

 REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE
 MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

 UNIVERSITE IBN KHALDOUN - TIARET

MEMOIRE

Présenté à :

FACULTÉ DES MATHEMATIQUES ET DE l’INFORMATIQUE

 DÉPARTEMENT D’INFORMATIQUE

Pour l’obtention du diplôme de Master

Spécialité : Génie Logiciel

En vue de créer une startup

Par :

TOUHAMI Hadil

YAHIAOUI Somia

Sur le thème

Soutenu publiquement le 11 / 07 / 2023 à Tiaret devant le jury composé de :

Mr. KOUADRIA Abderrahmane MCB Université de Tiaret Président

Mr. BOUDAA Boudjemaa MCA Université de Tiaret Encadrant

Mr. BERBER EL-Mehdi MAA Université de Tiaret Examinateur

Mme. SADJI Fatima

Mr. REKHIES Mohamed

Pr

Université de Tiaret

ANEM de Tiaret

Représentant de l’incubateur

Repésentant du partenaire

socio-économique

2022-2023

 Session-based Recommendation Systems

 with Graph ATtention Networks

KHADAMNI.DZ

Acknowledgments

i

First and foremost, we express our deepest gratitude to Allah, the Almighty, for guiding

us throughout this research journey and granting us the strength and perseverance to

complete this thesis.

We would like to extend our sincere appreciation to our supervisor, BOUDAA

Boudjemaa, for their invaluable guidance, continuous support, and constructive

feedback. Their expertise and dedication played a vital role in shaping this work.

We are also indebted to our parents, sisters, brothers, and extended family members

for their unwavering love, encouragement, and belief in our abilities. Their constant

encouragement and sacrifices have been instrumental in our academic pursuits.

Furthermore, we would like to express our heartfelt gratitude to our friends, whose

unwavering support and encouragement have been a constant source of motivation.

Their presence during both the challenging and joyous moments has made this journey

more meaningful and enjoyable.

We extend our gratitude to all individuals, whether directly or indirectly involved, who

have contributed to our research. Their assistance, whether in the form of discussions,

interviews, or provision of resources, has greatly enriched this work.

Lastly, we acknowledge the efforts of all the researchers, scholars, and pioneers in our

field of study, whose previous work has served as a foundation and inspiration for our

own.

We are deeply grateful to all the mentioned individuals for their invaluable

contributions and support. However, any omissions of names are unintentional, and we

appreciate the understanding of those who may not be mentioned explicitly.

Thank you all for being an integral part of our journey and for shaping us into the

individuals we have become today.

 Acknowledgments

 ACKNOWLEDGMENTS

 ACKNOWLEDGMENTS

 ACKNOWLEDGMENTS

 ACKNOWLEDGMENTS

 ACKNOWLEDGMENTS

 ACKNOWLEDGMENTS

 ACKNOWLEDGMENTS

 ACKNOWLEDGMENTS

 ACKNOWLEDGMENTS

Dedication

ii

Dedication

To our loving parents Mohamed, Fatima, Ayachi and Fatma (Tamtam),

supportive siblings Abedselam, Oussama, Habib, Djihad, Kadirou, Sara, Hadjer and

Tasnim,

dear friends Widad, Sabrine, and cherished family,

This thesis is dedicated to each and every one of you. Your unwavering love,

encouragement, and belief in us have been instrumental in our academic journey. Your

presence, guidance, and support have shaped our accomplishments and inspired us to

reach new heights.

Thank you for being our constant source of strength, for celebrating our successes, and

for standing by us during challenging times. This thesis is a testament to the profound

impact you have had on our lives.

With heartfelt gratitude and sincere thanks

 TOUHAMI Hadil & YAHIAOUI Somia

Dedication

 ACKNOWLEDGMENTS

 ACKNOWLEDGMENTS

 ACKNOWLEDGMENTS

 ACKNOWLEDGMENTS

 ACKNOWLEDGMENTS

 ACKNOWLEDGMENTS

 ACKNOWLEDGMENTS

 ACKNOWLEDGMENTS

 ACKNOWLEDGMENTS

 ACKNOWLEDGMENTS

Table of contents

i

Contents

General introduction ... ii

1. Background .. ii

2. Problem Statement ... iii

3. Delimitation.. iii

4. Approach .. iv

5. Outline .. iv

Chapter 1 : Session-Based Recommendation Systems .. 2

1.1 Introduction ... 2

1.2 Recommendation Systems .. 2

1.3 User Feedback .. 3

1.3.1 Explicit Feedback .. 3

1.3.2 Implicit Feedback .. 3

1.3.3 Hybrid Feedback ... 3

1.4 Recommendation tasks ... 4

1.5 Types of Recommendation Systems ... 4

1.5.1 Content-based Filtering .. 4

1.5.2 Collaborative filtering .. 5

1.5.3 Hybrid Filtering .. 6

1.6 Challenges and Limitations ... 7

1.7 Sequence-Aware Recommender Systems .. 8

1.7.1 Inputs ... 9

1.7.2 Outputs .. 9

1.7.3 Computational Tasks ... 9

1.8 Session-Based Recommendation Systems .. 10

 1.8.1 Categorization.. 11

 1.8.2 Approaches .. 12

 1.8.2.1 Model-Free Approaches ... 12

 1.8.2.2 Model-based Approaches ... 13

Table of contents

TABLE OF CONTENTS

TABLE OF CONTENTS

TABLE OF CONTENTS

TABLE OF CONTENTS

TABLE OF CONTENTS

TABLE OF CONTENTS

TABLE OF CONTENTS

TABLE OF CONTENTS

TABLE OF CONTENTS

ii

 1.8.3 Challenges and Limitations of SBRS .. 14

1.9 Conclusion... 15

Chapter 2 : Graph ATtention Networks .. 17

2.1 Introduction .. 17

2.2 Artificial Intelligence ... 17

2.3 Machine learning .. 17

2.3.1 Data representations ... 17

2.3.2 Types of machine learning ... 18

2.4 Deep Learning and Neural Networks ... 20

2.4.1 Training Neural Networks .. 21

2.4.2 Back Propagation and Gradient Descent .. 22

2.4.3 Activation Function ... 23

2.4.4 Loss Function ... 28

2.4.4.1 Loss Functions for Regression .. 28

2.4.4.2 Loss Functions for Classification .. 29

2.4.4.3 Loss Functions for Reconstruction .. 29

2.5 Deep Learning challenges .. 29

2.5.1 Testing, Validating and Overfitting ... 29

2.5.2 Hyperparameters .. 30

2.6 Graph Neural Networks .. 30

2.6.1 Main Concepts ... 31

2.6.1.1 Non-Euclidean space data .. 31

2.6.1.2 Graph neighborhood ... 31

2.6.1.3 Permutation equivariance and invariance ... 32

2.6.1.4 Neural message passing .. 32

2.6.2 Types of Graph Neural Networks .. 33

2.7 Graph ATtention Networks .. 33

2.7.1 Architecture of Graph ATtention Networks ... 34

2.7.2 Graph ATtention Networks advantages ... 35

2.7.3 Comparison of GAT and different GNN’s architectures ... 36

2.8 Conclusion .. 36

Chapter 3 : Graph ATtention Networks for the development of session-based recommendation systems 38

3.1 Introduction .. 38

3.2 Deep learning-based recommendations .. 38

3.4 Material environment .. 41

3.5 Development tools and Libraries ... 41

TABLE OF CONTENTS

iii

1.5.1 Jupyter .. 41

3.5.2 Python .. 41

3.5.3 PyTorch .. 42

3.5.4 Numpy .. 42

3.5.5 Scikit-learn ... 43

3.6 Experiments and implementations ... 43

3.6.1 Evaluation metrics .. 43

3.6.2 Datasets .. 44

3.6.3 Loss functions .. 45

3.6.4 Implementation .. 46

3.7 Results .. 49

3.7.1 Comparison with Baselines .. 49

3.7.2 Discussion .. 52

3.8 Conclusion .. 53

4. General conclusion ... 55

A. Summary .. 55

B. Directions for future research ... 55

5. Prototype .. 58

6. Appendix .. 62

Bibliography .. 65

Abstract

i

Recommender systems give users beneficial product or service recommendations for their decision-

making processes. Today, a variety of application domains such as YouTube, Amazon, Facebook,

and ResearchGate have proven the validity of classic recommendation systems that employ

collaborative and content-based filtering techniques. Session-based recommender systems, a novel

RS paradigm, have evolved in recent years in order to give timelier and more accurate next-item

recommendations that are responsive to being adjusted in various session circumstances. SBRSS

strives to record dynamic and short-term user preferences within sessions. The literature only includes

a few models with poor precision and efficacy as proposed development methodologies for SBRS

models, which are this type of system's primary objectives. The goal of this thesis is to explicitly

provide a new deep learning design for session-based recommender systems based on graph neural

networks (GNNs) via the intriguing architecture of graph attention networks (GAT). Currently, gat-

based methodologies are among the most cutting-edge techniques used in many research fields, and

SBRs can take advantage of them to greatly research fields, and SBRs can take advantage of them to

greatly enhance the outcomes of their suggestions.

Keywords: recommender systems, session-based recommender system, graph neural network, graph

attention network.

Résumé

Les systèmes de recommandation donnent aux utilisateurs des recommandations de produits ou de

services bénéfiques pour leurs processus de prise de décision. Aujourd’hui, une variété de domaines

d’applications tels que YouTube, Amazon, Facebook et ResearchGate ont prouvé la validité des

systèmes de recommandation classiques qui utilisent des techniques de filtration collaboratives et

basées sur le contenu. Les systèmes de recommandation basés sur la session, un nouveau paradigme

RS, ont évolué au cours des dernières années afin de fournir des recommandations plus ponctuelles

et plus précises qui répondent à des ajustements dans diverses circonstances de la session. SBRSS

s’efforce d’enregistrer les préférences d’utilisateur dynamiques et à court terme au sein des sessions.

La littérature ne comprend que quelques modèles de faible précision et efficacité en tant que

méthodologies de développement proposées pour les Modèles SBRS, qui sont les objectifs principaux

de ce type de système. L'objectif de cette thèse est de fournir explicitement une nouvelle conception

d'apprentissage profond pour les systèmes de recommandation basés sur la session basée sur les

réseaux neuronaux graphiques (GNNs) via l'architecture intrigante des réseaux d'attention graphique

(GAT). Actuellement, les méthodologies basées sur le trou sont parmi les techniques les plus

avancées utilisées dans de nombreux domaines de recherche, et les SBR peuvent en tirer profit dans

des domaines très recherchés, et ils peuvent en profiter pour améliorer considérablement les résultats

de leurs suggestions.

Mots clés : système de recommandation, système de recommandation basé sur la session, réseaux

neuronaux graphiques, réseau d'attention graphique.

Abstract

List of figures

ii

Figure 1 : Example of recommendation system ... 3

Figure 2 : Example of content-based filtering .. 5

Figure 3 : Example of collaborative filtering ... 6

Figure 4 : Example of hybrid filtering .. 7

Figure 5 : Overview of sequence-Aware recommendation problem ... 9

Figure 6 : An example of an e-commerce website using SBRS ... 10

Figure 7 : The classification of SBRS's approaches ... 12

Figure 8 : Types of Machine Learning ... 20

Figure 9: The relationship between AI, ML and DL .. 20

Figure 10: Artificial neural network architecture .. 21

Figure 11: The learning process of deep learning .. 22

Figure 12: Gradient descent ... 23

Figure 13: Activation function use in neural networks .. 24

Figure 14: Binary step function .. 24

Figure 15: Linear activation function ... 25

Figure 16: Sigmoid activation function graph .. 26

Figure 17: TanH activation function graph .. 26

Figure 18: ReLU activation function graph.. 27

Figure 19: Leaky ReLU activation function graph ... 27

Figure 20: Softmax activation function graph .. 28

Figure 21: 1hop and 2hop neighborhoods of a given target node A. .. 32

Figure 22: Neural message passing of target node A .. 33

Figure 23: Functioning process of GAT based-model for SBRS ... 40

Figure 24: Jupyter logo... 41

Figure 25: Python programming language logo ... 42

Figure 26: PyTorch logo... 42

Figure 27: Numpy logo .. 43

Figure 28: Scikit-learn logo .. 43

Figure 29: Import necessary libraries ... 46

Figure 30: Preprocessing the data .. 46

Figure 31: Split the dataset ... 47

Figure 32: Mapping the Item IDs to indices ... 47

Figure 33: Filtering any out of range indices ... 47

Figure 34: Construct sessions for training and testing data .. 47

Figure 35: Create the dynamic train graph ... 48

Figure 36: Model performance comparison with RETAILROCKET dataset using precision metric.............. 50

Figure 37: Model performance comparison RETAILROCKET dataset using recall metric 51

Figure 38: Model performance comparison YOOCHOOSE dataset using F1-score metric 51

Figure 39: Home page of the job recommendation website ... 58

Figure 40 :Exploring the Dual Pathways Registration and Anonymity in Website Interaction 59

Figure 41: Job postings... 59

Figure 42: Job recommendation ... 60

List of figures

List of tables

i

Table 1 : Comparison between SBRS and other RSs ... 11

Table 2 : Comparisons between Different Technical Approaches for Session-based Recommendations 25

Table 3: Comparison of GAT and different GNNs ... 39

Table 4: Characteristics of the datasets ... 44

Table 5: The results of the proposed GAT-based SBRS model .. 48

Table 6: Comparison of GAT-based SBRS model baselines ... 49

ACRONYMS

ii

 RS Recommender Systems

 SBRS Session-Based Recommendation Systems

 GNN Graph Neural Networks

 GAT Graph ATtention Networks

 CBF Collaborative Filtering

 ML Machine Learning

 DL Deep Learning

 SARS Session-Aware Recommendation Systems

 Acronyms

General introduction

i

 General

 Introduction

General introduction

ii

 General introduction

1. Background

Since the first articles on collaborative filtering appeared in the middle of the 1990s, recommender

systems have gained importance as a study area [1]. The distinctive features of recommender systems

have undergone extensive development over the past few decades in both industry and academia.

There are several pertinent apps that can assist users in managing information overload and offer

them individualized recommendations, content, and services, but there are still a lot of unanswered

questions in this field of study. We now routinely receive different types of automated

recommendations when using the internet. Currently, numerous application areas, including e-

commerce and video streaming, use these platforms.

The matrix completeness problem formulation, where a user-item rating matrix is given and the goal

is to forecast the missing values, has historically functioned as a standard framework for scholarly

research in the area. The training of machine learning models that aim to capture longer-term user

preference profiles is generally well suited to this abstraction. Sequence-aware recommender

systems, on the other hand, use additional methods to execute recommendations that take into

consideration users' near-term actions and intentions. They are also designed to benefit from the rich

data that is contained in the sequentially organized user interaction logs that are typically seen in real-

world applications.

Recommender systems are critical in many application scenarios where short-term user interests and

longer-term sequential patterns are vital to their success. Session-based recommender systems are a

typical example, where there is no longer-term user history available and the recommendations must

be adapted based on the assumed short-term interests of an anonymous user. The primary goal in such

scenarios is to recommend objects that match a given sequence of user actions.

Since the 1990s, a lot of research has focused on session-based recommender systems, which have

also been referred to as next-item, next-basket, pattern-based, rule-based, sequence-based, and

transaction-based recommender systems [2].

