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Recommender systems give users beneficial product or service recommendations for their decision-

making processes. Today, a variety of application domains such as YouTube, Amazon, Facebook, 

and ResearchGate have proven the validity of classic recommendation systems that employ 

collaborative and content-based filtering techniques. Session-based recommender systems, a novel 

RS paradigm, have evolved in recent years in order to give timelier and more accurate next-item 

recommendations that are responsive to being adjusted in various session circumstances. SBRSS 

strives to record dynamic and short-term user preferences within sessions. The literature only includes 

a few models with poor precision and efficacy as proposed development methodologies for SBRS 

models, which are this type of system's primary objectives. The goal of this thesis is to explicitly 

provide a new deep learning design for session-based recommender systems based on graph neural 

networks (GNNs) via the intriguing architecture of graph attention networks (GAT). Currently, gat-

based methodologies are among the most cutting-edge techniques used in many research fields, and 

SBRs can take advantage of them to greatly research fields, and SBRs can take advantage of them to 

greatly enhance the outcomes of their suggestions. 

Keywords: recommender systems, session-based recommender system, graph neural network, graph 

attention network. 

Résumé 

Les systèmes de recommandation donnent aux utilisateurs des recommandations de produits ou de 

services bénéfiques pour leurs processus de prise de décision. Aujourd’hui, une variété de domaines 

d’applications tels que YouTube, Amazon, Facebook et ResearchGate ont prouvé la validité des 

systèmes de recommandation classiques qui utilisent des techniques de filtration collaboratives et 

basées sur le contenu. Les systèmes de recommandation basés sur la session, un nouveau paradigme 

RS, ont évolué au cours des dernières années afin de fournir des recommandations plus ponctuelles 

et plus précises qui répondent à des ajustements dans diverses circonstances de la session. SBRSS 

s’efforce d’enregistrer les préférences d’utilisateur dynamiques et à court terme au sein des sessions. 

La littérature ne comprend que quelques modèles de faible précision et efficacité en tant que 

méthodologies de développement proposées pour les Modèles SBRS, qui sont les objectifs principaux 

de ce type de système. L'objectif de cette thèse est de fournir explicitement une nouvelle conception 

d'apprentissage profond pour les systèmes de recommandation basés sur la session basée sur les 

réseaux neuronaux graphiques (GNNs) via l'architecture intrigante des réseaux d'attention graphique 

(GAT). Actuellement, les méthodologies basées sur le trou sont parmi les techniques les plus 

avancées utilisées dans de nombreux domaines de recherche, et les SBR peuvent en tirer profit dans 

des domaines très recherchés, et ils peuvent en profiter pour améliorer considérablement les résultats 

de leurs suggestions. 

Mots clés : système de recommandation, système de recommandation basé sur la session, réseaux 

neuronaux graphiques, réseau d'attention graphique. 
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 General introduction 

1.  Background  

Since the first articles on collaborative filtering appeared in the middle of the 1990s, recommender 

systems have gained importance as a study area [1]. The distinctive features of recommender systems 

have undergone extensive development over the past few decades in both industry and academia. 

There are several pertinent apps that can assist users in managing information overload and offer 

them individualized recommendations, content, and services, but there are still a lot of unanswered 

questions in this field of study. We now routinely receive different types of automated 

recommendations when using the internet. Currently, numerous application areas, including e-

commerce and video streaming, use these platforms. 

The matrix completeness problem formulation, where a user-item rating matrix is given and the goal 

is to forecast the missing values, has historically functioned as a standard framework for scholarly 

research in the area. The training of machine learning models that aim to capture longer-term user 

preference profiles is generally well suited to this abstraction. Sequence-aware recommender 

systems, on the other hand, use additional methods to execute recommendations that take into 

consideration users' near-term actions and intentions. They are also designed to benefit from the rich 

data that is contained in the sequentially organized user interaction logs that are typically seen in real-

world applications. 

Recommender systems are critical in many application scenarios where short-term user interests and 

longer-term sequential patterns are vital to their success. Session-based recommender systems are a 

typical example, where there is no longer-term user history available and the recommendations must 

be adapted based on the assumed short-term interests of an anonymous user. The primary goal in such 

scenarios is to recommend objects that match a given sequence of user actions. 

Since the 1990s, a lot of research has focused on session-based recommender systems, which have 

also been referred to as next-item, next-basket, pattern-based, rule-based, sequence-based, and 

transaction-based recommender systems [2]. 

