a sequence of user engagements with an application or website 

within a brief timeframe. These engagements encompass various actions like clicks, views, 

purchases, searches, and more. Each session is linked to specific session properties, 

including the items viewed, the duration spent on each item, the sequence of item views, 

and the time gaps between consecutive interactions. 

A session can usually reflect a user’s current preference, a local shift of the user’s 

intention within the session may still exist [30]. It is a list of interactions with a clear 

boundary [5]. 

We will discuss five important properties of sessions that have a great impact on SBRSs: 

 

Property 1: session length. The length of a session is defined as the total number of 

interactions contained in it [5]. This is a basic property of sessions, which is taken as one of 
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the statistical indicators of experiment data in most literature [31, 32]. Sessions of different 

lengths may bring different challenges for SBRSs and thus lead to different 

recommendation performance. The session characteristics related to session length 

together with the corresponding challenges for building SBRSs are discussed in detail in 

Section 1.7.4. 

Property 2: internal order. The internal order of a session refers to the order over 

interactions within it. Usually, there are different kinds of order flexibility inside different 

sessions. The existence of internal order leads to the sequential dependencies within 

sessions which can be used for recommendations [5]. The session characteristics related to 

internal order and its challenges for building SBRSs are discussed in detail in Section 1.7.4. 

Property 3: action type. In the real world, some sessions contain only one type of 

actions. The dependencies over different types of actions are often different. For instance, 

the items that are clicked together in a session may be similar or competitive while the 

items purchased together in one session may be complementary. Therefore, the number of 

action types in a session determines whether the intra-session dependencies are 

homogeneous (based on a single type of actions) or heterogeneous (based on multi-type 

actions), which is important for accurate recommendations [5]. The session characteristics 

related to action type as well as the corresponding challenges for building SBRSs are 

discussed in detail in Section 1.7.4. 

Property 4: user information. User information of a session mainly refers to the 

IDs of the users in the session, and sometimes user attributes are also included. In this 

paper, the property of user information refers to the availability of user information in a 

session. In the real word, the user information of sessions is given in some cases, while it is 

not available in other cases [33, 34, 35] User information plays an important role to 

connect sessions from the same user happening at different time and thus its availability 

determines the possibility to model the long-term personalized preference across multiple 

sessions for a specific user. In practice, SBRSs were initially proposed to handle those 

anonymous sessions where user information is not available [36]. The session 

characteristics together with the corresponding challenges for building SBRSs are 

discussed in detail in Section 1.7.4. 

Property 5: session-data structure. Session-data structure refers to the session-

related hierarchical structure consisting of multiple levels [37, 38], which intrinsically 

exists in some session data. The interaction level is necessary for a session, while the other 

levels depend on the specific session data. This is because either the attribute information 

or the historical session information may not be available in all session data. Usually, the 

number of levels included in a session data set determines the information volume that can 

be used for recommendations [5]. The session characteristics related to session-data 

structure as well as the corresponding challenges for building SBRSs are discussed in detail 

in Section 1.7.4. 

1.7.3. Sub-area of SBRS 

The variety of existing work on SBRSs can be generally categorized into three sub-areas 

fitting a unified categorization framework to reduce the aforementioned inconsistencies 
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and confusion. According to the difference on the recommendation tasks, the sub-areas 

include next interaction recommendation, next partial-session recommendation, and next 

session recommendation [5]. Table 1 illustrates the differences between sub-area in SBRSs 

[5]  

 Next interaction recommendation. Next interaction recommendation aims to 

recommend the next possible interaction in the current session by mainly modelling 

intra-session dependencies [5]. 

 Next partial-session recommendation. Next-partial session recommendation 

aims to recommend all the remaining interactions to complete the current session, 

e.g., to predict all the subsequent items to complete a basket given the purchased 

items in it, by mainly modelling intersession dependencies [5]. 

 Next session recommendation. Next session recommendation aims to 

recommend the next session, e.g., next basket, by mainly modelling inter-session 

dependencies [5]. 

 

Table1- A comparison of different sub-areas in SBRSs 

 

1.7.4. Characteristics and Challenges 

According to [2], gaining a comprehensive understanding of the characteristics of 

session data and the challenges associated with modelling it is crucial in order to develop a 

well-suited Session-Based Recommender System (SBRS). In this section, we illustrate and 

summarize these characteristics and challenges as follows: 

 Related to session length 

According to session length, sessions can be roughly categorized into three types: long 

sessions, medium sessions and short sessions. 

Long sessions: A session that is considered long typically consists of a higher number 

of interactions, exceeding 10 or more. In essence, longer sessions tend to offer a greater 

amount of contextual information, which can contribute to the generation of more precise 

recommendations. However, due to the uncertainty of user behaviours’, a long session is 

more likely to contain random interactions [39] which are not related or unrelated to other 

interactions within it. This brings noisy information and thus reduces the performance of 

recommendations [40, 41].Therefore; the first challenge for SBRSs built on long sessions is 

how to effectively reduce the noisy information from the irrelevant interactions [5]. In 
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addition, there are usually more complex dependencies embedded in a long session, e.g., 

long-range dependencies [42] between two interactions that are far from each other in a 

session or high-order dependencies [41]across multiple interactions in a session. 

Consequently, another challenge for SBRSs built on long sessions is how to effectively 

learn complex dependencies for better recommendation performance [5]. 

Medium session: Sessions of medium duration tend to encompass a moderate 

number of interchanges, ranging from approximately 4 to 9 interactions. When compare 

medium sessions with long and short sessions, a medium session is less likely to contain 

too many irrelevant interactions while it usually contains the necessary contextual 

information for Session-Based Recommendation (SBR) [5]. Although less complex in 

nature, the development of SBRSs for medium length sessions remains fundamentally 

challenged. 

Short sessions: It consists of limited interactions that are usually less than 4, 

consequently limiting the information available to substantiate recommendations. 

 Related to internal order 

Sessions can be divided into unordered sessions, ordered sessions and flexible-ordered 

sessions: 

Unordered sessions: An unordered session contains interactions without any 

chronological order between them, namely, whether an interaction happens earlier or later 

in the session makes no difference [31]. For example, the shopping sessions are sometimes 

unordered since users may pick up a basket of items (e.g., {bread, milk, eggs}) without 

following an explicit order [32]. In unordered sessions, the dependencies among the 

interactions are based on their co-occurrence rather than the sequences of them, and thus 

the generally utilized sequence models are not applicable [5]. Furthermore, most of co-

occurrence-based dependencies among interactions are collective dependencies [43, 44].  

Ordered sessions: An ordered session contains multiple interactions with strict 

order, and usually strong sequential dependencies exist among them.  Although it is 

relatively easy to learn the strong sequential dependencies within ordered sessions, it is 

challenging to effectively learn the cascaded long-term sequential dependencies which 

decay gradually with time in long ordered sessions [5].  

Flexibly-ordered sessions: A flexibly-ordered session is neither totally unordered 

nor totally ordered, i.e., some parts of the session are ordered while others are not [43]. 

Therefore, the complex dependencies inside flexibly-ordered sessions must be carefully 

considered and precisely learned for accurate recommendation. Consequently, the 

challenge for SBRSs built on flexibly-ordered sessions comes from how to effectively learn 

the complex and mixed dependencies [5]. 

 Related to action type  

Sessions can be divided into single-type-action sessions and multi-type-action sessions: 
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Single-type-action sessions: A single-type-action session includes one type of 

actions only, e.g., clicks of items, and thus only one type of dependencies comes from the 

same type of actions, which is relatively easy to learn [5]. 

Multi-type-action sessions: A multi-type-action session includes more than one 

types of actions [45], leading to multiple types of interactions. Thus, there are complex 

dependencies inside a multi-type-action session [46]. Specifically, dependencies not only 

exist over the interactions from the same type (e.g., clicks of items), but also exist over 

interactions from different types (e.g., clicks and purchases) [5]. 

Related to user information 

According to [5] sessions can be divided into non-anonymous sessions and anonymous 

sessions. 

Non-anonymous sessions: A non-anonymous sessions contains non-anonymous 

interactions with the associated user information, which enables the connections of 

different sessions generated by the same user at different time. This makes it possible to 

learn the user’s long-term preference as well as its evolution across sessions. However, due 

to the relative long time-span and preference dynamics, it is quite challenging to precisely 

learn the personalized long-term preference over multiple non-anonymous sessions [5]. 

Anonymous sessions: In anonymous sessions, due to the lack of user information to 

connect multiple sessions generated by the same user, it is nearly impossible to collect the 

prior historical sessions for the current session. As a result, only the contextual 

information from the current session can be used for recommendations. Therefore, it is 

challenging to precisely capture the user’s personalized preference with limited contextual 

information to provide accurate recommendation [5]. 