The pertinent works on session-based recommender systems are divided into two distinct stages: the

model-free stage from the late 1990s to the early 2010s, and the model-based stage from the early

2010s to the present. To drive the model-free stage, data mining techniques such as pattern mining,

association rule discovery, and sequence mining were developed. Research on recommendations

based on patterns, rules, and sequences eventually took control graph-based machine learning

techniques, particularly graph neural network (GNN) models. Model-based recommender systems

have advanced to new heights since 2017 as a result of the recent explosive expansion of GNNs.

Researchers have just started working in this area and have developed a variety of GNN-based models

for next-item and shopping cart predictions.

General introduction

iii

Due to its outstanding performance over the past few decades in numerous application areas,

including computer vision and speech recognition, deep learning is currently the subject of a lot of

excitement. Academics and business are vying to incorporate deep learning into a wider range of

applications due to its capacity to handle numerous complicated problems.

Recent developments in deep learning have changed recommendation architectures and expanded

opportunities for increasing recommender system performance [3]. Graph neural networks (GNNs),

which have been proved to be particularly good at processing data that is graph-structured, are the

foundation for the majority of current deep learning models. Due to their capacity to record intricate

patterns in user-element interactions and their capacity for generalization, GNs have consequently

drawn considerable interest in session-based recommender systems. The effectiveness of session-

based recommender systems could be greatly increased by GNNs. The interpretability of the

recommendations has also been improved by the addition of a GNNS attention mechanism.

2. Problem Statement

Session-based recommendation systems (SBRS) have grown in popularity in recent years as

businesses attempt to provide customized recommendations to users based on their interactions with

items in the short term.

Traditional SBRS methods, on the other hand, frequently rely on basic models that fail to capture the

complicated and dynamic patterns of user behavior that emerge within individual sessions, resulting

in poor suggestions.

To solve this problem, this thesis proposes a Graph Attention Network (GAT) model for SBRS that

is capable of capturing the complex interactions between items within a session and creating correct

and appropriate recommendations for users. This effort is guided by a central research question:

“"How can a Graph Attention Network (GAT) model be effectively utilized in session-

based recommendation systems to capture the intricate and dynamic patterns of user

 behavior within individual sessions, leading to improved and personalized

recommendations?"

By addressing this issue, this study intends to investigate the potential of GAT models for boosting

SBRS performance and promoting user happiness across a variety of sectors, including e-

commerce, news, and entertainment.

3. Delimitation

This thesis is limited to the examination of item-item and item-session interactions and focuses on

session-based recommendation systems employing the GAT model. The effectiveness of the GAT

model will be assessed using a publicly accessible dataset, and the study will not take into account

how external variables like user demographics, temporal dynamics, or contextual information may

affect the quality of the recommendations. Additionally, this study excludes other domains like news

General introduction

iv

and music in favor of evaluating the GAT model's performance just n the e-commerce domain. This

thesis intends to provide a clear and focused study of the GAT-based SBRS model's performance on

a specific dataset and in a specific domain by outlining these constraints. noting the need for

additional research in many fields and under various experimental setups as well as the potential

influence of other factors.

4. Approach

In order to establish a session-based recommendation system using graph neural networks (GNNs),

specifically the Graph Attention Network (GAT) model, The main problem of the research is the need

for a system that can produce personalized recommendations based on user experiences while

utilizing the wide range of information found in the session graph.

Each item clicked during a browser session is treated as a node in the session graph, which depicts

the user's sequential interactions. The GAT model will be used to capture the intricate dependencies

and relationships between these nodes, allowing the system to provide recommendations that are

aware of their context.

All in all, it is expected to offer a strong framework for comprehending user preferences, recognizing

similar items, and making precise recommendations by customizing the GAT model to fit the session-

based recommendation requirement.

5. Outline

This thesis is structured in three chapters besides a general introduction and a general conclusion:

 Introduction: initiation to recommender systems and the background, problem

statement, delimitations of the thesis and the approach.
 Chapter 1: Session-Based Recommendation Systems

A theoretical introduction to recommender systems and their families, all for the

purpose of giving a basic foundation and a comprehensive view of session-based

recommender systems.

 Chapter 2: Graph ATtention Networks

Essential context and background knowledge around artificial intelligence, machine learning,

and deep learning. This chapter gives a familiarization with the fundamental concepts

necessary to approach deep learning, GNNs and GATs.

 Chapter 3: Graph ATtention Networks for the development of Session-based

recommendations systems

Takes an in-depth dive into practical application of graph attention networks in the making of

a session-based recommendation systems. The evaluation metrics used for the experiment are

first presented, then datasets and baselines used. At last, the baselines results are compared to

the proposed GAT-based SBRS model with a discussion of the obtained results.

 Conclusion: Based on the results and the discussion in the previous chapter, this last part

relates to the research questions and draws a summary of this work. Finally, suggestions for

potential future work are discussed.

Chapter 1 : Session-Based Recommendation Systems

i

Chapter1.

 Session-based

 recommendation systems

Chapter 1: Session-Based Recommendation Systems

2

Chapter 1 : Session-Based Recommendation Systems

1.1 Introduction

Recommendation systems have become essential tools for assisting users in navigating the vast array

of services and products accessible in the era of many options and overwhelming of information.

These systems aim to offer recommendations that are tailored to each user's interests , leading to more

informed decision-making.

The efficacy of conventional recommendation systems is undeniable, yet they frequently fail to

capture the changing nature of user preferences. They ignore a user's short-term transactional

behaviors and potential preference changes over time, focusing instead on their long-term,

unchanging preferences. This constraint necessitates a novel strategy that considers the temporal

component of user behavior.

Session-based recommendation systems are useful in this situation. In recent years, session-based

recommender systems have drawn a lot of attention since they provide a relatively new paradigm for

recommendation since they provide a relatively new paradigm for recommendation. By taking into

account the context of a user's current session or visit and including short-term transactional patterns,

these systems go beyond static preferences.

In this chapter, we will delve into the world of session-based recommender systems, offering a

comprehensive and systematic overview of this emerging recommendation approach. We will explore

the key concepts and techniques employed in session-based recommendation systems, shedding light

on how they address the limitations of traditional recommendation systems.

1.2 Recommendation Systems

A recommender system, usually referred to as a recommendation system, is a method of making

decisions that is intended to help users in complicated information settings, especially in the context

of E-commerce [4].

It acts as a tool that facilitates users' effective searching through a vast amount of knowledge tailored

to their preferences and areas of interest [5]. The system leverages recommendations from others to

augment the decision-making process when users lack personal knowledge or experience with the

available alternatives [6]. By offering individualized and unique recommendations for content and

services, it tackles the issue of information overload [7].

In essence, a recommender system makes use of artificial intelligence algorithms and techniques to

analyze user data, such as past purchases, search histories, demographic data, and more, in order to

suggest or recommend more products, information, or services that are most relevant to a specific

user [8]. It serves as a tactical tool that helps users identify pertinent information, improves decision-

making by incorporating social recommendations, and reduces information overload by providing

tailored and specialized recommendations.

Chapter 1 : Session-Based Recommendation systems

3

Figure 1 : Example of recommendation system

1.3 User Feedback

It is important to define the concept of user feedback, which is a key concept of recommendation.

When users perform actions over items on a platform (e.g., an e-commerce site, a movie review

system , a video blogging platform , and so on) , they provide implicit, explicit or , hybrid feedback:

1.3.1 Explicit Feedback

In order to build and enhance his model, the system typically prompts the user through the system

interface to offer ratings for items. The quantity of user-provided ratings determines how accurate the

recommendation is. This method's only shortcoming is that users must put forth some effort and aren't

always ready to provide sufficient data. Since it does not involve deriving preferences from actions

and it provides transparency into the recommendation process, explicit feedback is still perceived as

providing more reliable data, leading to a marginally higher perceived recommendation quality and

greater confidence in the recommendations [9].

1.3.2 Implicit Feedback

By keeping track of a user's many actions, including past purchases, navigation history, time spent

on specific web pages, links they follow, email content, and button presses, among other things, the

system automatically infers what the user prefers. By assuming users' preferences based on how they

interact with the system, implicit feedback lessens the burden on users. Although the method does

not require human effort, it is less accurate. Additionally, it has been argued that implicit preference

data may actually be more objective because there is no bias due to users answering in a socially

acceptable manner and because there are no concerns with self-image or the desire to maintain an

image for others [10].

1.3.3 Hybrid Feedback

The strengths of both implicit and explicit feedback can be combined in a hybrid system in order to

minimize their weaknesses and get a best performing system. This can be achieved by using an

implicit data as a check on explicit rating or allowing user to give explicit feedback only when he

chooses to express explicit interest [11].

https://www.sciencedirect.com/topics/computer-science/explicit-rating

Chapter 1 : Session-Based Recommendation systems

4

Many recommender systems focus on implicit input since it is simple to collect and represent users'

opinions through observable behavior (e.g., by examining browsing history, mouse movements, etc.).

Implicit feedback has the drawback that it is always noisy. For instance, even if a person has viewed

a movie, we can't say for sure if they enjoyed it or not. However, it is not always available because

some users are unwilling to score the products they consume. Explicit feedback, on the other hand,

might be more illuminating about user preferences [12].

1.4 Recommendation tasks

We can specify many types of recommendation tasks that a recommendation system can take on

depending on the type of feedback that is available [12]:

 Clickthrough rate (CTR) prediction: Predicting the probability that a user would click on

an item that is described by a set of features (such as an image, text, the day of the week, a

user's features, etc.), namely predicting P (click|item, user, features) of implicit feedback

occurring.

 Rating prediction: estimating the probability that a user will give a particular rating to a

product that has a particular collection of attributes, specifically estimating the P

(Rating=r|item, user, features) of giving a specific product a rating r.

 Sequential prediction: determining the probability distribution of the next target item that a

user would consume based on the attributes of the previous target item in a sequence. In

addition to their IDs, both the user and the item sequence could be described by a different set

of characteristics. If user features are not taken into account, the issue results in a broad (as

opposed to customized) recommendation.

1.5 Types of Recommendation Systems

Although there are many recommendation algorithms and strategies, the majority can be divided into

the following categories:

1.5.1 Content-based Filtering

The information retrieval and filtering study is where the content-based recommendation algorithms

are derived [13]. The early collaborative filtering process is continued and developed in the content-

based recommendation. Instead of using the user's remarks on things, content-based recommendation

systems suggest items that are similar to those that the user has previously selected. Many current

content-based systems create profiles for both users and items. While an item profile contains a list

of item features, a user profile comprises details about a user's tastes, preferences, and needs that can

be extracted from questionnaires about users or over time from their transactional behavior. The

system then determines the degree to which each item's profile and the user's profile match up,

recommending products that might satisfy the user's needs or preferences. The utility function is

typically defined as the following by combining the features of items and the user interest model [14]:

1. 𝑢(𝑐, 𝑠)=𝑠𝑐𝑜𝑟𝑒(𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝐵𝑎𝑠𝑒𝑃𝑟𝑜𝑓𝑖𝑙𝑒(𝑐), 𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝑠))

u(c, s): This represents the utility or score of a content item (s) for a specific user (c). It predicts how

much the user will like or find the content item relevant.

Chapter 1 : Session-Based Recommendation systems

5

ContentBaseProfile(c): This refers to the profile of the user (c) in the content-based recommendation

system. The profile consists of attributes or features that describe the user's preferences or interests.

Content(s): This represents the content item (s) that is being evaluated for recommendation. It is

described by attributes or features that capture its characteristics.

score(ContentBaseProfile(c), Content(s)): This function calculates the similarity or relevance score

between the user's profile and the content item. It measures how well the attributes of the content item

align with the user's preferences or interests

Figure 2 : Example of content-based filtering

1.5.2 Collaborative filtering

According to user preferences collected from a large number of users, algorithms recommend

products (this is the filtering component). Using the similarity of user preference behavior and

knowledge of past interactions between users and objects (this is the collaborative part), recommender

systems can learn to anticipate future interactions. These recommender systems create a model from

a user's prior actions, such as items they have previously purchased, ratings they have given for those

items, and comparable choices made by other users. According to the theory, there is a good chance

that two people will choose the same things in the future if they have already made comparable

decisions and purchases in the past, such as choosing a movie [7].

For instance, if a collaborative filtering recommender discovers that you and another user have similar

movie preferences, it can suggest a film to you that it has previously discovered that the other user

enjoys (see figure 3) [15].

Chapter 1 : Session-Based Recommendation systems

6

Figure 3 : Example of collaborative filtering

1.5.3 Hybrid Filtering

A hybrid recommendation system is a special sort of recommender system that gives the user a

recommendation by combining two or more methods, such as collaborative and content-based

filtering methods. The difficulties posed by employing these two filtering techniques independently

were overcome by combining them [11].

Based on how the various recommended methodologies are combined with one another, hybrid RSs

are divided into 7 classes [16]:

 Weighted: We can define a few models that can accurately understand the dataset for the

weighted recommendation system. The weighted recommendation system will integrate the

outputs from all of the models into static weightings, which remain the same throughout the

training and test sets.

 Switching: In a switching hybrid, the system alternates between different recommendation

strategies based on a set of criteria, such as when a strategy doesn't generate enough reliable

recommendations.

 Mixed: A mixed hybrid technique initially generates a variety of candidate datasets using the

user profile and attributes. The recommendation system feeds various sets of candidates into

the model in accordance with their requirement combining the predictions to produce the final

recommendation.

 Feature Combination: This hybrid recommender system treats one recommender's output as

extra feature data and prefers to employ the second recommender (often content-based, which

heavily utilizes item features) over the new expanded data.

 Feature augmentation: A contributing recommendation model is used to grade or categorize

the user/item profile. This rating , or categorization, is then used in the primary

recommendation system to produce the expected outcome. Without altering the primary

recommendation model, the feature augmentation hybrid can boost the performance of the core

system. For instance, we can improve the user profile dataset by utilizing the association rule.

Chapter 1 : Session-Based Recommendation systems

7

The functionality of the model for content-based recommendations will be enhanced by the

augmented dataset.

 Cascade: One type of hybrid filtering method is cascade hybrids. A coarse ranking of the

candidate items is first generated using one technique, and the list is subsequently refined using

the preliminary candidate set. The cascades depend on the order.

 Meta Level: is also an example of order-sensitive hybrid RSs that use an entire model produced

by the first technique as input for the second technique.

Figure 4 : Example of hybrid filtering

1.6 Challenges and Limitations

The following is a summary of the challenges and restrictions that RSs confront that are seen as

crucial for the advancement of RSs research.

o Cold start problem: The system encounters the cold start issue when it is unable to establish

any connections between users and items for which it lacks sufficient data. There are two

different kinds of cold-start issues [17]:

1. User cold-start issues: These issues occur when there is virtually no information

available about the user.

2. Product cold-start issues: These issues occur when there is virtually no information

available about the product.

o Synonymy: When an item is represented by two or more names or entries that have similar

meanings, synonymy results. In some situations, the recommender is unable to determine if

the terms refer to separate or the same item [18].

o Shilling Attacks: When a dishonest user or rival enters a system and begins providing

fraudulent ratings on certain items in an effort to either boost or diminish the item's popularity.