The pertinent works on session-based recommender systems are divided into two distinct stages: the 

model-free stage from the late 1990s to the early 2010s, and the model-based stage from the early 

2010s to the present. To drive the model-free stage, data mining techniques such as pattern mining, 

association rule discovery, and sequence mining were developed. Research on recommendations 

based on patterns, rules, and sequences eventually took control graph-based machine learning 

techniques, particularly graph neural network (GNN) models. Model-based recommender systems 

have advanced to new heights since 2017 as a result of the recent explosive expansion of GNNs. 

Researchers have just started working in this area and have developed a variety of GNN-based models 

for next-item and shopping cart predictions. 
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Due to its outstanding performance over the past few decades in numerous application areas, 

including computer vision and speech recognition, deep learning is currently the subject of a lot of 

excitement. Academics and business are vying to incorporate deep learning into a wider range of 

applications due to its capacity to handle numerous complicated problems.  

Recent developments in deep learning have changed recommendation architectures and expanded 

opportunities for increasing recommender system performance [3].  Graph neural networks (GNNs), 

which have been proved to be particularly good at processing data that is graph-structured, are the 

foundation for the majority of current deep learning models. Due to their capacity to record intricate 

patterns in user-element interactions and their capacity for generalization, GNs have consequently 

drawn considerable interest in session-based recommender systems. The effectiveness of session-

based recommender systems could be greatly increased by GNNs. The interpretability of the 

recommendations has also been improved by the addition of a GNNS attention mechanism. 

2. Problem Statement 

Session-based recommendation systems (SBRS) have grown in popularity in recent years as 

businesses attempt to provide customized recommendations to users based on their interactions with 

items in the short term. 

Traditional SBRS methods, on the other hand, frequently rely on basic models that fail to capture the 

complicated and dynamic patterns of user behavior that emerge within individual sessions, resulting 

in poor suggestions. 

To solve this problem, this thesis proposes a Graph Attention Network (GAT) model for SBRS that 

is capable of capturing the complex interactions between items within a session and creating correct 

and appropriate recommendations for users. This effort is guided by a central research question: 

“"How can a Graph Attention Network (GAT) model be effectively utilized in session-

based recommendation systems to capture the intricate and dynamic patterns of user 

 behavior within individual sessions, leading to improved and personalized  

recommendations?" 

By addressing this issue, this study intends to investigate the potential of GAT models for boosting 

SBRS performance and promoting user happiness across a variety of sectors, including e-

commerce, news, and entertainment. 

3. Delimitation 

This thesis is limited to the examination of item-item and item-session interactions and focuses on 

session-based recommendation systems employing the GAT model. The effectiveness of the GAT 

model will be assessed using a publicly accessible dataset, and the study will not take into account 

how external variables like user demographics, temporal dynamics, or contextual information may 

affect the quality of the recommendations. Additionally, this study excludes other domains like news 
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and music in favor of evaluating the GAT model's performance just n the e-commerce domain. This 

thesis intends to provide a clear and focused study of the GAT-based SBRS model's performance on 

a specific dataset and in a specific domain by outlining these constraints. noting the need for 

additional research in many fields and under various experimental setups as well as the potential 

influence of other factors. 

4. Approach 

In order to establish a session-based recommendation system using graph neural networks (GNNs), 

specifically the Graph Attention Network (GAT) model, The main problem of the research is the need 

for a system that can produce personalized recommendations based on user experiences while 

utilizing the wide range of information found in the session graph. 

Each item clicked during a browser session is treated as a node in the session graph, which depicts 

the user's sequential interactions. The GAT model will be used to capture the intricate dependencies 

and relationships between these nodes, allowing the system to provide recommendations that are 

aware of their context. 

All in all, it is expected to offer a strong framework for comprehending user preferences, recognizing 

similar items, and making precise recommendations by customizing the GAT model to fit the session-

based recommendation requirement. 

5. Outline 

This thesis is structured in three chapters besides a general introduction and a general conclusion: 

 Introduction: initiation to recommender systems and the background, problem 

statement, delimitations of the thesis and the approach. 
 Chapter 1: Session-Based Recommendation Systems  

A theoretical introduction to recommender systems and their families, all for the 

purpose of giving a basic foundation and a comprehensive view of session-based 

recommender systems. 