 Related to session-data structure 

According to the number of levels of structures, session data can be roughly divided 

into single-level session data and multi-level session data: 

Single-level session data: A single-level session data set is usually a set of 

anonymous sessions where each consists of several interactions without attribute 

information or historical session information. In such a case, only single-level 

dependencies, i.e., the inter-interaction dependencies within sessions can be utilized for 

recommendations [5]. Hence, due to the lack of auxiliary information from other levels, 

SBRSs built on single-level session data may easily suffer from the cold-start or data 

sparsity issue [46]. This leads to the challenge of how to overcome the cold-start and 

sparsity issues for accurate recommendations when only the inter-interaction 

dependencies are available [5]. 

Multi-level session data: multi-level session data involves a hierarchical structure 

of at least two levels, i.e., the interaction level plus attribute level and/or session level. In 

this case, both the dependencies within each level and across different levels would affect 

the subsequent recommendations. For example, the categories (the attribute level) of 

several items may have impact on whether these items would be bought together (the 
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interaction level) in one session. Consequently, how to comprehensively learn the intra- 

and inter-level dependencies for effective and accurate recommendations becomes a key 

challenge for SBRSs built on multi-level session data [5]. 

1.8. Conclusion 

In this chapter, we provided an overview of recommender systems and their types. We 

also discussed various evaluation metrics for recommender systems. Furthermore, we 

highlighted some of the main limitations and challenges facing recommender systems. In 

addition, we discussed the concept of session-based recommender systems (SBRSs), by 

providing an overview of SBRSs. Moreover, we highlighted some of the limitations and 

challenges associated with SBRS. Overall, this chapter aimed to provide a comprehensive 

introduction to recommender systems and SBRSs, highlighting their potential and 

challenges. In the following chapters, we will focus on Graph convolutional networks 

(GCNs). 
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2.1. Introduction 

In this chapter we provide an introduction to Graph Convolutional Networks (GCNs). 

Which is a powerful tool for analysing graph-structured data in machine learning and data 

analysis? It begins by establishing the foundational concepts of graphs, learning processes, 

and neural networks. Then, it introduces Graph Neural Networks (GNNs) as a precursor to 

understanding GCNs. The core focus is on GCNs, explaining their definition, architecture, 

types, and applications. We conclude it by addressing the challenges and future research 

directions in the field of GCNs. 

2.2. Deep learning 

2.2.1. Overview 

In this section, we will explore the fascinating field of deep learning, which lies at the 

intersection of artificial intelligence (AI) and machine learning (ML). Before delving into 

the intricacies of deep learning, let's briefly define these foundational concepts: 

Artificial Intelligence (AI) as Jair Ribeiro said « AI is the field of computer science that 

enables machines to perform tasks requiring human-like intelligence. It involves creating 

intelligent agents that can sense, comprehend, learn, and act in a way that extends human 

capabilities » 

Machine Learning (ML): Machine learning is a subset of AI that focuses on developing 

algorithms and models that enable computers to learn from data and make predictions or 

decisions without being explicitly programmed. ML algorithms learn from examples and 

iteratively improve their performance as they encounter more data. It has become a crucial 

tool for solving complex problems and driving advancements in various domains. 

Figure 4 - the relation between AI, ML and Deep Learning 
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2.2.2. Learning processes 

There are three major learning paradigms; supervised learning, unsupervised learning 

and reinforcement learning. Usually, they can be employed by any given type of artificial 

neural network architecture [47]. The table 2.1 shows a comparison between the three 

learning paradigms [48]. 

Supervised learning: Supervised learning is a machine learning technique that sets 

the parameters of an artificial neural network based on training data. The objective of the 

learning process is for the artificial neural network to determine the appropriate parameter 

values for any valid input, having observed the corresponding output values. The training 

data consists of pairs of input and desired output values, typically represented as data 

vectors. Supervised learning can also be referred to as classification, where a variety of 

classifiers exist, each with its own strengths and weaknesses. Selecting a suitable classifier, 

such as Multilayer Perceptron, Support Vector Machines, k-nearest neighbor algorithm, 

Gaussian mixture model, Gaussian, naive Bayes, decision tree, radial basis function 

classifiers, etc., for a given problem is often more of an art than a science [47]. 

Unsupervised learning: Unsupervised learning is a machine learning technique 

that sets parameters of an artificial neural network based on given data and a cost 

function, which is to be minimized. The cost function can be any function and is 

determined by the task formulation. Unsupervised learning is frequently employed in 

estimation problems such as statistical modelling, compression, filtering, blind source 

separation, and clustering. In unsupervised learning, the objective is to determine the 

organizational structure of the data. It differentiates itself from supervised learning and 

reinforcement learning in that the artificial neural network is provided with only 

unlabelled examples. One common form of unsupervised learning is clustering, where the 

goal is to categorize data into different clusters based on their similarity. Among the 

aforementioned artificial neural network models, self-organizing maps are the most 

commonly used unsupervised learning algorithms [47]. 

Reinforcement learning: Reinforcement learning is a subfield of machine learning 

that involves an agent learning to interact with an environment to maximize cumulative 

rewards. The agent learns by taking actions in the environment, receiving feedback in the 

form of rewards or penalties, and updating its strategy based on this feedback. The 

ultimate objective is to discover an optimal policy that maps states to actions, leading to 

the highest expected long-term reward [49, 50]. 
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Table2 - comparisons between the learning paradigms 

 

2.3. Artificial Neural Networks 

2.3.1. Overview 

Artificial Neural Networks (ANN) is algorithms based on brain function and are used to 

model complicated patterns and forecast issues. The Artificial Neural Network (ANN) is a 

deep learning method that arose from the concept of the human brain Biological Neural 

Networks. The development of ANN was the result of an attempt to replicate the workings 

of the human brain. The workings of ANN are extremely similar to those of biological 

neural networks as shown in Figure 2.2 [51], although they are not identical. ANN 

algorithm accepts only numeric and structured data [52]. 

Machine learning is the research field of allowing computers to learn to act 

appropriately from sample data without being explicitly programmed. Deep learning is a 

class of machine learning algorithms that is built upon artificial neural networks. 

In fact, most of the vital building components of deep learning have existed for decades, 

while deep learning only gains its popularity in recent years [53], From the realm of 

Machine Learning and Deep Learning emerges the powerful concept of Artificial Neural 

Networks (ANNs), which are a machine learning method evolved from the idea of 

simulating the human brain [54]. 

In case of biological neuron information comes into the neuron via dendrite, soma 

processes the information and passes it on via axon. In case of artificial neuron the 

information comes into the body of an artificial neuron via inputs that are weighted (each 
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input can be individually multiplied with a weight). The body of an artificial neuron then 

sums the weighted inputs, bias and “processes” the sum with a transfer function. At the 

end an artificial neuron passes the processed information via output(s). Benefit of artificial 

neuron model simplicity can be seen in its mathematical description below [47]: 

𝑦(𝑘) = 𝐹(∑ 𝑤𝑖(𝑘). 𝑥𝑖(𝑘) + 𝑏

𝑚

𝑖=0

)  

Where: 

 𝑥𝑖(𝑘) is the input value in discrete time   
 
݇  where   

 
݇  goes from 0 to  m, 

 𝑤𝑖(𝑘) is the weight value in discrete time    where   goes from 0 to m, 

 B is the bias, 

 F is the transfer or activation function, 

 𝑦𝑖(𝑘) is the output value in discrete time    k. 

Note that when combining two or more artificial neurons we are getting an artificial 

neural network [47]. 

 

  

Figure 5 - Neuron in Artificial neural network components 
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2.3.2. ANNs architecture 

In the Figure 2.4 [51], it is illustrated that a neural network made of interconnected 

neurons. Each of them is characterized by its weight, bias, and activation function. Here is 

a brief explanation of other elements of this network [55]. 

Input Layer: The input layer takes raw input from the domain. No computation is 

performed at this layer. Nodes here just pass on the information (features) to the hidden 

layer.  

Hidden Layer: As the name suggests, the nodes of this layer are not exposed. They 

provide an abstraction to the neural network.  

The hidden layer performs all kinds of computation on the features entered through the 

input layer and transfers the result to the output layer. 

Output Layer: It’s the final layer of the network that brings the information learned 

through the hidden layer and delivers the final value as a result.  

All hidden layers usually use the same activation function. However, the output layer 

will typically use a different activation function from the hidden layers. The choice depends 

on the goal or type of prediction made by the model 

2.3.3. Activation functions 

An activation function decides whether or to what extent the input signal should pass. 