Such attacks have the potential to undermine user confidence in the RS and harm the

effectiveness and value of suggestions. CF techniques are more concerned with this threat [19].

o Privacy: Better recommendation services are obtained by providing personal information to

the RS, but doing so may raise data privacy and security concerns.

Chapter 1 : Session-Based Recommendation systems

8

o Problem of Overspecialization: Users are only shown recommended products based on those

already known or defined by their user profiles, ignoring new items and other possibilities

choices [18].

o The sparsity problem: occurs when a user has a large matrix of purchases, viewings, or music

listings. It is a critical problem in recommender systems. When the user didn't rate these things,

sparsity developed. While recommender systems rely on users ratings on a matrix to

recommend items to others [18].

o Gray Sheep: Gray sheep happen in collaborative filtering systems when a user's thoughts do

not align with any group, and as a result, they are unable to profit from recommendations [20].

o Novelty: New ones must be included in the recommended items.

o Serendipity: beyond novelty, it may also be an objective that some recommended items are

not only unheard of, but also surprising user wouldn't have thought before [20].

o Scalability: is a measure of a system's capacity to operate efficiently with high performance

as information expands. When the number of users or the number of items increases, the

recommender system must continue to suggest the same items to the users. We need to perform

more calculations and spend more money to achieve this [20].

o Evaluation and the Availability of Online Datasets: A recommender system's quality can

be assessed along with other factors. One of the main issues with RSs is the construction of

evaluation criteria and the selection of appropriate evaluation metrics. They can be categorized

as follows [21]:

1. Prediction metrics: include coverage and accuracy measures such as Mean Absolute

Error (MAE), Root Mean Square Error (RMSE), and Normalized Mean Average Error

(NMAE).

2. Set recommendation metrics: such as Precision, Recall, and Receiver Operating

Characteristic (ROC).

3. Rank recommendation metrics: such as the half-life and the discounted cumulative

gain.

1.7 Sequence-Aware Recommender Systems

A type of recommender systems known as sequence-aware recommender systems considers the

chronological order of items in a user's interaction history. They are employed to anticipate the

following items a user will find interesting during a current session or to generate complete sequences

of items to display to the user [22].

Sequence-aware recommendation issues differ in several ways from conventional matrix-completion

issues. The problem, its inputs, outputs, and specific computing tasks are all presented in high-level

detail in Figure 5. In general, the sequence in which the items that presented can have an impact on

both the inputs and the outputs. These points will be covered in more detail later on [23].

Chapter 1 : Session-Based Recommendation systems

9

Figure 5 : Overview of sequence-Aware recommendation problem

1.7.1 Inputs : The primary input to sequence-aware recommendation problems is an ordered

and frequently timestamped list of previous user actions. Users can be known to the system or be

anonymous. Each action can also be one of several predefined types, and each action, user, and

item may have a number of additional attributes [23].

1.7.2 Outputs : Ordered lists of items are the result of a sequence-aware recommender. The

results in this broad sense resemble those of a conventional "item-ranking" recommendation

arrangement. The order of the objects in the recommendation list, however, can also be important

in some sequence-aware recommendations cases. There are situations where the user should take

into account each recommendation and do so in the order supplied rather than viewing the list of

recommendations as a collection of choices [23].

1.7.3 Computational Tasks : The literature has identified a variety of computational

occupations for sequence-aware recommenders. Four primary objectives are most frequently

accomplished with the use of SARS in a variety of application scenarios:

1) Context Adaptation: One of the main objectives of sequence-aware recommender systems is

to understand the scenario and aims of the users in order to make recommendations that are

appropriately tailored to those situations. It is crucial to effectively utilize interactional context

information since there is no historical data accessible regarding the users' previous

preferences.

Based on the availability and significance of long- and short-term interactions, the following

context-adaptation scenarios are distinguished in [23]:

a) Last-N interactions: Only the most recent N user actions are taken into account in the

last-N interactions-based recommendation.

b) Session-based recommendations: are made using only the user's most recent sequence

of actions, which are only known for the period of a session (the particular duration

during which the user interacted with the website).

c) Session-aware recommendations: are made when it is known both what users did in

the most recent session and what they have done in the past. If there are identifiable

returning consumers, this type of issue will arise.

2) Trend detection: Another feasible, if less researched, objective that can be achieved is trend

detection. Trend detection is the identification of trends in a given sequence dataset. In [23]

Chapter 1 : Session-Based Recommendation systems

10

the sequential log data can be divided into the following categories for the information that can

be extracted and used in the recommendation process:

a) Community trends: SARS can try to find and use popularity patterns in the interaction

logs to enhance the recommendations since the popularity of items may change over

time in different domains.

b) Individual trends: Shifts in people's preferences for particular things are also possible.

When there is a natural interest drift, certain changes in interest may result. Modeling

the dynamics of user musical preferences is one such issue.

3) Repeated Recommendation: Recommending products that the user is already familiar with or

has previously purchased can be effective in specific application domains. In the conventional

matrix completion configuration, these eventualities are not at all taken into account. In [23]

there are identified the following categories of scenarios:

a) Identifying patterns of frequently occurring user activity: SARS can use historical

interaction logs to discover patterns of frequently occurring user behavior. For example,

SARS may propose launching the email or calls app after opening the contacts app, i.e.,

used to provide shortcuts.

b) Recurring recommendations as reminders: Recurring recommendations can assist in

reminding users of past interests. These reminders may be for items the user may have

recently interacted with or may be for items they may have forgotten, depending on the

domain, such as Amazon.

1.8 Session-Based Recommendation Systems
As seen in Section 1.7, session-based recommendations are considered one of the main computational

task situations in sequence-aware recommender systems. An SBRS is a type of recommendation

system that focuses on making personalized recommendations based on a user's current session or

browsing behavior. Unlike traditional recommender systems that consider long-term user preferences

and historical data, session-based recommendation systems prioritize the immediate context and the

user's short-term interests.

In a session-based recommendation system, the user's current session is treated as a sequence of

interactions or actions, such as clicks, page views, or purchases, within a specific time frame. These

interactions capture the user's preferences and interests in the present moment. The system analyzes

this sequential data to generate real-time recommendations that cater to the user's immediate needs.

Session-based recommender systems aim to predict the unknown part of a session (see Figure 6) or

the future sessions based on modeling the complex relations embedded within a session or between

sessions [24].Table 1 presents a comprehensive comparison between SBRS and other typical RSs.

Figure 6 : An example of an e-commerce website using SBRS

Chapter 1 : Session-Based Recommendation systems

11

 SBRS Collaborative

Filtering (CF)

Content-Based

Filtering (CBF)

Hybrid

Recommender

Systems

Data Source User session

interactions

User-item

interactions

Item features Multiple sources

(session, CF,

CBF)

Recommendation

Type

Session-based

recommendations

User-based or

item-based

recommendations

Item-based

recommendations

Combined

recommendations

Personalization Highly

personalized

Moderately

personalized

Moderately

personalized

Highly

personalized

User Context Captures

temporal context

Temporal context

limited

No explicit

context captured

Captures

multiple types of

context

Sequential

Patterns

Exploits

sequential

behavior

Doesn't consider

sequential

patterns

Doesn't consider

sequential

patterns

May consider

sequential

patterns

Cold Start Problem Suffers from cold

start problem

Suffers from cold

start problem

Less affected by

cold start

problem

Moderate impact

Scalability Can face

scalability

challenges

Scalable Scalable Scalable

Sparsity Handling Handles sparse

session data

effectively

Requires denser

data for accuracy

Handles sparse

data effectively

Handles sparse

data effectively

Serendipity Can offer

serendipitous

recommendations

Moderate

serendipity

Limited

serendipity

Moderate

serendipity

Explanation Limited explicit

explanations

Lacks explicit

explanations

May provide

feature-based

explanations

May provide

combined

explanations

Table 1: Comparison between SBRS and other RSs

1.8.1 Categorization

An SBRS makes the unknown session information as its target to be predicted by taking the prior

session information as the context and condition, which is called a session context C in this work. A

session context can either be an intra-session context 𝐶𝑙𝑎 or an inter-session context 𝐶𝑙𝑒 according to

whether the session context comes only from one session (the current one) or across multiple sessions

(before the current one) [19].

According to [24], SBRS can be generally categorized into two major branches:

Chapter 1 : Session-Based Recommendation systems

12

 Next-item(s) Recommendations: given an intra-session context 𝐶𝑙𝑎 over the current session

𝑆𝑛, the next-item(s) recommendations predict the next item(s) 𝑖𝑡 in 𝑆𝑛conditional on 𝐶𝑙𝑎. Next-

item(s) recommendations are the mainstream and the most common setting of session-based

recommendations.

 Next-session (next-basket) Recommendations: given an inter-session context 𝐶𝑙𝑒 for current

session 𝑆𝑛, the next-session recommendations predict those items possibly occurring in session

𝑆𝑛.

1.8.2 Approaches

We try to classify SBRS in this section from a technical point of view all currently published efforts

are specifically divided into two branches: model-free techniques and model-based approaches,

various types of techniques are present in each branch (Figure 7).

Figure 7 : The classification of SBRS's approaches

1.8.2.1 Model-Free Approaches

Model-free approaches are typically devoid of complicated mathematical models and are based

primarily on data mining techniques. Sequential pattern-based RS for ordinal session data and

pattern/rule-based RS for unordered session data are two common techniques in this area.

a) Pattern/Rule-based Approaches: Pattern/rule-based RS first mine frequent patterns or

association rules and then use these patterns and rules to guide the subsequent

recommendations. This is based on the assumption that most customers would follow the

common shopping patterns [25].For instance, customers usually bought milk and bread

Chapter 1 : Session-Based Recommendation systems

13

together when they go shopping, therefore {milk, bread} can be treated as a frequent pattern

to recommend bread to those why have bought milk. It should be noted that pattern/rule-based

RS are applied in unordered data [26].

b) Sequential Pattern-based Approaches: To handle those data having a strict order over items

or involving time-factor based effect, sequential pattern-based RS are proposed. Similar to

pattern-based RS, they first mine a collection of sequential patterns and then recommend the

remaining items after the occurrence of the prior items [27].

1.8.2.2 Model-based Approaches

Model-based RS are typically constructed on stringent assumptions like ordering over objects and

intricate models like Markov chain models, in contrast to model-free RS. The three primary groups

of model-based approaches that are now in use are Markov Chain-based approaches, factorization-

based approaches, and neural model-based approaches.

a) Markov Chain-based Approaches

Using transitional probabilities, Markov Chain-based RS models the first-order (and sometimes

higher order) dependency over a sequence of items, and then uses that dependency to create

recommendations for the next items. Markov Chain-based RS take into account all things and so

significantly reduce information loss, in contrast to sequential pattern-based techniques that are

simple to filter out such infrequent items and patterns and consequently result in information loss

[28].

b) Factorization-based Approaches

These methods create a latent representation vector for each item by first factoring the item co-

occurrence matrix or the item-to-item transitional matrix [29]. Then they use these latent

representations to predict the subsequent items. Such methods should be distinguished from the

frequently employed factorization machine (similar to matrix factorization) in collaborative

filtering-based RS, which typically factors the user-item interaction matrix (similar to rating

matrix) into latent factors of users and items [15].

c) Neural Model-based Approaches

take advantage of the neural network to learn the complex relationships and interactions over items

within or between sessions and then generate recommendations based on such interactions. Based

on the model structure, neural model-based approaches can be divided into shallow neural model-

based approaches, which sometimes are also called embedding models or representation learning

models and deep neural model-based approaches like RNN [30].

Chapter 1 : Session-Based Recommendation systems

14

Approaches

Working

mechanism

Applicable

scenarios

Target issues

Pros

Cons

Pattern/rule-

based

approaches

Mine frequent

patterns or

association rules to

guide

recommendations

Simple,

balanced and

dense session

data without

order

Capture

explicit co-

occurrence-

based

dependency

between items

Intuitive,

simple and

effective on

simple data

Information

loss, cannot

handle complex

data (e.g.,

imbalanced

data, long tailed

data)

Sequential

pattern-based

approaches

Mine sequential

patterns to guide

recommendations

Simple,

balanced and

dense session

data with

order

Capture

explicit co-

occurrence-

based inter-

item sequential

dependency

Intuitive,

simple and

effective to

capture

sequential

relations on

simple data

Information

loss, cannot

handle complex

data (e.g.,

imbalanced

data, long tailed

data)

Markov Chain-

based

approaches

Use Markov chain

to model the

transitions between

items or sessions for

recommendations

Relative

simple

sequential

data mainly

with short-

term and low-

order

dependency

Capture

explicit or

implicit inter-

item sequential

dependency

Reduced

information

loss,

flexible,

good at

modelling

short-term

sequential

dependency

Usually ignore

long-term and

higher-order

dependency

Factorization-

based

approaches

Factorize item

transitions into

latent

representations of

items for

recommendations

Relative

simple data

mainly with

short-term and

low-order

dependency

Learn latent

item

representations

to fit for item-

to-item

transitions

Reduced

information

loss, good at

modelling

low-order

dependency

Easy to suffer

data sparsity

issues, cannot

capture higher-

order

dependency

Neural model-

based

approaches

Model the complex

dependency in a

neural network and

embed this

dependency into the

learned latent

representations for

recommendations

Complex data

with

sequential or

non-

sequential

dependency

Encode the

complex

dependency

into latent

representations

of items or

sessions

Powerful,

can capture

both long

term and

short term,

higher-order

and low-

order

dependency

Hard to

implement,

computationally

costly

Table 2 : Comparisons between Different Technical Approaches for Session-based Recommendations

1.8.3 Challenges and Limitations of SBRS

Session-based recommendation systems face several challenges, including [31]:

Chapter 1 : Session-Based Recommendation systems

15

1. Data Sparsity: Because sessions are frequently short and only contain a limited amount of user

choices, session data may be naturally sparse. This makes it difficult to accurately determine

the user's interests and offer pertinent recommendations.

2. Dynamic User Preferences: During a single session, a user's preferences and intentions may

quickly change. It might be challenging to accurately model and accommodate their dynamic

choices because their demands and interests may change depending on the immediate

situations.

3. Cold-Start Issue: When a new user begins a session, little is known about their preferences and

tendencies. Without historical data, it is difficult to give individualized recommendations due

to the cold-start problem.

4. Contextual Understanding: It might be challenging to comprehend a user's preferences and

intents when sessions lack explicit user feedback or explicit item evaluations. Effective

interpretation of the implicit signals from the session context is required by the

recommendation system.

5. Focus on the Short Term: Session-based recommendation systems are primarily concerned

with the user's plans for the immediate future, which may not fully reflect the user's long-term

goals. This may result in recommendations lacking diversity or failing to take into account a

user's broader preferences.

6. Session Ambiguity: Sessions can be ambiguous, and the system needs to disambiguate the

user's intent from the observed behavior. Different users may have different motivations or

goals for similar session behavior, making it challenging to generalize recommendations

1.9 Conclusion

In the beginning of this chapter, a survey of recommender systems, a description of the session-based

recommendation problem, and a discussion of where it fits in the family of sequence-aware

recommendations were provided. It generated a thorough comparison between SBRSs and other RSs,

followed by the formations and associated definitions of SBRS, which in turn stimulated the need for

session-based recommender systems research. Finally, approaches, challenges and difficulties were

examined. The next chapter will introduce Graph ATtention networks as a recent approach for

developing SBRS.