 Chapter 2: Graph ATtention Networks  

Essential context and background knowledge around artificial intelligence, machine learning, 

and deep learning. This chapter gives a familiarization with the fundamental concepts 

necessary to approach deep learning, GNNs and GATs. 

 Chapter 3: Graph ATtention Networks for the development of Session-based 

recommendations systems 

Takes an in-depth dive into practical application of graph attention networks in the making of 

a session-based recommendation systems. The evaluation metrics used for the experiment are 

first presented, then datasets and baselines used. At last, the baselines results are compared to 

the proposed GAT-based SBRS model with a discussion of the obtained results. 

 Conclusion: Based on the results and the discussion in the previous chapter, this last part 

relates to the research questions and draws a summary of this work. Finally, suggestions for 

potential future work are discussed.
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Chapter 1 : Session-Based Recommendation Systems 

 

1.1 Introduction 

Recommendation systems have become essential tools for assisting users in navigating the vast array 

of services and products accessible in the era of many options and overwhelming of information. 

These systems aim to offer recommendations that are tailored to each user's interests , leading to more 

informed decision-making. 

The efficacy of conventional recommendation systems is undeniable, yet they frequently fail to 

capture the changing nature of user preferences. They ignore a user's short-term transactional 

behaviors and potential preference changes over time, focusing instead on their long-term, 

unchanging preferences. This constraint necessitates a novel strategy that considers the temporal 

component of user behavior. 

Session-based recommendation systems are useful in this situation. In recent years, session-based 

recommender systems have drawn a lot of attention since they provide a relatively new paradigm for 

recommendation since they provide a relatively new paradigm for recommendation. By taking into 

account the context of a user's current session or visit and including short-term transactional patterns, 

these systems go beyond static preferences. 

In this chapter, we will delve into the world of session-based recommender systems, offering a 

comprehensive and systematic overview of this emerging recommendation approach. We will explore 

the key concepts and techniques employed in session-based recommendation systems, shedding light 

on how they address the limitations of traditional recommendation systems. 

1.2   Recommendation Systems 

A recommender system, usually referred to as a recommendation system, is a method of making 

decisions that is intended to help users in complicated information settings, especially in the context 

of E-commerce [4]. 

It acts as a tool that facilitates users' effective searching through a vast amount of knowledge tailored 

to their preferences and areas of interest [5]. The system leverages recommendations from others to 

augment the decision-making process when users lack personal knowledge or experience with the 

available alternatives [6]. By offering individualized and unique recommendations for content and 

services, it tackles the issue of information overload [7]. 

In essence, a recommender system makes use of artificial intelligence algorithms and techniques to 

analyze user data, such as past purchases, search histories, demographic data, and more, in order to 

suggest or recommend more products, information, or services that are most relevant to a specific 

user [8]. It serves as a tactical tool that helps users identify pertinent  information, improves decision-

making by incorporating social recommendations, and reduces information overload by providing 

tailored and specialized recommendations. 
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Figure 1 : Example of recommendation system 

1.3 User Feedback 

It is important to define the concept of user feedback, which is a key concept of recommendation. 

When users perform actions over items on a platform (e.g., an e-commerce site, a movie review 

system , a video blogging platform , and so on) , they provide implicit, explicit or , hybrid feedback: 

1.3.1 Explicit Feedback  

In order to build and enhance his model, the system typically prompts the user through the system 

interface to offer ratings for items. The quantity of user-provided ratings determines how accurate the 

recommendation is. This method's only shortcoming is that users must put forth some effort and aren't 

always ready to provide sufficient data. Since it does not involve deriving preferences from actions 

and it provides transparency into the recommendation process, explicit feedback is still perceived as 

providing more reliable data, leading to a marginally higher perceived recommendation quality and 

greater confidence in the recommendations [9]. 

1.3.2   Implicit Feedback  

By keeping track of a user's many actions, including past purchases, navigation history, time spent 

on specific web pages, links they follow, email content, and button presses, among other things, the 

system automatically infers what the user prefers. By assuming users' preferences based on how they 

interact with the system, implicit feedback lessens the burden on users. Although the method does 

not require human effort, it is less accurate. Additionally, it has been argued that implicit preference 

data may actually be more objective because there is no bias due to users answering in a socially 

acceptable manner and because there are no concerns with self-image or the desire to maintain an 

image for others [10]. 