The node (or neuron) is activated if there is information passing through it. It is a kind of 

function that maps a real number to a number between 0 and 1 (with rare exceptions). 

 

which represents the activation of the neuron, where 0 indicates deactivated and 1 

indicates fully activated [56], We choose it on the basis of problem that artificial neuron 

Figure 6 - Neural Networks basic Architecture 
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(artificial neural network) needs to solve [47] .The purpose of activation functions is to add 

the non-linearity to the neural network. 

In the following we introduce some commonly used Activation functions. 

 Sigmoid or Logistic Activation Function: It is the most widely used 

activation function as it is a non-linear function. Sigmoid function transforms the 

values in the range 0 to 1 [57]. It can be defined as: 

 

𝑓(𝑥) =
1

𝑒𝑥
 

The main reason why we use sigmoid function is because it exists between (0 and 

1). Therefore, it is especially used for models where we have to predict the 

probability as an output. Since probability of anything exists only between the range 

of 0 and 1, sigmoid is the right choice [58].      

Figure 7 - Sigmoid Activation function 
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 Tanh Function (Hyperbolic Tangent). It is Hyperbolic Tangent function. Tanh 

function is similar to the sigmoid function but it is symmetric to around the origin. 

This results in different signs of outputs from previous layers which will be fed as 

input to the next layer [57]. It can be defined as: 

𝑓(𝑥) = 2𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥) − 1 

 

 

 ReLU Function. ReLU stands for rectified liner unit and is a non-linear activation 

function which is widely used in neural network. The upper hand of using ReLU 

function is that all the neurons are not activated at the same time. This implies that 

a neuron will be deactivated only when the output of linear transformation is zero 

[57]. It can be defined mathematically as: 

 

 𝑓(𝑥) = max (0, 𝑥) 

Figure 8 - Tanh activation function 
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2.3.4. Feed-forward Neural Network 

A feed forward neural network (FNN) is a type of artificial neural network where 

information propagates in a forward direction, without feedback connections. It consists of 

an input layer that receives input data, one or more hidden layers responsible for 

processing intermediate representations, and an output layer that produces the final 

output. Each layer is composed of interconnected nodes, called neurons, which perform 

computations on the received input using activation functions. The network's weights and 

biases are adjusted during training to optimize the model's performance [59, 60]. 

The number of neurons in each layer and the connectivity pattern between layers 

determine the architecture of the FNN. In a fully connected FNN, each neuron in a given 

layer is connected to every neuron in the subsequent layer. This allows the flow of 

information throughout the network, enabling the network to learn complex relationships 

within the data [59]. 

The hidden layers serve as information-processing stages, where each neuron applies a 

non-linear activation function to its input. Common activation functions used in FNNs 

include the sigmoid function, ReLU (Rectified Linear Unit), and tanh (hyperbolic tangent) 

function. These activation functions introduce non-linearity into the network, enabling it 

to model complex relationships and capture non-linear patterns in the data [60]. 

In order to propagate the features representation to the next layer (forward pass), we 

perform the equation below [61]: 

 

Figure 9 - ReLU activation function 
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𝐻[𝑖+1] = 𝜎( 𝑊[𝑖]𝐻[𝑖]  +  𝑏𝑖)                     

Equation 1 Forward Pass in Neural Networks 

Where: 

- H the feature representation at layers 

- i the number of layers 

- 𝜎 the activation function 

- W the weight  

- b the bias 

 

Figure 10 - Forward propagation in neural networks 

2.4. Recurrent Neural Networks 

2.4.1. Overview 

Recurrent Neural Networks (RNNs) are a type of artificial neural network specifically 

designed to process sequential data by introducing the concept of recurrent connections. 

Unlike feed forward neural networks, RNNs have connections that form a directed cycle, 

allowing them to retain and utilize information from previous time steps or inputs [60, 

62]. 

RNNs process sequential data by iteratively applying the same set of weights and biases 

across multiple time steps. At each time step, the network takes an input, computes the 

hidden state based on the previous hidden state and current input, and produces an 

output. This recurrent computation enables RNNs to model dynamic temporal 

relationships in sequential data, making them suitable for tasks such as speech 

recognition, language modelling, machine translation, and time series analysis [60, 62]. 

However, standard RNNs suffer from the vanishing or exploding gradient problem, 

where the influence of past inputs on the current hidden state diminishes or amplifies 

exponentially over time. To address this issue, various advanced RNN architectures have 

been developed, such as Long Short-Term Memory (LSTM) and Gated Recurrent Units 

(GRUs). These architectures incorporate gating mechanisms that allow the network to 

selectively retain or forget information, improving its ability to learn and capture long-

term dependencies in sequential data [63, 64] 
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2.4.2. RNNs Architecture 

As shown in Figure 2.7 [65] the architecture of a Recurrent Neural Network (RNN) 

consists of input, hidden, and output layers, with a feedback loop that enables the network 

to process sequential data by maintaining hidden states capturing contextual information 

from previous inputs [60, 62]. In the following section we will discuss them briefly. 

 The input layer of an RNN represents the initial input to the network. Each element 

of the input sequence is represented as a vector, and the sequence is fed into the 

network step by step. This step is similar to the input layer of other neural network 

architectures [60]. 

 The hidden layer of an RNN is responsible for maintaining and updating the hidden 

state, which captures information from previous inputs. It takes both the current 

input and the previous hidden state as input and produces a new hidden state. This 

recurrent connection allows the network to retain memory of past inputs and capture 

sequential dependencies [62]. 

 In the Output Layer of an RNN takes the hidden state as input and produces the 

output for the current step. The output can be a prediction, classification, or any 

other desired output based on the task at hand. The output layer can be a fully 

connected layer or any other appropriate layer for the specific task [66]. 

 

 The next step consists of the feedback loop which allows the output from the current 

step to be fed back into the network as the input for the next step. This feedback 

mechanism is crucial for capturing sequential dependencies and maintaining 

memory of past inputs. It enables the RNN to process the entire input sequence 

iteratively [67]. 

 Finally, the Time Unfolding step to process the entire input sequence, the RNN is 

time-unfolded into multiple steps, where each step represents a single time step of 

the input sequence. This unfolding allows the RNN to process the sequential data 

Figure 11 - a simple RNNs architecture 
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one step at a time and facilitates the application of back propagation through time 

(BPTT) for training the network [67]. 

 

2.5. Convolutional neural networks  

2.5.1. Overview 

Convolutional neural networks (CNNs) are special versions of FNNs. FNNs are usually 

fully connected networks while CNNs preserve the local connectivity.as shown in figure 2.7 

The CNN architecture usually contains convolutional layers, pooling layers, and several 

fully connected layers or dense layers [56]. 

2.5.2. CNN Architecture 

As shown in the Figure 2.7 [68] The Convolutional layer applies filters to the input 

image to extract features, the Pooling layer down samples the image to reduce 

computation, and the fully connected layer makes the final prediction [69], they also 

consist of neurons that have trainable weights and bias. Each neuron receives and 

transforms some information from previous layers. The difference is that some of the 

neurons in CNNs may have different designs from the ones we introduced for feed forward 

networks [53], we will provide a brief explanation of every step. 

According to [70, 71] : 

 The input to a CNN is usually an image or a set of images. An image is represented as 

a grid of pixels, where each pixel contains colour information (RGB values). The 

dimensions of the input image are typically fixed and known in advance. 

 While the convolutional layer is the primary building block of a CNN. It applies a set 

of learnable filters (also known as kernels) to the input image to extract features. 

Each filter performs a convolution operation by sliding over the input image and 

computing dot products between the filter weights and local regions of the input. The 

output of this operation is called a feature map or an activation map. 

The convolutional layer helps the network learn spatial hierarchies of features by 

capturing low-level features in the earlier layers and more complex features in the deeper 

layers. 

After the convolution operation, an element-wise activation function is applied to 

introduce non-linearity into the network. Commonly used activation functions include 

Rectified Linear Units (ReLU), sigmoid, and hyperbolic tangent (tanh) [72]. 

 Then the pooling layer reduces the spatial dimensions of the feature maps while 

retaining the most important information. It works by partitioning the input feature 

map into small regions (e.g., 2x2 or 3x3) and taking the maximum or average value 

within each region. Pooling helps to achieve translation invariance and reduces the 

sensitivity of the network to small spatial variations in the input [73, 74]. 
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 Finally, the dense layer connects every neuron from the previous layer to every 

neuron in the current layer. It transforms the features learned by the convolutional 

layers into a vector of class scores or probabilities. This layer is typically placed at the 

end of the network and provides the final classification or regression output [75]. 