Chapter2: Graph ATtention Networks

16

Chapter2.

 Graph ATtention

 Networks

Chapter2: Graph ATtention Networks

17

Chapter 2 : Graph ATtention Networks

2.1 Introduction

Graphs are a common method of presenting structured data in many areas, such as social networks,

natural language processing, and recommendation systems.

Therefore, in the field of machine learning, it is becoming more and more crucial to be able to evaluate

and model graph-structured data. As a new method of modeling graph-structured data, Graph

Attention Networks (GATs) were introduced in 2018 and are a relatively recent advancement in the

field of graph neural networks.

This chapter provides an introduction to the core ideas required to comprehend Graph Attention

Networks.

2.2 Artificial Intelligence

Artificial Intelligence (AI) refers to the effort to automate intellectual tasks normally performed by

humans. It is a general field that encompasses various approaches, including machine learning and

deep learning, that involve training algorithms to learn from data without being explicitly

programmed. While the idea of AI has been around since the 1950s, it wasn't until the advent of

machine learning that significant progress was made in this field. Machine learning is a subfield of

AI that focuses on the development of algorithms that can learn from and make predictions on data.

Deep learning, a subset of machine learning, is a more advanced approach that leverages deep neural

networks to learn complex representations of data.

Early AI systems, such as chess programs, were based on hardcoded rules crafted by programmers, a

paradigm known as symbolic AI. However, this approach proved to be intractable for solving

complex, fuzzy problems such as image classification, speech recognition, and language translation.

This led to the rise of machine learning as a new approach to AI [32].

2.3 Machine learning

The development of algorithms and statistical models that allow computer systems to automatically

improve their performance on a given job constitutes the field of machine learning, which is a subset

of artificial intelligence. To create predictions or choices, these algorithms use data to learn from,

spotting patterns and relationships within the data.

Predictive analytics, computer vision, natural language processing, and speech recognition are just a

few of the domains where machine learning is used. Machine learning is becoming an increasingly

essential topic for businesses and organizations wanting to extract insights and gain a competitive

edge as the amount of data created continues to expand exponentially [33].

2.3.1 Data representations

Data representation in machine learning refers to the process of transforming raw data into a format

suitable for analysis and model training. Effective data representation is crucial because it determines

the quality of features that can be extracted and the performance of machine learning models [34].

Chapter 2 : Graph ATtention Networks

18

Here are a few typical representations of data for machine learning [35]:

 Numeric Representation: This is the most common data representation, using numeric values

to represent data. Numerical data can be continuous (e.g., temperature, time) or discrete (e.g.,

age, counts). Numerical data is easy to process and can be used directly by many machine

learning algorithms.

 Categorical Representation: Categorical data represents non-numeric values that belong to a

particular class or categories. Examples of this are gender, color, or product type. Before

passing categorical data to a machine learning model, techniques such as one-hot encoding or

sequential encoding are often used to convert categorical data into numerical form.

 Text representation: Text data such as documents, tweets, or customer reviews require special

display techniques. A common approach is to use vectorization methods such as bag-of-words

or term-frequency-inverse document frequency (TF-IDF) to convert text to numeric feature

vectors. Another approach is to use word embeddings such as Word2Vec or GloVe to capture

semantic relationships between words.

 Image representation: Image data is often represented as a grid of pixels, with each pixel

having a color intensity value. Convolutional neural networks (CNNs) are widely used to

process and extract features from image data. Pretrained CNN models such as VGG, ResNet,

or InceptionNet can be used to extract high-level features or as a basis for transfer

learning.Time series representation: Time series data represents measurements or

observations taken over time, such as stock prices, sensor readings, or weather data. Time

series data is typically represented as a sequence of data points with timestamps. Techniques

like sliding windows or Fourier transformations can be used to extract relevant features from

time series data.

 Graph representation: Graph data represents relationships between entities using nodes and

edges. Graphs can be used to model social networks, knowledge graphs, or biological

networks. Graph Neural Networks (GNNs) were developed to process graph-structured data

and allow feature extraction based on graph connections and topology.

2.3.2 Types of machine learning

Machine learning can be split into three major areas:

1. Supervised Learning: This learning process is based on the comparison of calculated and

projected results, which means that learning entails calculating the error and altering the error

to get the desired outcome.

For instance, a data set of houses of a particular size with actual costs is offered. The controlled

formula is then used to produce additional of these accurate results, such as what the price of

a brand-new home would definitely be [36].

Regression and classification issues are subsets of supervised learning problems:

 A classification problem occurs when the output variable is a category, such as "red" or

"blue" or "disease" and "no disease."

 A regression problem occurs when the output variable is a real value, such as "dollars"

or "weight".

Recommendation and time series prediction are two frequent sorts of challenges constructed

on top of classification and regression.

Some well-known supervised machine learning methods are:

Chapter 2 : Graph ATtention Networks

19

 Linear regression is used to solve regression problems.

 Random forests are used to solve classification and regression issues.

 Support vector machines are used to solve classification difficulties.

2. Unsupervised Learning: This learning process is dependent on a comparison of the calculated

result and also the anticipated outcome, which means learning explains identifying the error as

well as converting the error to achieve the anticipated result.
Unsupervised learning differs from supervised learning in that there are no correct answers and

no educators. Algorithms are left to their own devices to uncover and provide fascinating data

structures.

For instance, a specific collection of houses of a certain size with actual costs is provided

following that, the controlled formula is to create more of these appropriate comments, such

as

what would undoubtedly be the cost of a new house [36].
Clustering and association problems are two types of unsupervised learning challenges:

 Clustering: A clustering problem is one in which you wish to uncover the underlying

groups in data, such as categorizing consumers based on their purchase activity.

 Association rule learning: the issue is one in which you wish to identify rules that

characterize substantial chunks of your data, such as persons who purchase X also tend

to buy Y.

Unsupervised learning methods that are widely used include k-means for clustering issues and

the Apriori algorithm for learning association rules.

3. Reinforcement Learning : Reinforcement learning is also distinct from unsupervised learning,

which is often concerned with discovering structure buried in collections of unlabeled data

[37].

Reinforcement learning is predicated on results and how a representative should respond to

them in a given environment to maximize some notion of long-term motivation. For a

successful conclusion, a benefit is provided, while a fee is applied for an unsuccessful

outcome. Because appropriate input/output sets are never presented, nor are sub-optimal

activities clearly addressed, reinforcement learning differs from the supervised learning

problem [36].

Chapter 2 : Graph ATtention Networks

20

Figure 8 : Types of Machine Learning

2.4 Deep Learning and Neural Networks

Deep learning is a branch of machine learning that focuses on training artificial neural networks to

learn and make choices in the same way that the human brain does. The term comes from the design

of these neural networks, which are made up of multiple layers of linked nodes known as neurons.

Deep learning algorithms may develop hierarchical representations of the input by processing data

via various layers, allowing them to extract increasingly abstract features [38].

Figure 9: The relationship between AI, ML and DL

“Neural Networks is an algorithm that's get to know the hidden Link in a data set with a similar way

as a human brain “

The subfield of machine learning called deep learning relies heavily on neural networks, which are

among the most widely used and potent algorithms. Though neural networks may appear to be a

mystery at first glance, with data flowing from the input layer into the "hidden layers," and then being

processed in some unknowable way before emerging from the output layer, understanding the role of

Chapter 2 : Graph ATtention Networks

21

these hidden layers are the crucial factor that determines the success of neural network

implementation and optimization.

A neural network is defined as a computer system consisting of a series of simple but highly

interconnected elements or nodes called "neurons", organized in layers, using dynamic responses to

external information to process information.

This algorithm is useful for finding patterns too complex to manually extract and teach a machine to

recognize. In this structure, the input layer introduces patterns into the neural network, and each

component present in the input data has a neuron and communicates with one or more hidden layers

in the network, which are simply called " hidden layers" .In these layers, all processing actually

happens through a system Connections characterized by weights and biases.

Figure 10: Artificial neural network architecture

2.4.1 Training Neural Networks

In a neural network, the fundamental building block of computation is the neuron, also referred to as

a unit or a node. This component receives input from other nodes or an external source and performs

calculations to produce an output. Every input has its own associated value. The value of an input is

calculated through the assignment of a weight, denoted as 'w', which is determined in relation to the

significance of other inputs. The node then applies a function to the sum of these inputs, which has

been weighed accordingly [39].

At the start, a neural network's weights are assigned arbitrary values, which means the network is

only capable of producing random alterations. It's naturally far from what it should be, resulting in a

high loss score. However, with every round of processing an example, the optimizer adjusts the

weights slightly in the right direction, which in turn lowers the loss score. This process, known as the

training loop, is repeated multiple times (usually hundreds or even thousands of examples over tens

of iterations) until the weight values are minimized and the loss function is reduced. A network that

has undergone this process is referred to as a trained network, with minimal loss such that the outputs

are as close as possible to the targets. This simple mechanism, once scaled, appears to be magical

[40].

So, the process of training neural networks encompasses various stages that can be succinctly

summarized as follows:

Chapter 2 : Graph ATtention Networks

22

 Data preparation : Prepare training, validation, and test datasets. This includes cleaning the

data, splitting it into training, validation, and test sets, and preprocessing the network input.

 Network architecture design: Choose the appropriate network architecture for the task at

hand. This includes choosing the type of neural network (e.g., feedforward, convolutional,

recurrent), the number of layers, and the number of neurons in each layer.

 Initialization: Initialize the weights and biases of the network. This can be done randomly or

with pretrained weights.

 Forward propagation: Pass input data through the network to generate predictions.

 Loss computation: Computes the difference (i.e. loss or error) between the predicted output

and the actual output.

 Backpropagation: Use backpropagation to compute loss gradients from network weights and

biases.

 Weight update: The weights and biases of the network are updated to minimize loss using an

optimization algorithm such as stochastic gradient descent.

 Repeat: Steps 4-7 are repeated for a fixed number of iterations (epochs) or until convergence.

 Evaluation: Evaluate the performance of the network against the test set.

Figure 11: The learning process of deep learning

2.4.2 Back Propagation and Gradient Descent

Backpropagation is an important part of reducing error in a neural network model.

The backpropagation algorithm is frequently employed in machine learning. It operates by computing

the gradient of the loss function, which serves as a guide towards the most optimal value for

minimizing loss. To execute this, it utilizes the chain rule of calculus to calculate the gradient in

reverse through the various layers of a neural network. Through the use of gradient descent, gradual

progress towards the minimum value is made by taking small steps in the direction indicated by the

gradient.

Chapter 2 : Graph ATtention Networks

23

Gradient descent is the optimization algorithm used to update the weights of the network. It involves

taking small steps in the direction of the negative gradient of the loss function. The learning rate

determines the size of the steps [41].

Generally speaking, neural network or deep learning model training occurs in six stages:

1. Initialization: setting the corresponding activation a 1 for the input layer, and initializing

weights w l for all layers.

2. Forward propagation7 : For each l = 2, 3, . . ., L compute Z𝑙 = W𝑙a𝑙−1 + b1and

a𝑙= f (Z𝑙).

3. Compute Error: defining an error function C, which captures the delta between the correct

output and the actual output of the model, given the current model weights (in other words

how far off is the model from the correct result).

4. Backpropagate The Error: Actual Output – Desired Output

5. Weight Update: changing weights and biases to the optimal values according to the results of

the backpropagation algorithm

6. Iterate Until Convergence: Similarly, the network needs to iterate several times to learn. After

each iteration, the backpropagation updates the weights towards less and less global loss

function. At the end of this process, the model is ready to make predictions for unknown input

data. New data can be fed to the model, a forward pass is performed, and the model generates

its prediction.

Figure 12: Gradient descent

2.4.3 Activation Function

An activation function is a mathematical equation that controls whether a neuron should be activated

or not in a neural network model. It also helps to normalize the output of any input. There are a variety

of activation functions that can influence the speed and how well a neural network converges, as well

as sometimes prevent it from doing so [42].

https://aitechtrend.com/understanding-cost-function-and-gradient-descent-in-machine-learning/

Chapter 2 : Graph ATtention Networks

24

Figure 13: Activation function use in neural networks

1. Binary Step Function

A step function with two possible outcomes is commonly known as a binary step function.

The activation of a neuron in a binary step function is determined by a threshold value, which

determines whether or not the neuron should be activated. When the input is supplied to the

activation function, it is compared to a specific threshold. If the input is higher than the

threshold, the neuron is stimulated, but if it is lower, it is inactive and its output is not

transmitted to the succeeding hidden layer [43].

Mathematically it can be represented as:

f(x) = {
0 𝑓𝑜𝑟 𝑥 < 0
1 𝑓𝑜𝑟 𝑥 > 0

Figure 14: Binary step function

2. Linear Activation Function

The activation function that follows a linear relationship between input and output is known

as the Linear Activation Function. The identity function, or "no activation," is a linear

activation function where the input and activation are directly proportional to each other, with

the identity function being multiplied by x1.0. The function's output only reflects the value it

receives and does not affect the weighted sum of the input in any way [43].

Chapter 2 : Graph ATtention Networks

25

Mathematically it can be represented as:

𝑓(𝑥) = 𝑥

Figure 15: Linear activation function

3. Non-Linear Activation Functions

The activation function that is displayed linearly above is nothing more than a model of linear

regression. Due to its limited capability, the model is unable to establish intricate connections

between the inputs and outputs of the network [43].

The limitations of linear activation functions are resolved by non-linear activation functions,

which offer the following solutions [43]:

 Backpropagation is permitted due to the relationship between the derivative function and the

input, which enables a retrospective analysis of the weights in the input neurons that could

potentially enhance the accuracy of predictions.

 Neural networks allow for the stacking of several layers of neurons, resulting in a non-linear

combination of input that has passed through multiple layers. Any output can be expressed

as a functional computation within a neural network.

Here some common non-linear activation functions are:

 Sigmoid / Logistic: sigmoids can reduce extreme values or outliers in data without removing

them:

𝑓(𝑥) =
1

1 + 𝑒−𝑥
=

𝑒𝑥

𝑒𝑥 + 1

The reason why the sigmoid/logistic activation function is extensively used is due to the

following factors:

1. When creating models that require prediction of probabilities, it is typical to use the

sigmoid function as the ideal choice. The reasoning behind this is that probabilities

can only exist within the range of 0 and 1, and sigmoid is able to accommodate this

range.

Chapter 2 : Graph ATtention Networks

26

2. The sigmoid activation function is identifiable by its distinctive S-shape, which

represents the function's differentiability and capacity to provide a fluid gradient. This

allows for a lack of abrupt changes in the output values of the function.

Figure 16: Sigmoid activation function graph

 TanH / Hyperbolic Tangent : The Tanh function is known for its resemblance to the sigmoid

or logistic activation function, as both share the same S-shaped curve. However, the Tanh

function has a distinct output range of -1 to 1. As the input value grows larger and more

positive, the output value will approach 1.0. Conversely, as the input value becomes smaller

and more negative, the output will approach -1.0.

𝑓(𝑥) =
(𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥)

Figure 17: TanH activation function graph

 ReLU (Rectifed Linear Unit) : The rectified linear activation function or ReLU is a non-linear

function or piecewise linear function that will output the input directly if it is positive,

otherwise, it will output zero. It is the most commonly used activation function in neural

networks, especially in Convolutional Neural Networks (CNNs) & Multilayer perceptrons

[44].