1.3.3   Hybrid Feedback 

The strengths of both implicit and explicit feedback can be combined in a hybrid system in order to 

minimize their weaknesses and get a best performing system. This can be achieved by using an 

implicit data as a check on explicit rating or allowing user to give explicit feedback only when he 

chooses to express explicit interest [11]. 

https://www.sciencedirect.com/topics/computer-science/explicit-rating
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Many recommender systems focus on implicit input since it is simple to collect and represent users' 

opinions through observable behavior (e.g., by examining browsing history, mouse movements, etc.). 

Implicit feedback has the drawback that it is always noisy. For instance, even if a person has viewed 

a movie, we can't say for sure if they enjoyed it or not. However, it is not always available because 

some users are unwilling to score the products they consume. Explicit feedback, on the other hand, 

might be more illuminating about user preferences [12]. 

1.4 Recommendation tasks 

We can specify many types of recommendation tasks that a recommendation system can take on 

depending on the type of feedback that is available [12]: 

 Clickthrough rate (CTR) prediction:  Predicting the probability that a user would click on 

an item that is described by a set of features (such as an image, text, the day of the week, a 

user's features, etc.), namely predicting P (click|item, user, features) of implicit feedback 

occurring. 

 Rating prediction: estimating the probability that a user will give a particular rating to a 

product that has a particular collection of attributes, specifically estimating the P 

(Rating=r|item, user, features) of giving a specific product a rating r. 

 Sequential prediction: determining the probability distribution of the next target item that a 

user would consume based on the attributes of the previous target item in a sequence. In 

addition to their IDs, both the user and the item sequence could be described by a different set 

of characteristics. If user features are not taken into account, the issue results in a broad (as 

opposed to customized) recommendation. 

1.5 Types of Recommendation Systems  

Although there are many recommendation algorithms and strategies, the majority can be divided into 

the following categories: 

1.5.1 Content-based Filtering 

The information retrieval and filtering study is where the content-based recommendation algorithms 

are derived [13]. The early collaborative filtering process is continued and developed in the content-

based recommendation. Instead of using the user's remarks on things, content-based recommendation 

systems suggest items that are similar to those that the user has previously selected. Many current 

content-based systems create profiles for both users and items. While an item profile contains a list 

of item features, a user profile comprises details about a user's tastes, preferences, and needs that can 

be extracted from questionnaires about users or over time from their transactional behavior. The 

system then determines the degree to which each item's profile and the user's profile match up, 

recommending products that might satisfy the user's needs or preferences. The utility function is 

typically defined as the following by combining the features of items and the user interest model [14]:  

1. 𝑢(𝑐, 𝑠)=𝑠𝑐𝑜𝑟𝑒(𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝐵𝑎𝑠𝑒𝑃𝑟𝑜𝑓𝑖𝑙𝑒(𝑐), 𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝑠)) 

u(c, s): This represents the utility or score of a content item (s) for a specific user (c). It predicts how 

much the user will like or find the content item relevant. 
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ContentBaseProfile(c): This refers to the profile of the user (c) in the content-based recommendation 

system. The profile consists of attributes or features that describe the user's preferences or interests. 

Content(s): This represents the content item (s) that is being evaluated for recommendation. It is 

described by attributes or features that capture its characteristics. 

score(ContentBaseProfile(c), Content(s)): This function calculates the similarity or relevance score 

between the user's profile and the content item. It measures how well the attributes of the content item 

align with the user's preferences or interests 

 

 

Figure 2 : Example of content-based filtering 

1.5.2   Collaborative filtering   

According to user preferences collected from a large number of users, algorithms recommend 

products (this is the filtering component). Using the similarity of user preference behavior and 

knowledge of past interactions between users and objects (this is the collaborative part), recommender 

systems can learn to anticipate future interactions. These recommender systems create a model from 

a user's prior actions, such as items they have previously purchased, ratings they have given for those 

items, and comparable choices made by other users. According to the theory, there is a good chance 

that two people will choose the same things in the future if they have already made comparable 

decisions and purchases in the past, such as choosing a movie [7]. 

For instance, if a collaborative filtering recommender discovers that you and another user have similar 

movie preferences, it can suggest a film to you that it has previously discovered that the other user 

enjoys (see figure 3) [15]. 
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Figure 3 : Example of collaborative filtering 

1.5.3   Hybrid Filtering  

A hybrid recommendation system is a special sort of recommender system that gives the user a 

recommendation by combining two or more methods, such as collaborative and content-based 

filtering methods. The difficulties posed by employing these two filtering techniques independently 

were overcome by combining them [11]. 