 

2.6. Graph fundamentals 

2.6.1. Overview  

Graphs are ubiquitous structures that can be used to model complex relationships 

between entities. Graphs have been used in many fields such as social network analysis, 

recommendation systems, computer networks, and bioinformatics. In recent years, deep 

learning techniques have been applied to graphs to extract features and learn 

representations, resulting in Graph Neural Networks (GNNs) that have shown promising 

results in various applications, including session-based recommender systems. 

   In this section, we will provide an introduction to graphs and their importance in 

machine learning. We will discuss the different types of graphs, graph algorithms, and 

graph representations. We will also briefly introduce the concept of GNNs and their 

application in session-based recommender systems. 

2.6.2. Graph representation 

In this section, we introduce the definition of graphs. With brief explanations: 

Definition 1: A graph is often denoted by G = (V, E), where V is the set of vertices and 

E is the set of edges. An edge e = u,v has two endpoints u and v, which are said to be joined 

by e. In this case, u is called a neighbour of v, or in other words, these two vertices are 

adjacent. Note that an edge can either be directed or undirected. A graph is called a 

directed graph if all edges are directed or undirected graph if all edges are undirected. The 

degree of vertices v, denoted by d(v), is the number of edges connected with v [56]. The 

figure 13 illustrate directed and undirected graph [76] . 

Figure 12 - a simple convolutional neural networks architecture 
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2.6.3. Algebra representation of graphs 

Here are a few helpful algebraic representations for graphs: 

 Adjacency matrix: For a simple graph with vertex set U = {u1, …, un}, the  

Adjacency matrix is a square n × n matrix A such that its element Aij is one 

when there is an edge from vertex ui to vertex uj, and zero when there is no edge 

[77], the Figure represent an example of adjacency matrix [78] : 

 Degree matrix: Given a graph G=(V,E) with iVi =n , the degree matrix  D for G in 

an n×n diagonal matrix defined as [79]  

𝐷𝑖,𝑗 ≔ {
𝑑𝑒𝑔(𝑣𝑖)     𝑖𝑓 𝑖 = 𝑗

     0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Figure 13 - Directed and undirected graph 

Figure 14 - Adjacency matrix of a graph 
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where the degree 𝒅𝒆𝒈(𝒗𝒊)     of a vertex counts the number of times an edge terminates 

at that vertex. In an undirected graph, this means that each loop increases the degree 

of a vertex by two. In a directed graph, the term degree may refer either to in 

degree (the number of incoming edges at each vertex) or out degree (the number of 

outgoing edges at each vertex). 

 Laplacian matrix: Given a simple graph G with n vertices v1, …, vn, its Laplacian 

matrix 𝐿𝑛×𝑛  is defined element-wise as 

Ln×n ∶=  {  

deg(vi)     if i = j

−1  if i ≠ j and vi adjacent to 

0              otherwise

 vj 

Or equivalently by the matrix 

L = D - A  

Where: D is the degree matrix and A is the adjacency matrix of the graph. Since G is a 

simple graph, A only contains 1s or 0s and its diagonal elements are all 0s.  

2.6.4. Computational Tasks on Graphs  

We've discussed graph examples in the wild, but what tasks can we perform on this 

data? There are three types of prediction tasks on graphs: node-level, graph-level, and 

edge-level tasks. 

 Node-focused tasks: Node-focused tasks involve analysing and understanding 

individual nodes in a graph. These tasks aim to extract meaningful information from 

each node, such as its properties, attributes, or importance within the graph. 

Examples of node-focused tasks include node classification, node clustering, and 

node ranking. Node classification aims to assign a category or label to each node 

based on its properties. Node clustering involves grouping similar nodes together. 

Node ranking determines the importance or centrality of each node in the graph [80, 

81]. 

 Graph-focused tasks: Graph-focused tasks involve analysing the entire graph 

structure as a whole. These tasks aim to understand the overall properties, 

characteristics, and patterns present in the graph. Examples of graph-focused tasks 

include graph classification, graph generation, and graph similarity. Graph 

classification involves assigning a category or label to an entire graph based on its 

structure or properties. Graph generation focuses on generating new graphs that 

exhibit similar properties or characteristics as the input graph. Graph similarity aims 

to quantify the similarity between two or more graphs [82, 83]. 

 Edge-level tasks: Edge-level tasks involve analysing the connections or 

relationships between pairs of nodes in a graph. These tasks focus on understanding 

the interactions, dependencies, or patterns that exist between the nodes through their 

connecting edges. Examples of edge-level tasks include link prediction, graph 

matching, and graph alignment. Link prediction aims to predict missing or future 

edges in a graph based on the existing connections. Graph matching involves finding 

https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Indegree
https://en.wikipedia.org/wiki/Indegree
https://en.wikipedia.org/wiki/Outdegree
https://en.wikipedia.org/wiki/Simple_graph
https://en.wikipedia.org/wiki/Degree_matrix
https://en.wikipedia.org/wiki/Adjacency_matrix
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correspondences between nodes in two or more graphs. Graph alignment aims to 

align or map nodes between different graphs based on their structural similarities 

[84, 85]. 

2.6.5. Graph applications 

Graphs can be used to model many types of relations and processes in physical, 

biological [86, 87], social and information systems [88]. Graphs can effectively depict 

numerous practical issues. By placing a strong focus on their relevance to real-life systems, 

the notion of a network can be defined as a graph where attributes (such as names) are 

linked to the vertices and edges. The field those studies and comprehends real-world 

systems as networks is known as network science. The following sections discuss several 

real-world applications of graphs: 

 Computer science: Graphs are used to model many problems and solutions in 

computer science, such as representing networks, web pages, and social media 

connections. Graph algorithms are used in path finding, data compression, and 

scheduling or it might be used in Artificial intelligence to model and analyse data in 

many AI applications, such as machine learning, Artificial Intelligence, and natural 

language processing [89]. 

 Citation networks as graphs: Scientists routinely cite other scientists’ work when 

publishing papers. We can visualize these networks of citations as a graph, where 

each paper is a node, and each directed edge is a citation between one paper and 

another. Additionally, we can add information about each paper into each node, such 

as a word embedding of the abstract. 

 Social science: Graph theory is also widely used in sociology as a way, for example, 

to explore rumour spreading, notably through the use of social network 

analysis software [90]. Under the umbrella of social networks are many different 

types of graphs [91]. 

 Mathematics: In mathematics, graphs are useful in geometry and certain parts of 

topology such as knot theory. Algebraic graph theory has close links with group 

theory. Algebraic graph theory has been applied to many areas including dynamic 

systems and complexity [90]. 

2.7. Graph Neural Networks 

2.7.1. Overview 

Graph Neural Networks are a subclass of Deep Learning techniques that are specifically 

built to do inference on graph-based data. They are applied to graphs and are capable of 

performing prediction tasks at the node, edge, and graph levels [92].  GNN is a neural 

network that is directly applied to graphs, giving a handy method for performing edge, 

node, and graph level prediction tasks. 

https://en.wikipedia.org/wiki/Sociology
https://en.wikipedia.org/wiki/Rumor_spread_in_social_network
https://en.wikipedia.org/wiki/Social_network_analysis
https://en.wikipedia.org/wiki/Social_network_analysis
https://en.wikipedia.org/wiki/Knot_theory
https://en.wikipedia.org/wiki/Algebraic_graph_theory
https://en.wikipedia.org/wiki/Group_theory
https://en.wikipedia.org/wiki/Group_theory
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2.7.2. GNNs architecture 

GNN architecture’s primary goal is to learn embedding that contains information about 

its neighbourhood. We may use this embedding to tackle a variety of issues, including node 

labelling, node and edge prediction, and so on [92]. 

Figure 2.8 shows the general architecture of a graph neural network where the input 

graph is fed into the hidden nodes to learn the representations of graph-structured data, 

and the output graph is generated from the learned graph-structured representations. It 

works by propagating information along the edges of a graph to update the node 

representations. In other words, the network iteratively aggregates the information from a 

node’s neighbouring nodes and uses this information to update its own representation. 

This process is repeated for multiple iterations until the nodes converge to a stable 

representation. 

 

 

2.7.3. GNNs types 

Graph neural networks are classified into three types [92] : 

 Recurrent Graph Neural Network: Consider as the most powerful GNN variant, 

also known as RecGNN 

 Spatial Convolutional Network: Spatial Convolutional Networks have a similar 

idea to CNNs. As is well known in CNN, convolution is performed by summing the 

neighbouring pixels around a central pixel using a filter and learnable weights. 

Spatial Convolutional Networks operate on a similar principle, aggregating the 

properties of neighbouring nodes toward the centre node. 