ReLu is a non-linear activation function that is used in multi-layer neural networks or deep

neural networks. This function can be represented as:

Chapter 2 : Graph ATtention Networks

27

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)

where 𝑥 an input value. According to equation , the output of ReLu is the maximum value

between zero and the input value.

Figure 18: ReLU activation function graph

 Leaky ReLU : is an activation function used in artificial neural networks. It is similar to the

standard ReLU function, except that it has a small non-zero output for negative input

values. This allows the network to learn faster and reduces the risk of the network getting

stuck in a local minimum. Leaky ReLU is popular in tasks where we may suffer from sparse

gradients, for example training generative adversarial networks [45].

𝑓(𝑥) = 𝑚𝑎𝑥(0.1𝑥, 𝑥)

Figure 19: Leaky ReLU activation function graph

 Softmax : In machine learning, the Softmax function is frequently used. It is often used to

convert a set of values into a probability distribution. This enables us to forecast the likelihood

of a specific result. The function is computed by taking the exponentiation of each array

member and dividing it by the total of all exponentiated array values. As a consequence, a

probability distribution is represented by a set of values that add to one.

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑖) =
𝑒𝑥𝑝(𝑍𝑖)

∑ 𝑒𝑥𝑝(𝑍𝑖)𝑗

https://deepai.org/machine-learning-glossary-and-terms/relu
https://deepai.org/machine-learning-glossary-and-terms/relu
https://www.bing.com/ck/a?!&&p=1dbf084e20c2a47dJmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY2Ng&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly93d3cuc3VyZmFjdGFudHMubmV0L3JlbHUxLWFuZC1yZWx1Ni1hY3RpdmF0aW9uLWZ1bmN0aW9ucy13aXRoLWJlbmVmaXRzLWFuZC1kcmF3YmFja3Mv&ntb=1
https://www.bing.com/ck/a?!&&p=f5c4e709b3f43e39JmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY2OA&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly93d3cuc3VyZmFjdGFudHMubmV0L3JlbHUxLWFuZC1yZWx1Ni1hY3RpdmF0aW9uLWZ1bmN0aW9ucy13aXRoLWJlbmVmaXRzLWFuZC1kcmF3YmFja3Mv&ntb=1
https://www.bing.com/ck/a?!&&p=f5c4e709b3f43e39JmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY2OA&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly93d3cuc3VyZmFjdGFudHMubmV0L3JlbHUxLWFuZC1yZWx1Ni1hY3RpdmF0aW9uLWZ1bmN0aW9ucy13aXRoLWJlbmVmaXRzLWFuZC1kcmF3YmFja3Mv&ntb=1
https://www.bing.com/ck/a?!&&p=f5c4e709b3f43e39JmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY2OA&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly93d3cuc3VyZmFjdGFudHMubmV0L3JlbHUxLWFuZC1yZWx1Ni1hY3RpdmF0aW9uLWZ1bmN0aW9ucy13aXRoLWJlbmVmaXRzLWFuZC1kcmF3YmFja3Mv&ntb=1
https://www.bing.com/ck/a?!&&p=ca109ab876e4747bJmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY3MA&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly93d3cuc3VyZmFjdGFudHMubmV0L3JlbHUxLWFuZC1yZWx1Ni1hY3RpdmF0aW9uLWZ1bmN0aW9ucy13aXRoLWJlbmVmaXRzLWFuZC1kcmF3YmFja3Mv&ntb=1
https://www.bing.com/ck/a?!&&p=ca109ab876e4747bJmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY3MA&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly93d3cuc3VyZmFjdGFudHMubmV0L3JlbHUxLWFuZC1yZWx1Ni1hY3RpdmF0aW9uLWZ1bmN0aW9ucy13aXRoLWJlbmVmaXRzLWFuZC1kcmF3YmFja3Mv&ntb=1
https://www.bing.com/ck/a?!&&p=a2839c1005d8f1fdJmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY3Mg&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly9wYXBlcnN3aXRoY29kZS5jb20vbWV0aG9kL2xlYWt5LXJlbHU&ntb=1
https://www.bing.com/ck/a?!&&p=a2839c1005d8f1fdJmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY3Mg&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly9wYXBlcnN3aXRoY29kZS5jb20vbWV0aG9kL2xlYWt5LXJlbHU&ntb=1

Chapter 2 : Graph ATtention Networks

28

Figure 20: Softmax activation function graph

2.4.4 Loss Function

 A loss function is a critical tool in evaluating the effectiveness of a neural network for a specific task.

The method to accomplish this is relatively straightforward: for each training example, the network

processes the data to obtain a numerical value. Then, this value is subtracted from the desired result,

and the difference is squared. This is done because both positive and negative differences are equally

undesirable.

𝐿(𝑦, ŷ) =
1

𝑚
∑(𝑦𝑖, ŷ𝑖)

2

𝑚

𝑖=1

In our neural network, y is the desired output we aim to obtain, while y with a hat represents the actual

output we receive after processing a given example through the network. The index of a training

example is denoted by i. For instance, let's take the example of dogs-vs-cats dataset, which contains

images of labeled dogs and cats, with one representing a dog and zero representing a cat. The label

we want to obtain from the network after passing the image through it is represented by y. To calculate

the loss function, we must iterate over each training example in the dataset, calculate y for each

example, and then apply the function as per the formula defined above. A higher value of the loss

function indicates poor performance by the network; hence, we aim for the smallest possible value.

We can further comprehend the relationship between the loss function and the neural network by

substituting y with the network's actual output in the formula.

2.4.4.1 Loss Functions for Regression

 Mean squared error loss (MSE): The squared loss function is utilized when working on a

regression model that requires a real-valued output.

Consider the scenario when just one output feature must be predicted; the error in a forecast

is squared and averaged over the number of data points, basic and straightforward [46].

𝐿(𝑊, 𝑏) =
1

𝑁
∑(ŷ𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

Chapter 2 : Graph ATtention Networks

29

 Mean absolute error loss (MAE): In the same vein, (MAE) is similar to (MSE) showing in the

following equation: [45]

𝐿(𝑊, 𝑏) =
1

2𝑁
∑∑|𝑦𝑖�̂� − 𝑦𝑖𝑗|

𝑀

𝑗=1

𝑁

𝑖=1

 Mean Squared Log Error (MSLE): another function used for regression with this equation

[46]:

𝐿(𝑊, 𝑏) =
1

2𝑁
∑∑|log 𝑦𝑖�̂� − log 𝑦𝑖𝑗|

𝑀

𝑗=1

𝑁

𝑖=1

2.4.4.2 Loss Functions for Classification

When developing neural networks for classification issues, the emphasis is frequently placed on

assigning probabilities to these classifications [46].

These differing conditions necessitate distinct loss functions:

 Hinge loss

When the network must be tuned for a hard classification, the most commonly utilized loss

function is the hinge loss and it is mostly used for binary classifications. There are extensions for

multiclass classification [46].

𝐿(𝑊, 𝑏) =
1

𝑁
∑𝑚𝑎𝑥(0,1 − ŷ𝑖 ∗ 𝑦𝑖)

2

𝑁

𝑖=1

 Logistic loss

they are utilized When probabilities are more interesting than hard classifications [46].

𝐿(𝑊, 𝑏) =
1

𝑁
∑∑𝑦𝑖�̂� − 𝑦𝑖𝑗

𝑀

𝑗=1

𝑁

𝑖=1

2.4.4.3 Loss Functions for Reconstruction

This set of loss functions is related to the concept of reconstruction. The concept is straightforward.

A neural network is taught to precisely replicate its input [46].

2.5 Deep Learning challenges

Deep learning involves training complex neural networks with a large number of parameters, which

can lead to a number of challenges related to testing, validating, and overfitting.

2.5.1 Testing, Validating and Overfitting

Once a model has been trained, it is crucial to ensure that it can effectively generalize to new cases,

rather than relying on mere hope. To achieve this, the model needs to undergo evaluation and fine-

tuning if necessary. The most reliable way to assess the model's generalization capabilities is by

testing it on new cases. One approach involves deploying the model into production and monitoring

Chapter 2 : Graph ATtention Networks

30

its performance. Although this method can be effective, if the model proves to be flawed, it may result

in user complaints, making it less than ideal. A better alternative is to divide the available data into

two distinct sets: the training set and the test set. As their names suggest, the model is trained using

the training set, while the test set is employed to evaluate its performance.

The measure of the model's error on new cases is known as the generalization error or out-of-sample

error. By evaluating the model on the test set, one can obtain an estimation of this error. This value

provides valuable insights into the model's performance on instances it has not encountered during

training. In cases where the training error is low, indicating that the model makes few mistakes on

the training set, but the generalization error is high, it signifies that the model is overfitting the training

data. Preventing poor generalization necessitates the ability to halt the training process as soon as

overfitting commences.

To address this concern, the training process is divided into epochs. An epoch refers to a single

iteration over the entire training set. Specifically, for a training set of size 'd' and performing gradient

descent with a batch size of 'b', an epoch would encompass 'd/b' model updates. At the conclusion of

each epoch, it becomes essential to measure how effectively the model generalizes. To accomplish

this, an additional validation set is utilized. The validation set provides insights into the model's

performance on data it has not encountered previously. If the accuracy on the training set continues

to improve while the accuracy on the validation set remains stagnant or deteriorates, it serves as an

indication that training should be stopped to avoid overfitting [47] [48] .

It is worth noting that the opposite of overfitting, known as underfitting, also exists. Underfitting

occurs when the model is too simplistic to grasp the underlying structure of the data. For instance, a

linear model attempting to predict life satisfaction is susceptible to underfitting, as reality is more

intricate than the model's capabilities, leading to inaccurate predictions even on the training examples.

2.5.2 Hyperparameters

In machine learning, hyperparameters are model parameters that cannot be learnt from training data

and must be defined before training begins. They have control over parts of the training process such

as the model's learning rate and the number of iterations through the training data. Learning rate,

regularization strength, the number of hidden layers in neural networks, and the number of trees in a

random forest model are all examples of hyperparameters. The selection of hyperparameters may

have a substantial impact on the model's performance and generalization ability, therefore

determining the best hyperparameters is an important stage in the machine learning workflow [49].

2.6 Graph Neural Networks

A graph neural network (GNN) is a neural network that uses a graph data structure that encodes

relationships between entities. GNNs are used to learn representations of nodes and edges on graphs

and can be used for various tasks such as node classification, link prediction, and graph classification.

GNNs typically involve the propagation of node features in a graph, using message passing

techniques to update features based on those of neighboring nodes. The architecture of GNNs can

vary depending on the specific task and the type of graph to be analyzed. There is different types of

GNNs, ranging from traditional models such as Graph Convolutional Networks (GCN) to recent

advances such as Graph Attention Networks (GAT) and GraphSAGE [37].

A graph neural network (GNN) has two distinguishing attributes:

 It takes a graph as input.

Chapter 2 : Graph ATtention Networks

31

 It produces permutation equivariant results.

GNNs are designed to build node representations that take into account both the topology of the graph

and any accessible feature information.

2.6.1 Main Concepts

In the following section we are going to describe the main concepts that enable graph neural networks:

the nature of non-Euclidean data, graph neighborhoods, concepts of neural message passing.

2.6.1.1 Non-Euclidean space data

The majority of deep learning techniques that exist today are designed to work with structures that

are either Euclidean or grid-like in nature, such as images, videos, or textual data. For instance, images

can be thought of as a function on the Euclidean space (plane), sampled on a grid, which allows us to

leverage their local connectivity and use Convolutional Neural Networks that utilize this information

about the data. Similarly, textual data can be represented as a sequence on a Euclidean plane, which

also has structural concepts of "before" and "after" that NLP models take advantage of. However,

there are many other types of data - such as social networks in computational social sciences, sensor

networks in communications, molecule structures in computational chemistry, and meshed surfaces

in computer graphics - that do not fit the Euclidean mold, and can instead be categorized as non-

Euclidean space data. The non-Euclidean nature here generally means that there are no common

systems of coordinates, data priors or common structures that represent such data [50]. Therefore,

basic approaches that work on Euclidean data, fail to work on its generalization, non-Euclidean case,

where prior structure can be arbitrarily represented. It is also worth noting how the Euclidean data

can be seen as a particular case of non-Euclidean data. For example, an image grid of N × N pixels

can be viewed as a graph with N2 nodes and at most 8 edges per node (connecting to the nearest grid

of pixels) with each node associated a feature vector representing the image’s pixel intensity.

2.6.1.2 Graph neighborhood

In graph theory, the neighborhood of a node inside a graph refers to the collection of nodes that are

immediately related to it by an edge. In simple terms, it includes the nodes that are close to the given

node.

In an undirected graph, the neighborhood of a node v is defined mathematically. G is officially defined

as N(v) = {u ∈ V(G) : uv ∈ E(G)}, where V (G) is the set of vertices in G and E(G) is the set of edges

in G.

Understanding a node's neighborhood is critical in graph theory because it gives insights into the local

structure of the graph surrounding that node. For example, the size of a node's neighborhood might

indicate its degree of centrality.

Chapter 2 : Graph ATtention Networks

32

Figure 21: 1hop and 2hop neighborhoods of a given target node A.

2.6.1.3 Permutation equivariance and invariance

In GNNs, permutation equivariance indicates that the network's output stays constant when the nodes

in the input graph are permuted. If we shuffle the node order, the GNN should provide the same

output, but with the node order reflecting the new permutation. This characteristic enables the GNN

to identify the graph's underlying symmetry and deliver symmetric results [51].

Permutation invariance Operations applied to graph data must be permutation-invariant, i.e.

independent of the order of neighbor nodes, as there is no specific way to order them [51].

Permutation equivariance and permutation invariance are critical properties of Graph Neural

Networks (GNNs). These properties are especially important in situations when node ordering does

not transmit meaningful information or when the network structure stays unaltered after permuting

its nodes. GNNs with these features can successfully capture the local structure and linkages existing

in the network without being influenced by node order. This capacity to generalize and generate

reliable representations is critical in tasks like node classification, graph classification, and link

prediction [51].

2.6.1.4 Neural message passing

The term "neural message passing" refers to a specific framework utilized within the context of graph

neural networks (GNNs). This framework enables the exchange and assimilation of information

between the nodes present within a graph.

At its core, neural message passing assumes that each node u ∈ V in a given graph G = (V, E), is

associated a feature vector xu ∈ R d, where d is some feature dimension. In order to update a node

u’s feature vector, producing a new feature vector h (k) u , we need to be able to collect feature

information coming from the node’s neighbors, as well as to integrate this information, to produce a

new representation for the node This procedure is reiterated for several message passing steps,

enabling the nodes to exchange information and enhance their representations.

The equation for this process can be articulated in the following manner:

2. ℎ(𝑘 + 1)𝑢 = 𝑈𝑃𝐷𝐴𝑇𝐸(𝑘)(ℎ(𝑘)𝑢, 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸(𝑘)({ℎ(𝑘)𝑣, ∀𝑣 ∈ 𝑁(𝑢)}))

In this context, the functions UPDATE and AGGREGATE are differentiated by their arbitrary

characteristics, which are usually established as neural networks. The AGGREGATE function

collects the embeddings of surrounding nodes in the neighborhood N(u) to produce a message

Chapter 2 : Graph ATtention Networks

33

m(k)_N(u) based on this compiled data. Conversely, the UPDATE function combines the message

m(k)_N(u) with the previous embedding h(k-1) u to create the new and improved embedding h(k)_u.