Figure 15 - Graph Neural Network architecture 
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 Spectral Convolutional Network: In comparison to other types of Graph Neural 

Networks, this sort of GNN is built on a solid mathematical foundation. It is based on 

the theory of Graph Signal Processing. It simplifies by the use of Chebyshev 

polynomial approximation. 

2.7.4. GNNs tasks 

According to [93] , Graph neural networks tasks can be described as follow: 

 Graph Classification: We use this to classify graphs into various categories. Its 

applications are social network analysis and text classification.  

 Node Classification: this task uses neighbouring node labels to predict missing 

node labels in a graph.  

 Link Prediction: predicts the link between a pair of nodes in a graph with an 

incomplete adjacency matrix. It is commonly used for social networks.  

 

Figure 16 - Graph Neural Networks tasks 

 

 Community Detection: Divides nodes into various clusters based on edge 

structure. It learns from edge weights and distance and graph objects similarly.  

 Graph Embedding: Maps graphs into vectors, preserving the relevant information 

on nodes, edges, and structure. 

 Graph Generation: Learns from sample graph distribution to generate a new but 

similar graph structure.  
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2.7.5. GNNs advantages and limitations 

 The main advantage of using graph neural networks is their ability to handle complex 

graph-structured data. Additionally, GNNs can be used for both supervised and 

unsupervised learning tasks, making them a versatile tool for many applications [92]. 

According to [92] graph neural networks have one limitation is that they can be 

computationally expensive, especially for large graphs. Additionally, GNNs can suffer from 

over fitting, especially when the graph structure is noisy or incomplete. Finally, the 

interpretability of GNNs can be a challenge, as it is often difficult to understand how the 

network arrives at its predictions. 

 

2.8. Graph Convolutional Networks 

2.8.1. Main ideas 

As the name “Convolutional” suggests, the idea was from Images and then brought to 

Graphs. However, when Images have a fixed structure, Graphs are much more complex. 

 

Figure 17 - Convolution idea from images to graphs 

2.8.2. Definition and principals 

Graph Convolutional Networks (GCNs) are a class of deep learning models designed to 

operate on graph-structured data. Unlike traditional neural networks that process grid-like 

data, GCNs extend neural network architectures to handle non-Euclidean domains 

represented by graphs or networks [94, 95], The core idea behind GCNs is to generalize the 

concept of convolutional layers from grid-like data (such as images) to graphs. In 

traditional convolutional neural networks (CNNs), convolutions operate on local 

neighbourhoods of pixels, exploiting the grid structure. In GCNs, convolutions are defined 

in the spectral or spatial domain of graphs, leveraging the connectivity patterns between 

nodes [94, 95] , GCNs typically operate in a message-passing framework, where each node 

receives and aggregates information from its neighbouring nodes. This aggregation process 
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is analogous to the receptive field in CNNs, allowing nodes to gather information from 

their local graph neighbourhood. The gathered information is then used to update the 

node's representation or features. By iteratively propagating and aggregating information 

across the graph, GCNs learn to capture the graph structure and perform node-level or 

graph-level predictions [94, 95] . 

 

 

2.8.3. GCN architecture 

As the Figure 18 [61] show an illustration of Graph convolutional networks we can 

consider that GCN is similar to the filter in convolution and denotes the definition of 

convolution from the regular grid to irregular structures like graphs [96]. The node 

embedding are updated as follows [97]: 

𝐻[𝑙+1] = δ ( 𝐷−1/2𝐴𝐷−1/2𝐻𝑙𝑤𝑙) 

Where 𝐻𝑙
 represent the embedding matrix of 𝑙 - 𝑡ℎ layer convolution, 𝑑 is the 

embedding dimension. A is the adjacency matrix with self-loops, and 𝐷𝑖𝑖 = ∑𝑗 𝐴𝑖𝑗 is the 

degree matrix. All these operations are making sure that all the neighbours are receiving 

an aggregated message from multiple hop neighbours. The weights 𝑊𝑙
  in the GCN are 

trained using gradient descent. 

GCNs are the simplified version of Graph Convolutional Neural Networks (GCNNs). A 

typical GCN consist of three steps  

1) Feature propagation,  

2) Linear transformation,  

3) Application of a non-linear activation function [98].  

Feature propagation is achieved using convolutional matrix computed from graph 

topology. For the linear transformation different parameters are learned to minimize a loss 

function and for that typical activation functions such as sigmoid or ReLU are used [97]. 

 

 Figure 18 - Illustration of Graph Convolutional Networks  
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Let’s explain the GCNs steps more deeply: 

Convolution and message passing (feature propagation): In the feature 

propagation step, GCNs aim to capture and propagate information across the graph 

by considering the features of neighbouring nodes. This is achieved by computing a 

weighted sum of the features of each node's neighbours and incorporating it into the 

node's own feature representation. The weights are typically determined based on the 

graph structure or learned through a training process. This aggregation of 

neighbouring features helps to capture the local context and dependencies in the 

graph [99]. 

As shown in the Figure 19 [100] , for each node, we get the feature information from 

all its neighbours and of course, the feature of itself. Assume we use the average () 

function. We will do the same for all the nodes. Finally, we feed these average values 

into a neural network. 

Note that the main idea of GCN. Consider the green node (see Figure 19). First, we 

take the average of all its neighbours, including itself. After that, the average value is 

passed through a neural network. Note that, in GCN, we simply use a fully connected 

layer. In this example, we get 2-dimension vectors as the output (2 nodes at the fully 

connected layer).  

Figure 19 - convolution method in GCN 
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An important note to consider is shown in Figure 20 [100]  that illustrates an 

example of 2-layer GCN: The output of the first layer is the input of the second layer. 

Again, note that the neural network in GCN is simply a fully connected layer. 

 Linear transformation: After the feature propagation step, a linear 

transformation is applied to the updated node features. This transformation aims to 

learn a more expressive and task-specific representation by mapping the aggregated 

features to a new feature space. The linear transformation is typically implemented as 

a matrix multiplication between the updated features and a learnable weight matrix. 

The weight matrix captures the relationships between the input features and the 

desired output [95]. 

 Application of a Non-linear Activation Function: To introduce non-

linearity and capture more complex patterns, an activation function is applied 

element-wise to the transformed features. This non-linear mapping allows the GCN 

to model non-linear relationships between features and enables the network to learn 

more expressive representations. Common activation functions include the rectified 

linear unit (ReLU), sigmoid, or hyperbolic tangent (tanh) [101]. 

2.8.4. GCN variations  

In the field of Graph Convolutional Networks (GCNs), there are several methods and 

variations that have been developed to enhance the performance and address specific 

challenges in graph-based learning tasks. In this section we will discuss some of them. 

 GraphSage. GraphSage (Graph Sample and Aggregated) is a scalable GCN method 

that performs inductive learning on large-scale graphs. It aggregates information 

from a node's local neighbourhood by sampling and aggregating features, allowing 

generalization to unseen nodes during inference [99]. 

 Graph Attention Network (GAT). GAT introduces an attention mechanism into 

GCNs, allowing nodes to assign different importance weights to their neighbours 

during the aggregation step. Attention mechanisms enable the network to focus on 

more relevant information, enhancing the representation learning process [102]. 

Figure 20 - GCN with two layers 
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 ChebNet. ChebNet utilizes Chebyshev polynomial filters to approximate the spectral 

filters in GCNs. This approach enables efficient graph convolution by avoiding the 

computationally expensive Eigen decomposition step, making it scalable for large 

graphs [103]. 

 Graph Isomorphism Network (GIN). GIN is a variant of GCN that operates by 

aggregating information from the neighbouring nodes and updating node features 

using a sum-aggregation function. It applies multiple graph isomorphism network 

layers to capture higher-order structural information in the graph [104]. 

These are just a few notables’ variants of GCNs. The field of graph representation learning 

is evolving rapidly, and new variants and improvements are continuously being developed. 

2.8.5. GCN types 

GCNs mainly include two categories: spectral-based GCNs and spatial-based GCNs 

[105] 

 Spectral-based GCNs. The first notable spectral-based graph convolutional 

network is proposed by Bruna et al [106], it operate in the spectral domain by 

leveraging the graph Laplacian eigen basis. They utilize the graph Fourier transform 

to transform the graph signals into the spectral domain, where convolutions are 

applied. The graph Laplacian Eigen basis captures the global structure of the graph. 

Spectral-based GCNs utilize the graph Laplacian eigenvalues and eigenvectors to 

define the graph convolution operation [103, 107]  

It can be defined as fellow: 

𝑌 =  ∑ 𝑈𝛬𝑘𝑈𝑇𝑋𝑊𝑘

𝐾

𝑘=0

 

Where: 

Y is the output feature matrix, 

X is the input feature matrix, 

W represents the trainable weight matrix for the k-th graph convolutional layer, 

U and Lambda denote the eigenvectors and eigenvalues of the graph Laplacian, 

respectively, 

K is the number of layers. 