All nodes begin with initial embeddings set to the input features xu for all nodes u at iteration k=0.

By repeating the process of message-passing K times, the desired outcome is achieved, we can use

the final layer output to define the embeddings for each node [52] .

Figure 22: Neural message passing of target node A

2.6.2 Types of Graph Neural Networks

1. Graph Convolutional Networks (GCNs): A GCN is a type of GNN that uses convolutional layers

to process graph data. These layers apply a set of learnable filters to the graph, designed to take

into account the structure of the graph and the relationships between vertices.

Some of the most common uses of GNNs in graph classification include:

 Social Network Analysis: GNNs can classify people in a social network based on their

relationship to other people.

 Bioinformatics: GNNs can classify protein-protein interaction networks and predict

protein functions.

2. Graph Autoencoders (GAEs): GAEs use graph convolutional layers to learn a low-dimensional

representation of the input graph. The network is trained to encode the graph into a lower

dimensional space, and decode it back to the original graph.

3. Graph Recurrent Networks (GRNs): GRNs are designed for processing graph-structured data in

a sequence or time-series setting. They use recurrent neural networks to propagate information

between nodes across several time-steps.

4. Graph Transformers: Graph Transformers are inspired by the Transformer architecture used for

natural language processing tasks. They use self-attention mechanisms to capture the

relationships between nodes in the graph.

5. Graph Attention Networks (GATs): GAT is a GNN that uses an attention mechanism to weigh the

importance of different vertices in a graph when processing data. This allows GNNs to focus on

the most relevant cornerstones and relations when making predictions.

2.7 Graph ATtention Networks

In a research paper titled "Graph Attention Networks" published in 2018, Petar Velikovi and

colleagues introduced the Graph Attention Network (GAT), a form of Graph Neural Network (GNN).

Chapter 2 : Graph ATtention Networks

34

GAT was created in order to overcome some of the limitations of conventional GNNs when modeling

complicated dependencies and relationships in graph-structured data. Typical traditional GNNs treat

each neighbor equally when aggregating input from nodes in the neighborhood. However, many

nodes may have differing degrees of importance or relevance in many real-world settings.

To tackle this challenge, GAT incorporates attention mechanisms into the GNN architecture.

Attention mechanisms allow the network to dynamically weigh the importance of different nodes

when aggregating information. In other words, GAT assigns attention coefficients to each pair of

nodes in the graph, indicating the importance of one node's information for another. These

coefficients are learned during the training process.

By leveraging attention, GAT enables nodes to focus on the most relevant neighbors and weigh their

contributions accordingly. This adaptive aggregation process allows GAT to capture more nuanced

relationships and dependencies within the graph, leading to improved performance in various graph-

related tasks [53].

2.7.1 Architecture of Graph ATtention Networks

The architecture of a Graph Attention Network (GAT) typically consists of the following

components [53]:

1. Input Graph: GAT takes as input a graph represented by nodes and edges. Each node is

associated with a feature vector, which could encode attributes or characteristics of the node.

2. Node Embedding Layer: The initial node features are fed into a node embedding layer, which

maps each node's feature vector to a lower-dimensional space. This layer aims to capture

meaningful representations of the nodes.

3. Graph Attention Layer(s): The core component of GAT is the graph attention layer. It consists

of multiple attention heads, which operate in parallel to learn different sets of attention

coefficients. Each attention head computes attention scores between a central node and its

neighboring nodes.

a. Attention Coefficient Computation: For each pair of nodes (a central node and one of its

neighbors), attention coefficients are computed. The coefficients measure the importance

of the neighbor's information for the central node and are calculated based on their

respective feature vectors.

b. Attention Aggregation: The attention coefficients are used to compute weighted

aggregations of the neighboring node features. This aggregation step ensures that the

central node can focus on the most relevant information from its neighbors.

c. Multi-Head Attention: The outputs of the attention heads are concatenated or averaged

to produce a combined representation for each node. This allows the model to capture

different aspects or perspectives of the graph.

4. Optional Additional Layers: Depending on the specific task, additional layers such as fully

connected layers or pooling operations can be added to further process the node

representations and perform higher-level computations.

5. Output Layer: The final node representations obtained from the graph attention layers are fed

into an output layer for the specific task at hand. This could be a node classification layer, link

prediction layer, or any other layer appropriate for the target problem.

Chapter 2 : Graph ATtention Networks

35

The parameters of the GAT model, including the attention coefficients, are learned through

backpropagation and optimization techniques such as gradient descent, minimizing a task-specific

loss function.

2.7.2 Graph ATtention Networks advantages

The Graph Attention Network (GAT) model offers several advantages, including:

1. Adaptive Information Aggregation: GAT involves an attention mechanism that supports

adaptive information aggregation. It allows nodes to dynamically weigh the importance of

neighboring nodes when aggregating information. This adaptability helps capture complex

relationships and dependencies in the graph, thereby improving performance.

2. Flexible contextual representation: GAT captures contextual information by considering

related nodes in the graph. By focusing on the most informative neighbors, GAT generates

node representations responsive to local context. Because of this flexibility and context

awareness, GAT is well-suited for tasks where local neighborhood plays a key role.

3. Multi-Head Attention Mechanism: GAT uses a multi-head attention mechanism, which uses

multiple attention heads to simultaneously capture different aspects or views of a graph. This

allows the model to learn diverse and complementary representations. The combination of

multiple heads increases the expressiveness of GAT and improves the performance of various

tasks.

4. Handling large and sparse graphs: GAT works well even when dealing with large and sparse

graphs due to its ability to selectively consider relevant nodes. By focusing on the most

important nodes and considering the interactions between them, GAT efficiently handles

graph-structured data, making it applicable to real-world scenarios with complex and large-

scale graph structures.

5. Versatility and generalizability: GAT have been successfully applied to various graph-

related tasks, including node classification, link prediction, recommender systems, and

graph-level prediction. Its flexibility and ability to capture complex dependencies make it a

versatile model that can be adapted to different applications.

It's important to note that the advantages of GAT may depend on the specific problem, dataset, and

implementation details. It's always recommended to carefully evaluate the model's performance and

compare it with other baselines or state-of-the-art methods for a given task.

Chapter 2 : Graph ATtention Networks

36

2.7.3 Comparison of GAT and different GNN’s architectures

Model Key Idea Attention Aggregation Message

Passing

Advantages

Graph

Attention

Network

(GAT)

Attention-

based message

passing

Yes Weighted sum Linear

combination of

node features

and attention

scores

Captures node

importance,

allows for

flexible feature

weighting

Graph

Convolutional

Network

(GCN)

Convolution-

based message

passing

No Averaging Convolution

of node

features

and adjacency

matrix

Simple, easy

to implement

Graph

Isomorphism

Network

(GIN)

Learnable

function-based

message

passing

No Multi-layer

perceptron

Aggregation of

node features

and fixed

function

Powerful, can

learn complex

functions

GraphSAGE Sampling-

based message

passing

No Max

pooling or

concatenation

Aggregation of

node features

from sampled

neighborhood

Scalable to

large graphs

GNN-LSTM LSTM-based

message

passing

No LSTM LSTM-based

message

passing

Captures

temporal

dependencies

Table 3: Comparison of GAT and different GNN’s architectures

2.8 Conclusion
In this chapter, we have defined the main concept of deep learning as a subset of the field of machine

learning, which is a subfield of AI, and at the very core are graph neural networks (GNNs), The terms

deep learning and neural networks in reality encompass a wide variety of architectures. Most of these

networks will share elements i.e., gradient descent, the backpropagation algorithm activation

functions, loss functions. While the space of models is diverse, most of them can be grouped into

some broad categories. One of the major ones was the subject of the last section: Graph Attention

Networks (GATs)

In summary, the subsequent chapter will delve into the practical use of GATs, providing a

comprehensive understanding of their applications in machine learning. By applying the concepts and

methodologies presented thus far.

Chapter3: Graph ATtention Networks for the development of session-based recommendation systems

37

Chapter3.

 Graph ATtention Networks for the development of session

 Based recommendation systems

Chapter3: Graph ATtention Networks for the development of session-based recommendation systems

38

Chapter 3 : Graph ATtention Networks for the development of session-based

recommendation systems

3.1 Introduction

E-commerce platforms frequently inundate their users with an overwhelming number of products for

sale. To improve user the experience, recommender systems provide customized and practical

recommendations. However, conventional recommender systems rely on user profiles, which can be

difficult to create for new users, anonymous visitors, or individuals who have deleted their tracking

data. In such circumstances, session-based recommendations provide an alternative method.

The following chapter delves into the practical application of Graph Attention Networks (GATs) in

the context of session-based recommendations. The utilization of graph attention mechanisms allows

us to enhance the precision and efficacy of customized recommendations, leading to a personalized

and uninterrupted shopping experience for all users. GATs provide a powerful tool to analyze the

browsing behavior within the current session and generate relevant suggestions based on this context.

This chapter delves into the methodologies and techniques employed to optimize GATs for session-

based recommendations, with the goal of delivering enhanced user satisfaction and engagement.

3.2 Deep learning-based recommendations

In just a few years, numerous deep recommender systems have been put out. Innovation is definitely

thriving in the industry. It would be simple to dispute the necessity of using so many distinct

architectures at this point and perhaps even the effectiveness of neural networks for the given problem

domain. To this purpose, the benefits of deep learning-based recommendation models were outlined

as follows in [54]:

 Nonlinear Transformation: contrary to linear models, deep neural networks is capable of

modeling the non-linearity in data with nonlinear activation functions such as relu, sigmoid,

tanh, etc. This property makes it possible to capture the complex and intricate user-item

interaction patterns.

 Representation learning: Learning complex patterns and representations from large-scale and

high-dimensional data is where deep learning models excel. They can automatically learn rich

representations of items, users, and their interactions, capturing intricate relationships and

latent factors that conventional methods may struggle to uncover.

 Flexibility and scalability: Deep learning models offer flexibility in modeling different types

of recommendation tasks. They can handle various data types such as textual, visual, and

sequential data, enabling the incorporation of diverse information sources into the

recommendation process. Moreover, deep learning models can scale well to handle large

datasets and are amenable to distributed computing frameworks.

3.3 A GAT Based-Model for Session Based Recommender Systems

A Graph Attention Network (GAT) can be used as a model for session-based recommender

system to recommend items to users based on their current session or sequence of interactions. .

By leveraging attention mechanisms and graph convolutions, Graph Attention Networks excel in

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

39

capturing the dependencies and interactions among items in a session-based recommendation

system. They can effectively model the dynamic nature of user behavior and provide accurate

recommendations based on the sequential patterns observed in the session data.

 Architecture of the proposed model

The proposed model based on GAT for building SBRS is depicted in Fig 23. After representing

a session with a graphical structure (nodes and edges), this model processes the resulting graph

with its adjacency matrix through several layers iteratively.

1. Input layer: The layer receives a set of node features as its input

h= {ℎ⃗ 1, ℎ⃗ 2, ℎ⃗⃗ ⃗
3, . . . , ℎ⃗ 𝑁} , ℎ⃗ 𝑖 ∈ 𝑅𝐹 where N is the number of nodes, and F is the number

of features in each node The layer outputs a new set of node features of the form (of

potentially different cardinality F’), h’= {ℎ′⃗⃗ ⃗1, ℎ′⃗⃗ ⃗2, ℎ′⃗⃗⃗⃗ ⃗
3, . . . , ℎ′⃗⃗ ⃗𝑁}, as its output.

2. Linear Transformation layer: To represent each node in a lower dimension, the

feature matrix x (set of ℎ⃗ 𝑖) is transformed using a shared weight matrix W and a bias

𝑏 to produce the output 𝑌.

ℎ∗ = 𝑊ℎ + 𝑏
This linear transformation allows making the required features simpler to identify and

classify to compute the attention coefficients on a reduced feature space.

3. Attention mechanism Layer: an attention mechanism is used to compute the

importance of each neighboring node for a given node i. Two main operations are

carried out in this layer, namely:

a. Attention Coefficients: The attention coefficients are computed by a shared

neural network with parameters of {a}. The output of this network is a scalar

value 𝒆𝒊𝒋 that represents the compatibility between nodes i and j.

 3. 𝑒𝑖𝑗 = a (Wℎ⃗ 𝑖 ,Wℎ⃗ 𝑗)

Where :

a is the weight vector of the attention mechanism

ℎ⃗ 𝑖, ℎ⃗ 𝑗 are the transformed feature vectors of nodes i and j

W is the weight matrix of the linear transformation

b. Attention Scores: The softmax function is then used to normalize the attention

coefficients in order to produce a probability distribution for node i's

neighbors. The model can then focus on the nodes that are the most important

for each node.

 4. α𝑖𝑗= softmax (𝑒𝑖𝑗) =
exp(𝑒𝑖𝑗)

 ∑ exp(𝑒𝑖𝑘) 𝑘𝑖 ∈𝑁

Where:

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

40

𝛂𝒊𝒋is the attention score for the edge (i,j)

𝒆𝒊𝒋 is the attention coefficient between nodes i and j

Attention mechanism is a single layer neural networks, the input for this network are

the two transform node features vectors for an edge, and applying the LeakyReLU

nonlinearity (with negative input slope α = 0.2). the output indicates the importance

between these nodes so the attention coefficients, and applying the LeakyReLU

nonlinearity (with negative input slope α = 0.2).

 5. α𝑖𝑗= softmax (𝑒𝑖𝑗) =
exp(LeakyReLU(a⃗ T[(Wℎ⃗⃗ 𝑖||Wℎ⃗⃗ 𝑗]))

 ∑ exp(LeakyReLU(a⃗ T[(Wℎ⃗⃗ 𝑖||Wℎ⃗⃗ 𝑘])) 𝑘𝑖 ∈𝑁

4. Aggregation and Update Layer: By aggregating the embeddings of node i's neighbors,

weighted by their attention scores, the final embedding vector can be Updated. This

is done by using a weighted and nonlinearity sum operation σ.

 ℎ′⃗⃗⃗
𝑖 = σ ∑ (α𝑖𝑗 Wℎ⃗ 𝑗) 𝐽∈𝑁𝑖

Where :

ℎ′⃗⃗ ⃗𝑖 is the final embedding vector of node i

σ is the activation function

α𝑖𝑗is the attention score for the edge (i,j)

|| is the concatenation

W is the weight matrix of the linear transformation

of (potentially, with a different cardinality F'), h’= {ℎ′⃗⃗ ⃗1, ℎ′⃗⃗ ⃗2, ℎ′⃗⃗⃗⃗ ⃗
3, . . . , ℎ′⃗⃗ ⃗𝑁}.

5. Next-item recommendation layer: The final embedding vector with final scores are

used to presents a ranked list of next-item recommendations.