 

 Spatial-based GCNs. Spatial-based GCNs, also known as neighbourhood 

aggregation or message-passing GCNs operate in the spatial domain by aggregating 

information from the local neighbourhood of each node. They propagate information 

through message passing between neighbouring nodes, which captures the local 

structure and relationships in the graph. Spatial-based GCNs update the node 

features by aggregating and transforming the features of neighbouring nodes [94, 99] 
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Its operation can be defined as fellow: 

 

𝑌 =  𝜎(𝐷−1𝐴𝑋𝑊) 

Where: 

Y is the output feature matrix, 

X is the input feature matrix, 

W represents the trainable weight matrix, 

A denotes the adjacency matrix of the graph, 

D is the degree matrix, which is a diagonal matrix with the node degrees as its diagonal 

entries, 

𝜎 Represents the activation function. 

2.8.6. An explanation example 

We will provide a simple example to explain how GCN works according to the steps 

mentioned earlier. 

Consider a social network graph where nodes represent individuals and edges represent 

their connections. Each node has associated features such as age, gender, and interests. 

The task at hand is to predict whether two individuals are likely to be friends based on 

their shared interests. 

Feature Propagation: During feature propagation, a GCN would aggregate the features 

of each node's neighbours to update its own feature representation. In the social network 

context, this could involve summing or averaging the features of a node's immediate 

friends to capture the common characteristics within their social circles. For instance, if 

Alice and Bob share similar interests and have several mutual friends, their features would 

be updated to reflect this shared information. 

Linear Transformation: After the feature propagation step, a linear transformation is 

applied to the updated node features. The linear transformation aims to learn a weighted 

combination of the features that is relevant for the prediction task. In our example, the 

weights would capture the importance of different features (e.g., age, gender, interests) in 

determining the likelihood of friendship. By applying this transformation, the GCN can 

extract more discriminative representations from the updated features. 

Application of a Non-linear Activation Function: To introduce non-linearity, an 

activation function is applied to the transformed features. This activation function can 

capture complex relationships and patterns within the data. For instance, it can model that 

individuals with similar interests and close ages are more likely to form friendships. By 

applying the activation function, the GCN can learn and represent these non-linear 

relationships, allowing for more accurate predictions. 
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By combining these steps, a GCN can effectively leverage the graph structure and the 

shared information between nodes to predict friendships in the social network. 

2.9. Conclusion 

In conclusion, this chapter provided an extensive overview of key concepts and 

techniques in graph analysis and neural networks. We began by introducing the 

fundamentals of graphs; Next, we delved into the field of machine learning, discussing the 

three main learning processes: supervised learning, unsupervised learning, and 

reinforcement learning. We emphasized the importance of artificial neural networks 

(ANNs) and their architecture, activation functions, and explain their types (FNNs, RNNs, 

CNNs, and finally GNNs) briefly, note that a major focus of this chapter was on graph 

neural networks (GNNs), which are specifically designed to handle graph-structured data.  

Furthermore, we introduced graph convolutional networks (GCNs), a type of GNN that 

utilizes graph convolution operations.  

Overall, this chapter serves as a solid foundation for the subsequent chapter of this 

thesis, as it has covered fundamental concepts in graph analysis and provided insights into 

the neural network architectures that are specifically designed for graph data. The 

knowledge gained here will be crucial for design and implement a session-based 

recommender system using GCNs in the following chapter. 
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3.1.   Introduction 

In this chapter, we will present our algorithm and its underlying principles for session-

based recommendation. We will then compare its performance with existing works in the 

field, specifically those using graph neural networks. Finally, we will discuss the results 

obtained from our experiments, providing insights into the strengths and limitations of our 

approach. 

3.2.   Presentation of our GCN-based Model 

3.2.1. Main idea 

Our model proceeds in three main phases: session presentation phase, GCN Model phase, 

and Recommendation phase. 

 

Figure 21 - Overview on GCN-Based SBRSs Model 

3.2.2. Session representation 

Each session sequence s can be modelled with the adjacency matrix as a directed graph 

G = (I ; E). In this session graph, each node represents an item i and each edge means that 

a user clicks item i1 after i2 in the session. 

3.2.3. GCN model 

It consists of an embedding layer, followed by two convolutional layers with ReLU 

activation functions. The key layers and operations in the model are: 

 Embedding Layer: The self-Embedding layer maps item indices to dense vectors of 

hidden dimensions. It learns meaningful representations for the items in the graph. 

 Convolutional Layers: The model has two convolutional layers: self.conv1 and 

self.conv2.These layers perform 1-dimensional convolutions on the input data. Each 

convolution is followed by a Rectified Linear Unit (ReLU) activation function, applied 

using F.relu. The convolutions help capture the local relationships and patterns in the 

data. 

 Message Aggregation: After the convolutions, the model performs message 

aggregation from neighbouring nodes. The adjacency matrix is multiplied with the 
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output of the convolutions using torch.matmul (adj, x). This operation combines 

information from connected nodes to enrich the representation of each item. 

 Mean Pooling: The model uses mean pooling to aggregate the messages from 

neighbors. The output of the message aggregation step is permuted, and then the 

mean is taken along the second dimension using x.mean (dim=1). This results in a 

single representation for each item in the graph. 

3.2.4. Recommendation step 

The SessionRec model combines the graph convolutional capabilities of the GCN model 

with a fully connected layer and log-SoftMax activation to generate recommendations. 

The fully connected layer: also known as the linear layer or dense layer is a 

fundamental component in neural networks. It performs a linear transformation on the 

input data, mapping it to a different dimensional space. 

In the context of the provided code, the fully connected layer self.fc takes the item 

representations generated by the GCN component as input. It applies a linear 

transformation to these representations, mapping them to the number of output items. 

The purpose of the fully connected layer is to learn and capture complex relationships 

between the input data and the desired output. It introduces non-linearity and helps the 

model make more complex predictions by combining and weighting the input features. 

Mathematically, the fully connected layer computes the following operation: 

                                                     Output = input * weights + bias 

Here, input represents the item representations from the GCN component, weights are 

learnable parameters that the model optimizes during training, and bias is an additional 

learnable parameter. The output of the fully connected layer is a tensor that undergoes 

further processing, such as activation functions, to produce the final predictions or 

features for subsequent layers. 

In summary, the fully connected layer adds flexibility and non-linearity to the model, 

allowing it to learn and capture complex patterns in the data. It plays a crucial role in 

transforming the intermediate representations from earlier layers into meaningful 

predictions or features. 

The softmax function: is applied after the fully connected layer in the provided 

code. Its role is to convert the output of the fully connected layer into a probability 

distribution over the different output classes. 

In the context of the recommendation system, the softmax function is used to 

determine the likelihood or probability of each item being the next recommended item. It 

assigns higher probabilities to items that are more likely to be relevant or preferred by the 

user based on the given input. 
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3.3. Implementation 

      The implementation was written in Python 3.x versions with Google-Collab IDE and 

it should work with any Python 3 version, such as Python 3.6, 3.7, 3.8, or 3.9. It utilizes 

several libraries for different functionalities. Here's an overview of the languages and 

libraries used in the implementation: 

3.3.1. Python. The entire code is written in Python, a popular 

programming language for data analysis and machine learning. 

 

Figure 22 - python logo 

Python is a high-level, interpreted programming language known for its simplicity and 

readability. It was created by Guido van Rossum and first released in 1991. Python 

emphasizes code readability and uses indentation as a key part of its syntax, making it easy 

to write and understand5. 

Key features of Python include: 

 Easy-to-read syntax: Python uses a clean and straightforward syntax, making it 

easier for beginners to learn and understand. It uses whitespace indentation to define 

code blocks, eliminating the need for braces or other delimiters. 

 Versatility: Python is a versatile language that can be used for various purposes, 

including web development, data analysis, machine learning, scientific computing, 

automation, and more. It has a large standard library and a vast ecosystem of third-

party packages that extend its capabilities. 

 Cross-platform compatibility: Python is available on multiple platforms, 

including Windows, macOS, Linux, and various other operating systems. This allows 

developers to write code once and run it on different platforms without significant 

modifications. 

 Large community and ecosystem: Python has a thriving and supportive 

community of developers worldwide. This community contributes to the development 

of libraries, frameworks, and tools that make Python suitable for a wide range of 

applications. Some popular libraries and frameworks in the Python ecosystem 

include NumPy, Pandas, Django, Flask, TensorFlow, and PyTorch. 