Figure 23: Functioning process of GAT based-model for SBRS

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

41

3.4 Material environment

The experiments were conducted on a computer system with the following specifications:

 Processor: Intel Core i5 6th generation

 RAM: 8 GB

 Graphics Card: Integrated graphics

 Storage: Solid State Drive (SSD)

3.5 Development tools and Libraries

The development and implementation of the model were carried out using the following tools and

libraries:

1.5.1 Jupyter

Jupyter 1 is an open source web application for creating and sharing interactive notebooks.

Released in 2014 and derived from IPython. Jupyter allows combine code, visualizations, and text

into one document. It supports multiple programming languages and facilitates reproducible

research. Jupyter enables users to iteratively develop code, analyze data, and communicate

insights. The ecosystem includes JupyterLab and JupyterHub for advanced functionality and

collaboration. The user-friendly interface, language flexibility, and active community make

Jupyter a valuable tool in data science and research.

Figure 24: Jupyter logo

3.5.2 Python

Python 2 is a powerful, high-level, interpreted programming language. Designed by Guido van

Rossum in 1991, it is known for its simplicity and readability. Python's simple and short syntax places

great emphasis on code readability, making it ideal for beginners. It is compatible with various

programming paradigms, including procedural, object-oriented, and functional programming. Due to

its rich ecosystem of libraries and frameworks, Python is popular in web development, data analysis,

machine learning, and automation. Its widespread adoption and continued expansion is supported by

extensive community support and documentation. Overall, Python is a powerful and easy-to-use

programming language that continues to grow and prosper.

1 Project Jupyter | Home
2 Welcome to Python.org

https://jupyter.org/
https://www.python.org/

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

42

Figure 25: Python programming language logo

3.5.3 PyTorch

PyTorch 3 is an open source machine learning library for Python. It was developed by Facebook's AI

research lab and released in 2016. PyTorch provides a dynamic arithmetic framework that enables

efficient tensor computation and automatic differentiation. It is widely used to build and train neural

networks, especially in deep learning applications. PyTorch's intuitive and flexible design, as well as

its extensive collection of pre-built modules and utilities, make it a popular choice among researchers

and practitioners. With an active community and constant development, PyTorch remains at the

forefront of the deep learning ecosystem, enabling users to accelerate research and build cutting-edge

machine learning models.

Figure 26: PyTorch logo

3.5.4 Numpy

NumPy is the fundamental library for numerical computation in Python. It provides support for large

multidimensional arrays and matrices, and a collection of mathematical functions for manipulating

these arrays. First released in 2006, NumPy has grown to become a cornerstone of scientific

computing and data analysis. It provides efficient data structures, transfer functions, and vectorized

operations to improve the performance of numerical calculations. Due to its rich functionality and

integration with other scientific libraries, NumPy is widely used in fields such as data analysis,

machine learning, and scientific research, enabling users to process and manipulate numerical data

efficiently.

3 PyTorch

https://pytorch.org/

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

43

Figure 27: Numpy logo

3.5.5 Scikit-learn

Scikit-learn is a powerful machine learning library for Python. It provides a comprehensive set of

tools for various machine learning tasks, including classification, regression, clustering, and

dimensionality reduction. First released in 2007, Scikit-learn has grown to become the go-to

resource for machine learning practitioners and researchers. It provides a user-friendly interface,

extensive documentation, and a wide range of algorithms and techniques. Scikit-learn integrates

seamlessly with other scientific libraries in the Python ecosystem, making it a versatile choice for

data analysis and model development. With its powerful features and community support, scikit -

learn enables users to efficiently explore, model and solve complex machine learning problems.

Figure 28: Scikit-learn logo

There are countless additional libraries and frameworks available in Python for a variety of uses. Here

are a few famous examples:

 Torch_geometric: A PyTorch library for geometric deep learning. It provides modules for

constructing graph data structures (for example, Data), graph operations (for example, to

undirected), and neural network layers for graph data (for example GATConv).

 Pandas (imported as pd): A data manipulation and analysis library.

 Unbalanced-learn (imblearn): A library for dealing with imbalanced datasets that includes

oversampling (e.g., RandomOverSampler) and undersampling (e.g. RandomUnderSampler)

approaches.

3.6 Experiments and implementations

3.6.1 Evaluation metrics

The performances of the proposed model and compared methods are evaluated by

 Accuracy : The percentage of cases that were successfully predicted out of all instances is

used to calculate accuracy. The number of accurate forecasts divided by the total number of

predictions is used to compute it. Accuracy, however, might not be the best statistic for

datasets with imbalances.

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

44

 Accuracy = (TP + TN) / (TP + TN + FP + FN)

 Precision is the percentage of accurate positive predictions compared to all positive forecasts.

It measures the proportion of true positives to the total of true positives and false positives

and focuses on the accuracy of positive forecasts.

 Precision = TP / (TP + FP)

 Recall (Sensitivity or True Positive Rate): Recall counts the number of actual positive cases

out of all the true positive forecasts. It is measured as the ratio of true positives to the total of

true positives and false negatives and focuses on the model's capacity to detect positive cases.

 Recall = TP / (TP + FN)

 F1-Score: The harmonic mean of recall and precision is the F1 score. When you wish to take

both the precision and recall values into account, it offers a balanced measurement between

the two. It is determined by dividing the sum of precision and recall by two times the product

of precision and recall.

 F1 Score = 2 * (Precision * Recall) / (Precision + Recall)

Where TP represents the number of correct recommendations, TN represents the number of

correctly identified non-relevant items, and FP indicates the number of incorrect

recommendations. FN indicates the number of desired items that are not included in the

recommendation list.

3.6.2 Datasets

The measurements made for datasets are from two different domains: e-commerce and movies

 E-Commerce Datasets: the following e-commerce dataset is used

1. RetailRocket 4: A publicly accessible e-commerce dataset called Retail Rocket covers user

interactions with online retail platforms. It is frequently employed in the study and assessment

of recommendation systems. The collection is made up of anonymous user behaviors

including add-to-cart, buy, and view actions. Each event has a timestamp, user session ID, and

object ID attached to it.

2. Yoochoose 5 : The YooChoose dataset is another publicly available e-commerce dataset

commonly used for recommendation system research and evaluation. It contains user click

data from an online retail platform. The dataset captures user interactions such as clicks,

views, and purchases, along with the associated session information.

The YooChoose dataset is particularly suitable for session-based recommendation tasks,

where the goal is to recommend items based on the user's current session or recent browsing

history. It provides a valuable resource for studying user behavior, session dynamics, and

developing personalized recommendation algorithms.

 Media Datasets:

1. MovieLens100K6

The MovieLens 100K dataset is a widely used benchmark dataset in the field of recommender

systems. It contains movie ratings provided by users of the MovieLens website. The dataset

4 Available at: Retailrocket recommender system dataset | Kaggle
5 Available at: yoochoose | Kaggle
6 Available at: MovieLens 100K Dataset | Kaggle

https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset
https://www.kaggle.com/datasets/phhasian0710/yoochoose
https://www.kaggle.com/datasets/prajitdatta/movielens-100k-dataset

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

45

is commonly used for tasks such as collaborative filtering, where the goal is to predict user

ratings for movies based on historical ratings and user preferences.

The statistics for the datasets are given in Table :

 RetailRocket Yoochoose MovieLens

Rows 35309 74708 100226

Sessions 3636 14514 22202

Items 15144 9255 9723

Table 4: Characteristics of the datasets

3.6.3 Loss functions

While using GAT to address session-based or more general sequential prediction problems is a natural

choice, the specific network architecture, choice of attention mechanism, and use of session-parallel

mini-batches to speed up the training phase are key innovative elements of the technique. method.

The GAT architecture is able to capture complex relationships and dependencies between elements

in a session using an attention mechanism, which proves to be well suited for modeling sequential

data. By assigning different importance weights to neighboring nodes, GAT selectively focuses on

related items, allowing efficient learning and representation of the importance of different items in a

single session. Furthermore, the choice of attention mechanism in GAT demonstrates its ability to

handle complex dependencies within session data, making it an effective solution for session-based

prediction tasks.

Typically, there are several hyper-parameters that can be adjusted, such as the learning rate,

in_features, out_features, num_heads, and a dropout factor that helps maintain network stability.

Another essential aspect determining the effectiveness of SBRS with GAT is the selection of the loss

function.

 The method of Cross-Entropy Loss is frequently employed in architectural work to evaluate

the difference between the probabilities of the predicted class and the target class. In this case,

the predicted class probabilities are derived from the GAT model's output, whereas the target

class is the subsequent item in each session. The loss function works by computing the

negative logarithmic-likelihood of the anticipated class probabilities concerning the target

class. And it is defined with the following equation:

 𝐿𝐶𝐸 = −∑ 𝑡𝑖𝑙𝑜𝑔(𝑝𝑖)
𝑛
𝑖=1

For n classes, where 𝑡𝑖 is the truth label and 𝑝𝑖 is the Softmax probability for the 𝑖𝑡ℎclass.

And the hyperparameters include:

1. In_features: The input feature dimension of each node in the graph. In this case, it is set to 1

because node characteristics are represented by the position of each element in the session.

2. Out_features: The output feature dimension of each node after applying GAT convolution. In this

code, it is set to 100.

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

46

3. Num_heads: The number of attention heads used in GAT convolution. It controls how often the

attention mechanism is applied. The code uses 8 attention heads.

4. Dropout: The dropout rate applied after GAT convolution to prevent overfitting. Setting it to 0.1

means that 10% of node features are randomly set to zero during training.

3.6.4 Implementation

The code performs a session-based recommendation using a Graph Attention Network (GAT). The

implementation can be summarized as follows:

1) The necessary libraries are imported, including pandas, numpy, scikit-learn, torch, and

imbalanced-learn.

Figure 29: Import necessary libraries

2) The data is read from a CSV file and preprocessed. Irrelevant columns are dropped, and the

timestamp is converted to datetime format. The data is sorted based on visitor ID and

timestamp. The previous item ID for each visitor is added as a new column. Any rows with

missing values are dropped.

Figure 30: Preprocessing the data

3) The data is split into training and testing sets using a train-test split with a 80:20 ratio.

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

47

Figure 31: Split the dataset

4) Item IDs are mapped to indices. Unique item IDs from both the training and testing sets are

combined, and each item is assigned a unique index using a dictionary.

Figure 32: Mapping the Item IDs to indices

5) Out-of-range indices are filtered out, and sessions are constructed for the training and testing

data. Sessions are grouped by visitor ID, and each session contains a sequence of item indices.

Figure 33: Filtering any out of range indices

Figure 34: Construct sessions for training and testing data

6) The lengths of the sessions in the training and testing sets are calculated.

7) Dynamic graphs are created for the training and testing data. The graphs consist of node

features, edge indices, edge attributes, and edge timestamps. The number of nodes is equal to

the total number of unique items.

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

48

Figure 35: Create the dynamic train graph

8) A Graph Attention Network (GAT) model is defined using the torch_geometric library. The

GAT model is implemented as a subclass of the nn.Module class and includes the necessary

layers and functions.

9) The GAT model is trained and evaluated. An Adam optimizer is used with a learning rate of

0.01, and the cross-entropy loss is used as the loss function. The training loop iterates over a

specified number of epochs. In each epoch, the model is trained using the training graph, and

then evaluated using the testing graph. Training and testing loss, as well as accuracy, are

computed and can be tracked.

This implementation utilizes session data, constructs dynamic graphs, and applies a GAT model for

session-based recommendation. It provides a framework for training and evaluating the GAT model

on the given data.

Note: In the implementation, the Graph Attention Network (GAT) model utilizes a dynamic graph

representation. A dynamic graph consists of time-varying relationships between nodes, where the

edges in the graph are associated with timestamps and attributes. This allows the model to capture

temporal dependencies and consider the order of interactions between nodes.

However, it is important to note that handling dynamic graphs can consume a significant amount of

memory, particularly when dealing with large datasets. Due to memory constraints, in this

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

49

implementation, a smaller dataset is used to avoid potential session crashes or out-of-memory errors,

particularly when running the code in an environment like Google Colab. By using a smaller dataset,

the memory usage is reduced, enabling the successful execution of the model without encountering

memory-related issues.

3.7 Results

Table 5 shows the results of the proposed GAT-based SBRS model on the aforementioned

evaluation datasets using the accuracy metric. Several architectures were examined and a single

layer of GAT was found to be the best performer.

Table 5: The results of the proposed GAT-based SBRS model

3.7.1 Comparison with Baselines

POP Baseline: also known as the popularity baseline, is a simple recommendation approach that

suggests items to users based on their overall popularity or frequency of occurrence in a dataset.

S-POP Baseline: In session-based recommendation systems, where user interactions are captured in

sequential sessions or sessions of user activities, S-Pop refers to a popularity measure that takes into

account the popularity of items within a specific session. It focuses on recommending items that are

popular within the current session.

Random Recommendations : Random recommendation baseline is a simple and straightforward

approach in recommendation systems where items are selected randomly and recommended to users.

It serves as a basic benchmark for evaluating the performance of more sophisticated recommendation

algorithms.

Epochs RETAILROCKET YOOCHOOSE MOVIELENS

100 0.7923 0.6158 0.5751

200 0.7933 0.6165 0.5743

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

50

The table allows comparisons between the three baselines with the outcomes of the GAT-based

SBRS model with metrics (precision, recall, and F1-score), it clearly shows that our model

dominates the other methods.

Baselines

RETAILROCKET

YOOCHOOSE

Precision Recall F1-Score Precision Recall F1-Score

POP 0.4546 0.6462 0.5333 0.5342 0.9241 0.6771

S-POP
0.0792 0.2229 0.1169 0.1106 0.1944 0.1410

Random
recommendations

0.0721
0.2920 0.1156

0.1014 0.1842 0.1308

GAT-based SBRs
model

0.7084 0.7807 0.7428 0.9505 0.6036 0.7384

 Table 6: Comparison of GAT-based SBRS model with the baselines

Based on the previous results, we can draw a comparison between the proposed model and the

baselines using these graphs, which vividly illustrate the performance differences.

Figure 36: Model performance comparison with RETAILROCKET dataset using precision metric

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

51

Figure 37: Model performance comparison RETAILROCKET dataset using recall metric

Figure 38: Model performance comparison YOOCHOOSE dataset using F1-score metric

Figure 39: Train and test losses for RETAIL-ROCKET dataset

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

52

3.7.3 Discussion

In this study, we compared the performance of our GAT-based SBRS (Session-Based

Recommendation System) model with three baselines (POP, S-POP and Random recommendations)

on the RETAILROCKET and YOOCHOOSE datasets. The evaluation was based on precision, recall,

and F1-score metrics.

The results clearly demonstrate the superiority of our GAT-based SBRS model over the baselines.

On the RETAILROCKET dataset, our model achieved a precision of 0.7084, a recall of 0.7807, and

F1-score of 0.7428. Similarly, on the YOOCHOOSE dataset, our model achieved a precision of

0.9505, recall of 0.6036, and F1-score of 0.7384. In comparison, the baselines exhibited lower

performance across all metrics.

The performance improvements of our GAT-based SBRS model can be attributed to several factors.

Firstly, the GAT architecture employed in our model has the ability to capture complex relationships

and dependencies among items in sessions. By leveraging attention mechanisms, the model assigns

higher weights to important items in the session, thereby enabling more accurate recommendations.

This is particularly beneficial in session-based recommendation scenarios where user preferences can

change dynamically.