 Interpretation and scripting: Python is an interpreted language, meaning that 

code is executed line by line at runtime without the need for compilation. This allows 

                                                   
5 https://www.python.org/ 
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for rapid development and prototyping, as well as easy integration with other 

languages and systems. 

3.3.2. Libraries 

 PyTorch: It is a deep learning framework used for building and training neural 

networks. The code leverages PyTorch6 to define and train the session-based 

recommendation model. 

 Pandas: It is a data manipulation and analysis library. Pandas7 are used to load and 

preprocess the MovieLens 100k dataset, as well as perform various data operations 

such as sorting, grouping, and filtering. 

 Scikit-learn: It is a machine learning library that provides various tools for model 

selection and evaluation. In the code, scikit-learn8 is used to split the dataset into 

train and test sets using the train_test_split function. 

 NumPy: It is a fundamental library for numerical computing in Python. The code 

uses NumPy9 to create and manipulate arrays for storing the adjacency matrix and 

session lengths. 

     These are the main libraries used in the code snippet you provided. Make sure you have 

these libraries installed if you plan to run the code. You can typically install them using 

package managers like pip or conda. 

3.3.3. IDE Google Collab 

     Google Collab, short for Google Collaboratory, is a cloud-based development 

environment provided by Google. It allows users to write and execute Python code in a 

Jupiter Notebook-like interface directly on the cloud, without requiring any local 

installation. Collab provides free access to computational resources, including CPU, GPU, 

and even TPU (Tensor Processing Unit), enabling users to leverage the power of Google's 

infrastructure for their computational tasks10. 

3.3.4. Model implementation 

This is the main code representation of our model that we explained before: 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

  class GCN(nn.Module): 

    def __init__(self, num_items, hidden_dim): 

        super(GCN, self).__init__() 

        self.embeddings = nn.Embedding(num_items, hidden_dim) 

        self.conv1 = nn.Conv1d(hidden_dim, hidden_dim, kernel_size=2, padding=1) 

        self.conv2 = nn.Conv1d(hidden_dim, hidden_dim, kernel_size=2, padding=1) 

    def forward(self, adj, x): 

        x = self.embeddings(x) 

        # Permutes the dimensions of x to prepare it for the convolutional layers 

        x = x.permute(1, 2, 0) 

                                                   
6 https://pytorch.org/ 
7 https://pandas.pydata.org/docs/getting_started/install.html 
8 https://scikit-learn.org/stable/install.html 
9 https://numpy.org/install/ 
10 https://colab.research.google.com/?utm_source=scs-index 
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12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

        # message passing 

        x = self.conv1(x) 

        x = F.relu(x) 

        x = self.conv2(x) 

        x = F.relu(x) 

        # Permutes the dimensions of x back to the original 

        x = x.permute(2, 0, 1) 

        # Aggregate messages from neighbors 

        x = torch.matmul(adj, x) 

        x = x.permute(1, 0, 2) 

        x = x.mean(dim=1) 

        return x 

  class SessionRec(nn.Module): 

    def __init__(self, num_items, hidden_dim): 

        super(SessionRec, self).__init__() 

        self.gcn = GCN(num_items, hidden_dim) 

        self.fc = nn.Linear(hidden_dim, num_items) 

    def forward(self, adj, x): 

        x = self.gcn(adj, x) 

        x = self.fc(x) 

        x = F.log_softmax(x, dim=1) 

        return x 

 

Listing: implementation of GCN-SBRS Model 

 

3.4. Experiments and Analysis 

In this section, we first describe the datasets and compared methods, and evaluation 

metrics used in the experiments. Then, we compare our proposed model GCN-SBRS with 

other comparative methods. Finally, we make a detailed analysis of GCN-SBRS under 

different experimental settings. 

3.4.1. Datasets 

We evaluate the effectiveness of our model on three standard transaction datasets: 

MOVILENS, YOOCHOOSE and DIGINETICA, which are publicly accessible and vary in 

terms of domain, size, and sparsity.  

MOVILENS 1M: 

MovieLens 1 million (ML-1M)11 is one variant of the MovieLens dataset. It consists of 

approximately 1 million ratings given by 6,040 users to 3,706 movies. The ratings range 

from 1 to 5, with 5 being the highest rating. In addition to ratings, ML-1M also provides 

demographic information about the users, including age and occupation. The dataset is 

divided into three main files: ratings.dat (user-item ratings), users.dat (user information), 

and movies.dat (movie information). 

 

 

                                                   
11 https://grouplens.org/datasets/movielens/1m/ 
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MoviLens 100k: 

MovieLens 100K (ML-100K)12 is another popular variant of the MovieLens dataset. It is 

a smaller version compared to ML-1M and contains 100,000 ratings from 943 users on 

1,682 movies. Like ML-1M, the ratings in ML-100K range from 1 to 5. The dataset is also 

divided into three main files: u.data (user-item ratings), u.user (user information), and 

u.item (movie information). ML-100K has been widely used as a benchmark for evaluating 

recommender systems due to its manageable size. 

The MovieLens datasets can be obtained from the official MovieLens website or other 

platforms such as Kaggle and GitHub. 

Yoochoose1/64: 

      The Yoochoose13 dataset is a widely used e-commerce dataset that contains clickstream 

data from an online retail platform. It typically consists of user sessions, each containing a 

sequence of interactions (clicks) made by a user during their visit to the online store. 

      "Yoochoose1/64" refers to a specific fraction or subset of the original Yoochoose 

dataset; it might mean that it contains only a portion (1/64th) of the full dataset, possibly 

for the purpose of reducing the data size for experimentation or testing. 

3.4.2. Data processing 

 Sorting the dataset 

 The dataset is sorted based on two columns: 'user_id' and 'timestamp'. 

Sorting the dataset in this order ensures that the data for each user is grouped together 

and ordered by timestamp. 

 Handling missing values 

The 'prev_item_id' column is created by shifting the 'item_id' column for each user by 

one position. 

Rows with missing values (NaN) are dropped from the dataset using the dropna() 

function. 

 Limiting the dataset size 

The code limits the number of rows in the dataset to 15,000 by selecting the first 15,000 

rows. 

This step is useful for reducing the size of the dataset, which can be beneficial for faster 

execution or testing purposes. 

 Splitting the data into training and testing sets 

The train_test_split () function from scikit-learn is used to split the data into training 

and testing sets. 

                                                   
12 https://grouplens.org/datasets/movielens/100k/ 
13 https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015 
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The test_size=0.2 argument specifies that 20% of the data should be allocated for 

testing. 

The random_state=42 argument fixes the random seed for reproducibility. 

 Mapping item IDs to indices 

Unique item IDs from both the training and testing data are obtained. 

The np.union1d () function is used to find the union of the unique item IDs. 

Item IDs are mapped to indices using a dictionary comprehension. 

The 'item_idx' column is created in both the training and testing data by mapping the 

'item_id' column to the corresponding item index. 

 Conversion to PyTorch tensors 

The data is converted to PyTorch tensors using the torch.LongTensor () function. 

The 'item_idx' values are used as inputs, and the last 'item_idx' value is used as the 

target for each sequence. 

 

3.4.3. Session Construction 

We apply the same conditions to construct the sessions (min_sessions_lenght =3, 

max_sessions_lenght= 10 with time_threshold = 1hour).We summarizes the statistics of 

these datasets in Table1: 

Table 3 - Datasets basic information 

 

3.4.4. Training & Testing 

 Hyper parameters 

At this part we used the hyper parameters that were explored and optimized after 

using the grid search algorithm include the hidden dimension size (hidden_dim), 

learning rate (lr), and the number of epochs (num_epochs). These hyper parameters 

have a significant impact on the model's ability to capture complex patterns in the 

session data and make accurate predictions.  

 Loss function 

The NLLLoss (Negative Log Likelihood Loss) is a commonly used loss function in 

classification tasks. It measures the negative log likelihood of the predicted 

Dataset Rows Train Sessions Test Sessions Avr-L 

MovieLens 100k 

MovieLens 1M 

Yoochoose1/64 

99057 

994169 

371160 

6530 

99360 

15919 

1970 

26530 

2785 

4.50 

4.29 

4.62 
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probabilities for the correct class. It assumes that the model's output follows a 

softmax distribution, which converts the raw scores into probabilities that sum up to 

1. The loss is calculated as the negative logarithm of the predicted probability 

assigned to the true class label. 

Mathematically, for a single sample, the NLLLoss is calculated as follows: 

NLLLoss =  −log (P (correct_class)) 

Where: 

P (correct_class) is the predicted probability assigned to the correct class by the 

softmax activation function. 

The NLLLoss is commonly used as the loss function in the final layer of a neural 

network model for classification tasks. During training, the model aims to minimize 

this loss by adjusting its parameters to improve the probability assigned to the correct 

class and reduce the likelihood of misclassification. 

 Optimizer 

The Adam optimizer is an optimization algorithm commonly used for training neural 

networks. It is an extension of the stochastic gradient descent (SGD) algorithm that 

combines the benefits of adaptive learning rates and momentum. 

The key idea behind the Adam optimizer is to adaptively adjust the learning rate for 

each parameter based on the estimated first and second moments of the gradients. 

This adaptive learning rate helps the optimizer converge faster and handle different 

types of parameters with varying magnitudes. Additionally, Adam incorporates the 

concept of momentum, which helps accelerate the learning process by accumulating 

the previous gradients. 

  Results 

This is the result we obtained after applying the same Hyper parameters and loss 

function and optimizer on the four datasets: 

Table 4 – the accuracy results 

Dataset  
Train 

Accuracy/Loss 
 Test Accuracy/Loss time 

MovieLens 100k  0.7643/1.4574  0.7197/2.0935 2h 

MovieLens 1M  0.6766/2.5720  0.8292 /1.4095 12h 

Yoochoose1/64   0.6001/1.4984  0.1116/4.2414 3h 
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Figure 23 - MovieLens 100k train accuracy and train loss 

 

 

Figure 24 - MovieLens 1 million train accuracy and train loss 

3.5. Evaluation Metrics 

In our experiments, we use the following two widely-used evaluation protocols: 

Recall@K and MRR@K. By default, we set K=20. 
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 Recall@20: Recall@K represents the proportion of test cases which has the 

correctly recommended items in a top K position in a ranking list. In this paper, 

Recall@20 is used for all the tests, defined as: 

 
 

Where N denotes the number of test data in the Session-based Recommender 

systems, nhit denotes the number of cases which have the desired items in top K ranking 

lists, a hit occurs when t appears in the top K position of the ranking list of |I| 

 MRR@20: The correct ranking of search results values in search results to 

evaluate the performance of the search system. The reciprocal rank is set to zero 

if the rank is above 20. 

  

Where rank (it) is for the t -th item. The MRR is a normalized score of range [0, 1], an 

increase in its value reflects that the majority will appear higher in the ranking order of the 

recommendation list, which indicates a better performance of the corresponding 

recommender system. 

3.5.1. Baseline 

 POP: This baseline model recommends the top-N ranked items based on their 

popularity in the training data. It serves as a straightforward and robust baseline, 

especially in specific domains. 

 S-POP: A variation of the baseline model that recommends the top-N most frequent 

items in both the entire training set and the current session. 

 Item-KNN: This traditional item-to-item model suggests items similar to the ones 

already present in the user's history by calculating cosine similarity between 

candidate item A and existing item B. 

 GRU4Rec [reference of the model]: Utilizing recurrent neural networks, GRU4Rec is 

designed for session-based recommendations. It adopts a session-parallel mini-batch 

training process and employs ranking-based loss functions during training. 

 SR-GNN [reference of the model]: In this model, separate session sequences are 

aggregated into a graph structure, and Graph Neural Networks (GNNs) are applied to 

generate latent item vectors. Each session is then represented using a traditional 

attention network. 
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 GACOforRec [29]: Built upon GCNs, this algorithm accounts for user preferences in 

the application scenario. By incorporating Convolutional LSTM (ConvLSTM) and 

Orthogonal LSTM (ON-LSTM), it handles long-term and stable user preferences 

while preserving preference hierarchy. 

 AUTOMATE: Keyed on the ARMAConv layer, AUTOMATE combines long-term 

preferences with current session interests to obtain graph transfer signals, resulting 

in personalized recommendations. 

 In this table we compare of different obfuscations in terms of their transformation 

capabilities: 

Table 5 Comparison of metrics between different architectures 

Model 
Class 

Methods MovieLens 1M Yooshoose1/64 MovieLens 100k 

Recall@20 MRR Recall@20 MRR@20 Recall@20 MRR@20 

Standard 

Baseline 

POP 

S-POP 

0.0646 

0.0634 

0.0133 

0.0132 

0.0671 

0.3044 

0.001 

0.002 

0.1034 

0.0776 

0.0209 

0.0166 

Traditional Item-KNN 0.0016 0.0014 0.5660 0.003 0.0045 0.0033 

Neural 

Networks 

GRU4Rec 

SR-GNN 

GACOforRec 

AUTOMATE 

/ 

/ 

/ 

/ 

0.3041 

0.3683 

/ 

/ 

0.6064 

0.7003 

0.6879 

0.7015 

0.2289 

0.3008 

0.2938 

0.3072 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

Our Model GCN-SBRS 0.34 0.48 0.5154 0.1396 0.44 0.19 

 

As it shown in this table that our model performs very well with both MovieLens Datasets 

but with yoochoose gave as bad results and that because the differences between the two 

datasets MovieLens and Yoochoose: 

Data Distribution: The MovieLens and Yoochoose datasets likely have different data 

distributions. These differences could affect how well our model generalizes from one 

dataset to another. Models trained on one dataset may not perform as well on a different 

dataset if the underlying data patterns are dissimilar. 

Feature Engineering: The features (attributes) in the two datasets may have distinct 

characteristics. Our model might be well-suited to capturing the patterns present in the 

features of the MovieLens dataset but struggle to do so with the features in the Yoochoose 

dataset. 

We aim to ameliorate these results in near future. 
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 Result of the dataset MovieLens 100K  

 

Figure 25 - Comparison of MRR@20 for different  

Recommender Models 

 

Figure 26 - Comparison of Recall@20 for Different  

Recommender Models 
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 Result of the dataset MovieLens 1 million 

 

       Figure 27 - Comparison of MRR for different  

       Recommender model 

 

 

          Figure 28 - Comparison of Recall@20 for different recommender models 

3.6. Conclusion 

In this chapter, we have discussed the underlying principle of our algorithm named 

GCN-SBRS, and provided an overview of its functionality. We then proceeded to present 

various experimental scenarios that were carefully designed to evaluate the performance of 

our algorithm. Finally, we thoroughly discussed the results obtained from these 

experiments, and we are pleased to report that they were highly satisfactory. 
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A. Summary  

In this thesis, the focus was on exploring the application of Graph Convolutional Networks 

(GCN) in Session-based Recommender Systems (SBRS). The research was conducted in 

three chapters. In Chapter 1, we introduced the concept of session-based recommender 

systems. Chapter 2 provided an in-depth understanding of Graph Convolutional Networks, 

showcasing their ability to capture graph-structured data. Lastly, in Chapter 3, we 

presented the design and implementation of an SBRS utilizing GCN, demonstrating its 

effectiveness in generating accurate and personalized recommendations based on users' 

session history. 

The findings of this research highlight the potential of GCN in improving the performance 

of session-based recommender systems. By leveraging GCN, the SBRS was able to provide 

more accurate and personalized recommendations to users. The thesis contributes to the 

understanding of session-based recommender systems and demonstrates the applicability 

and effectiveness of GCN in this context. 

B. Direction for future research 

While this study has made a contribution to the field of session-based recommender 

systems using GCN, there are several avenues for future research: 

Dataset Understanding: Thoroughly understand the differences between MovieLens 

and Yoochoose datasets with various appropriate metrics. Analyse their characteristics, 

feature distributions, and temporal aspects to identify potential sources of performance 

discrepancy. After that we will apply it on other datasets such as Diginetica… 

Graph Convolutional Network Variants: Explore and compare various GCN variants 

(GraphSAGE, HyperGCN, …) or advanced graph neural network architectures to examine 

their suitability and effectiveness in session-based recommender systems. This includes 

investigating methods for handling the sparsity and scalability challenges often 

encountered in large-scale recommendation scenarios. 

Hybrid Recommender Systems: Investigate the integration of GCN-based session-

based recommender systems with other recommendation approaches, such as 

collaborative filtering or content-based methods. This hybrid approach may leverage the 

strengths of different algorithms to provide more accurate and diverse recommendations 

to users. 

Real-world Deployment and Evaluation: Conduct extensive evaluations of the 

developed SBRS using GCN in real-world scenarios, considering factors such as scalability, 

robustness, and user satisfaction. Additionally, perform comparative studies with other 

state-of-the-art session-based recommendation algorithms to establish benchmarks and 

further validate the effectiveness of GCN-based approaches. 

By exploring these research directions, future studies can contribute to the advancement 

and practical implementation of session-based recommender systems using GCN, 

ultimately enhancing the user experience and providing valuable recommendations in 

various domains and applications. 
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