Furthermore, the inclusion of temporal edge indices, edge attributes, and edge times in our model

enhances the understanding of session dynamics. By considering the order of items, their attributes,

and the timing of interactions, our model gains a deeper insight into the evolving preferences and

interests of users. This additional contextual information aids in making more personalized and

relevant recommendations.

The practical implications of our GAT-based SBRS model are significant. By providing accurate

session-based recommendations, e-commerce platforms can enhance the user experience and increase

user engagement. Personalized and relevant recommendations can lead to improved customer

satisfaction, potentially resulting in higher conversion rates and revenue for retail companies. Our

model's performance improvements offer a promising avenue for businesses to deliver more effective

recommendations and drive user engagement.

Despite the promising results, it is important to acknowledge some limitations of our study. Firstly,

the evaluation was performed on two specific datasets, RETAILROCKET and YOOCHOOSE. While

these datasets are widely used in the field, they may not fully represent the diversity of real-world

scenarios. Future research should consider evaluating the model on additional datasets to validate its

performance across different contexts.

In terms of future directions, there are several avenues to explore. One potential area for improvement

is the incorporation of additional contextual information, such as user demographics, item attributes,

or session context. By leveraging a wider range of information, the model can gain a deeper

understanding of user preferences and provide even more accurate recommendations. Additionally,

exploring alternative graph-based architectures or integrating other deep learning techniques could

further enhance the performance of session-based recommendation systems.

In conclusion, our study demonstrates the effectiveness of the GAT-based SBRS model in session-

based recommendation scenarios. The model's superior performance compared to the baselines and

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

53

its competitive standing in relation to existing approaches validate its potential contributions to the

field. The practical implications of accurate session-based recommendations emphasize the value of

our model in improving user experience and driving business outcomes. Further research and

advancements in this area will continue to refine and extend the capabilities of session-based

recommendation systems.

3.8 Conclusion

At the beginning of this chapter, the Deep learning-based recommendations were discussed. The

focus then shifted towards the use of one of the deep learning models: GATs on session-based

recommendations, which are becoming one of the most important recommendation approaches in

practice for many domains, including movies, and general e-commerce. A GAT Based-Model was

proposed for SBRS and proved to perform better than the three baselines used (pop, s-pop, random

recommendations) in terms of the three-evaluation metrics introduced: precision, recall and F1.

General conclusion

54

 General

 Conclusion

General conclusion

55

4. General conclusion

A. Summary

First, a session-based recommender System was reported in Chapter 1 by a survey that was conducted

to determine the recommendation system, the problem of a session-based recommender, and the

position of session-based in the family of sequence-aware recommendations by a comparison of

SBRS and other RSs. Also, categorization, approaches, challenges, and limitations concluded it.

Then, in Chapter 2, deep learning is studied in detail from the basics, namely H. Neural Networks,

Backpropagation, Gradient Descent, Loss, and Activation Functions to Address the Challenge of

Employing Deep Learning Approaches Representing Graph Attention Networks in Session-Based

Recommendation.

In Chapter 3, in order to answer the research question, a recommender system is created, refined, and

evaluated based on the session-based model. The end result of this work is a consideration of research

findings and their implications.

The research questions discussed are:

“"How can a Graph Attention Network (GAT) model be effectively utilized in session-

based recommendation systems to capture the intricate and dynamic patterns of user

 behavior within individual sessions, leading to improved and personalized

recommendations?"
Session-based recommendation using GAT is now widely recognized as one of the primary means of

recommendation in many areas, To enhance the performance of session-based recommendation

systems (SBRS), With the proposed GAT-Based-Model approach, it was demonstrated how Graph

ATtention Networks can incorporate sessions in recommender systems, which provides superior

results on the three primary evaluation metrics (precision, recall, and F1) compared to the four

baselines employed (pop, spop, Random, and popularity). on three datasets, each from a different

domain (e-commerce and music).

It is also relevant to note that a part of this research has been published in the RIA’2023 Conference

(for more information, refer to the appendix at the end of this document).

B. Directions for future research

From this survey, and based on the results of GAT shows in the field of Session-based recommender

systems, we plan to perform the following research:

1. Enhancing Graph Attention Mechanisms:

 Investigate innovative ways to increase the effectiveness of graph attention

mechanisms in session-based recommendation systems.

 Explore other attention mechanisms, such as self-attention or multi-head attention, to

capture more complicated interactions within the graph.

2. Incorporating Temporal Dynamics:

 Study techniques to include temporal dynamics into session-based recommendation

systems using graph attention networks.

GENERAL CONCLUSION

56

 Develop methods for modeling the evolution of user preferences over time and modify

the recommendations accordingly.

3. Evaluation Metrics and Benchmarks:

 Develop standardized evaluation standards and benchmark datasets particularly

tailored for session-based recommendation systems leveraging graph attention

networks.

 Enable fair comparisons between different techniques and encourage improvements

in the field.

4. Real-world Application: Job Recommendation Website under the name of

“KHADEMNI.DZ”.

PROTOTYPE

57

 Prototype

Prototype

58

5. Prototype

In the future, we plan to launch a job recommendation website called "KHADAMNI.DZ."

Figure 40: Home page of the job recommendation website

 The job recommendation website "KHADEMNI.DZ" uses graph attention network

architecture to provide personalized job recommendations based on user session data. Even

users who are new to the platform or have limited browsing history can benefit from tailored

recommendations ,This website offers two modes of interaction: one through registration or

inscription, and the other in an anonymous manner. The site's recommendation system

analyzes user sessions for preferences and interests to ensure accurate and relevant job

recommendations.

Prototype

59

Figure 41 :Exploring the Dual Pathways Registration and Anonymity in Website Interaction

 The site provides job postings from various industries, ensuring users have access to a wide

range of employment opportunities. Covering industries such as technology, medical care,

finance, and education, users can explore employment opportunities in their favorite industries.

Figure 42: Job postings

 The job recommendation website "KHADEMNI.DZ" employs a graph attention network

architecture to deliver job recommendations primarily based on user session interactions

within the platform. By examining user behavior during each session, such as job

advertisements viewed and jobs applied for, the site generates personalized suggestions that

cater to the user's immediate interests and activities. This approach ensures that the job

recommendations provided align closely with the user's recent session interactions,

maximizing relevance and enhancing the overall user experience.

Prototype

60

Figure 43: Job recommendation

The development process involved designing and building a web platform integrating the graph

attention network approach. The method leverages the power of graph neural networks to analyze

and understand relationships among various job attributes such as job title, skills, and industry. By

taking these relationships into account, the system can generate more accurate and relevant

recommendations.

Appendix

61

 Appendix

Appendix

62

6. Appendix

The following appendix presents an article on a novel session-based recommendation system utilizing

Graph Attention Networks (GAT) named “Session-Based Recommender Systems with Graph

Attention Networks” . This article, published in RIA23 the First National Conference in Computer

Science Research and its Applications , focuses on the design and architecture of the proposed model,

aiming to address the challenges associated with session-based recommendations.

The article provides an in-depth description of the GAT-based architecture, outlining the key

components and their functionalities. We delve into the attention mechanism employed by GAT and

explain how it enables the model to dynamically weigh the importance of individual items based on

their relevance to the current session context.

Note: that the following content represents only the first page of the article. This limitation is

imposed to respect copyright laws and restrictions.

This appendix includes an attestation that was granted to us subsequent to the successful online

presentation of our article

BIBLIOGRAPHY

63

Bibliography

64

 Bibliography

Prototype

65

Bibliography

[1] G. A. a. A. Tuzhilin, " A survey of the state-of-the-art and possible extensions," Toward the next

generation of recommender systems, vol. Volume 17(NO. 6), p. Pages 734 _ 749, 2005.

[2] L. C. a. Y. W. oujin Wang, "A survey on session-based recommender systems," 2019.

[3] L. Y. A. S. a. Y. T. Shuai Zhang, "A survey and new perspectives," Deep learning based recommender

system, vol. Volume 52(NO. 1), 2019.

[4] A. I. C. D. L. S. M. S. K. J. e. a. Rashid AM, "Getting to know you: learning new user preferences in

recommender systems.," p. 127–34., 2002.

[5] K. J. R. J. Schafer JB, "Recommender system in e-commerce," in Proceedings of the 1st ACM

conference on electronic commerce, 1999.

[6] H. V. P. Resnick, "Recommender system’s," 1997.

[7] A. A. A.M. Acilar, "A collaborative filtering method based on Artificial Immune Network," pp. 8324-

8332, 2009.

[8] "Nvidia," [Online]. Available: https://www.nvidia.com/en-us/glossary/data-science/recommendation-

system/.

[9] C. S. J. Buder, "Learning with personalized recommender systems: a psychological view," pp. 207-216,

2012.

[10] L. N. Gadanho SC, "Addressing uncertainty in implicit preferences.," New York, NY, USA, 2007.

[11] "Hybrid Recommendation System – A Beginner’s Guide," [Online]. Available:

https://www.muvi.com/resources/ebooks/hybrid-recommendation-system.

[12] O. O. Poddubnyy, "GRAPH NEURAL NETWORKS FOR RECOMMENDER SYSTEMS," 2021.

[13] R. B.-Y. a. B. Ribeiro-Neto., "Modem Information Retrieval," p. 271–350, 1999.

[14] F. C. Z. L. Hui Li, "Content-Based Filtering Recommendation Algorithm Using HMM," in 2012 Fourth

International Conference on Computational and Information Sciences.

[15] B. S. a. J. Y. Greg Linden, "recommendations: Item-to-item collaborative filtering.," 2003.

[16] Burke, "R. Hybrid Recommender Systems," User Model User-Adap Inter 12, p. 331–370, 2002.

[17] "analyticsindiamag," 2021. [Online]. Available: https://analyticsindiamag.com/cold-start-problem-in-

recommender-systems-and-its-mitigation-techniques/.

[18] L. S. a. A. Gera., "A Survey of Recommendation System:Research Challenges," International Journal of

Engineering Trends andTechnology (IJETT), pp. 1989-1992, 2013.

[19] Z. SOUHILA, "Session-based recommender systems using recurrent neural network," 2020.

Prototype

66

[20] Z. A. a. I. U. Shah Khusro, "Recommender Systems: Issues, Challenges,and Research Opportunities,"

February 2016.

[21] F. O. A. H. a. A. G. J. Bobadilla, "Recommender systems survey. Knowledge-Based Systems," vol. 46, p.

109_132, 2013.

[22] D. J. ,. C. Massimo Quadrana, "Tutorial: Sequence-Aware Recommender Systems," in WWW '19:

Companion Proceedings of The 2019 World Wide Web Conference, May 2019.

[23] P. C. J. Massimo Quadrana, "Sequence-Aware Recommender Systems," February 2018.

[24] L. C. a. Y. W. Shoujin Wang, " A survey on session-based recommender system," 2019.

[25] H. D. L. N. Bamshad Mobasher, "Effective personalization based on association rule discovery from

web usage data," in Proceedings of the 3rd international workshop on Web information and data

management, 2001.

[26] I. I. B. N. H. D. K. &. J. V. Fabian Abel, "A Rule-Based Recommender System for Online Discussion

Forums," 2008.

[27] R. B. V. S. &. V. K. Utpala Niranjan, "Developing a Web Recommendation System Based on Closed

Sequential Patterns," 2010.

[28] M. V. D. K. Magdalini Eirinaki, "Web Path Recommendations based on Page Ranking and Markov

models," in Proceedings of the 7th annual ACM international workshop on Web information and data

management. ACM, 2005.

[29] C. F. a. L. S.-T. Steffen Rendle, "Factorizing personalized markov chains for next-basket

recommendation.," in In Proceedings of the 19th international conference on World wide web. ACM–,

2010.

[30] L. R. F. Asnat Greenstein-Messica, "Session-Based Recommendations Using Item Embedding," in IUI

'17: Proceedings of the 22nd International Conference on Intelligent User Interfaces, March 2017.

[31] Q. Z. H. ,. Z. ,. W. A. Shoujin Wang, "Sequential/Session-based Recommendations:

Challenges,Approaches, Applications and Opportunities," ACM, New York, NY, July 11–15, 2022.

[32] Y. B. a. A. C. I. Goodfellow, "Deep learning," MIT Press, 2016.

[33] I. Limited, "Artificial Intelligence and Machine Learning In Mobile Apps," [Online]. Available:

https://blogs.infosys.com/digital-experience/mobility/artificial-intelligence-and-machine-learning-in-

mobile-apps.html. [Accessed 20 May 2023].

[34] V. Lendave, "A Comprehensive Guide to Representation Learning for Beginners," November 4, 2021.

[Online]. Available: https://analyticsindiamag.com/a-comprehensive-guide-to-representation-

learning-for-beginners/.

[35] S. Ozechi, "Feature Engineering Techniques," sep 10, 2010. [Online]. Available:

https://towardsdatascience.com/feature-engineering-techniques-bab6cb39ed7e.

[36] B. S. a. S. Swapna, "“A Comprehensive Overview on Types of Machine Learning," vol. 04, 2015.

Prototype

67

[37] S. P. F. C. G. L. C. Z. a. P. S. Y. Z. Wu, "A Comprehensive Survey on Graph Neural Networks," in IEEE

Trans. Neural Netw. Learning Syst, Jan. 2021.

[38] E. G. PhD, "Deep Learning: Unleashing the Power of Artificial Intelligence," May 18, 2023. [Online].

Available: https://medium.com/@evertongomede/deep-learning-unleashing-the-power-of-artificial-

intelligence-603fd3dc8cdc . [Accessed May 20, 2023].

[39] J. Fumo, "A Gentle Introduction To Neural Networks Series — Part 1," Oct. 22, 2017.

[40] G. Rajgopal, "Deep Learning," Sep. 20, 2019.

[41] "How the Backpropagation Algorithm is Used to Train Neural Networks - AITechTrend," Apr. 18,

2023..

[42] "Neural Network Activation Function," 2023. [Online]. Available:

https://neuralnetwork101.com/activation-function.

[43] "Activation Functions in Neural Networks [12 Types & Use Cases]," May 31, 2023.

[44] B. Krishnamurthy, "An Introduction to the ReLU Activation Function," Oct. 28, 2022. [Online].

Available: https://builtin.com/machine-learning/relu-activation-function.

[45] "Relu1 And Relu6: Activation Functions With Benefits And Drawbacks," November 19, 2022. [Online].

Available: https://www.surfactants.net/relu1-and-relu6-activation-functions-with-benefits-and-

drawbacks/.

[46] J. P. a. A. Gibson, " Deep Learning," O'Reilly Media, 2014.

[47] A. Géron, "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow," O'Reilly Media,

2019.

[48] N. Buduma, "Fundamentals of Deep Learning," O'Reilly Media, 2017.

[49] "Demystifying Hyperparameters in Machine Learning Models," May 31, 2023.

[50] J. B. Y. L. A. S. a. P. V. M. M. Bronstein, " Geometric deep learning: going beyond euclidean data," IEEE

Signal Processing Magazine, p. 18–42, July 2017.

[51] "Graph Neural Networks — deep learning for molecules & materials," Jun. 01, 2023.

[52] "Deep Learning: Unleashing the Power of Artificial Intelligence," May 18, 2023.

[53] G. C. C. R. L. B. Petar Velickovi, "GRAPH ATTENTION NETWORKS," in ICLR 2018, 4 Feb 2018.