Based on how the various recommended methodologies are combined with one another, hybrid RSs 

are divided into 7 classes [16]: 

 Weighted: We can define a few models that can accurately understand the dataset for the 

weighted recommendation system. The weighted recommendation system will integrate the 

outputs from all of the models into static weightings, which remain the same throughout the 

training and test sets. 

 Switching: In a switching hybrid, the system alternates between different recommendation 

strategies based on a set of criteria, such as when a strategy doesn't generate enough reliable 

recommendations. 

 Mixed: A mixed hybrid technique initially generates a variety of candidate datasets using the 

user profile and attributes. The recommendation system feeds various sets of candidates into 

the model in accordance with their requirement combining the predictions to produce the final 

recommendation. 

 Feature Combination: This hybrid recommender system treats one recommender's output as 

extra feature data and prefers to employ the second recommender (often content-based, which 

heavily utilizes item features) over the new expanded data. 

  Feature augmentation: A contributing recommendation model is used to grade or categorize 

the user/item profile. This rating , or categorization, is then used in the primary 

recommendation system to produce the expected outcome. Without altering the primary 

recommendation model, the feature augmentation hybrid can boost the performance of the core 

system. For instance, we can improve the user profile dataset by utilizing the association rule. 
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The functionality of the model for content-based recommendations will be enhanced by the 

augmented dataset. 

 Cascade: One type of hybrid filtering method is cascade hybrids. A coarse ranking of the 

candidate items is first generated using one technique, and the list is subsequently refined using 

the preliminary candidate set. The cascades depend on the order. 

 Meta Level: is also an example of order-sensitive hybrid RSs that use an entire model produced 

by the first technique as input for the second technique. 

 

Figure 4 : Example of hybrid filtering 

1.6   Challenges and Limitations 

The following is a summary of the challenges and restrictions that RSs confront that are seen as 

crucial for the advancement of RSs research. 

o Cold start problem: The system encounters the cold start issue when it is unable to establish 

any connections between users and items for which it lacks sufficient data. There are two 

different kinds of cold-start issues [17]:  

1. User cold-start issues: These issues occur when there is virtually no information 

available about the user. 

2. Product cold-start issues: These issues occur when there is virtually no information 

available about the product. 

o Synonymy: When an item is represented by two or more names or entries that have similar 

meanings, synonymy results. In some situations, the recommender is unable to determine if 

the terms refer to separate or the same item [18].   

o Shilling Attacks: When a dishonest user or rival enters a system and begins providing 

fraudulent ratings on certain items in an effort to either boost or diminish the item's popularity. 

Such attacks have the potential to undermine user confidence in the RS and harm the 

effectiveness and value of suggestions. CF techniques are more concerned with this threat [19]. 

o Privacy: Better recommendation services are obtained by providing personal information to 

the RS, but doing so may raise data privacy and security concerns. 
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o Problem of Overspecialization: Users are only shown recommended products based on those 

already known or defined by their user profiles, ignoring new items and other possibilities 

choices [18].  

o The sparsity problem: occurs when a user has a large matrix of purchases, viewings, or music 

listings. It is a critical problem in recommender systems. When the user didn't rate these things, 

sparsity developed. While recommender systems rely on users ratings on a matrix to 

recommend items to others [18]. 

o Gray Sheep: Gray sheep happen in collaborative filtering systems when a user's thoughts do 

not align with any group, and as a result, they are unable to profit from recommendations [20].  

o Novelty: New ones must be included in the recommended items. 

o Serendipity: beyond novelty, it may also be an objective that some recommended items are 

not only unheard of, but also surprising user wouldn't have thought before [20]. 

o Scalability: is a measure of a system's capacity to operate efficiently with high performance 

as information expands. When the number of users or the number of items increases, the 

recommender system must continue to suggest the same items to the users. We need to perform 

more calculations and spend more money to achieve this [20].  

o Evaluation and the Availability of Online Datasets: A recommender system's quality can 

be assessed along with other factors. One of the main issues with RSs is the construction of 

evaluation criteria and the selection of appropriate evaluation metrics. They can be categorized 

as follows [21]: 

1. Prediction metrics: include  coverage and accuracy measures such as Mean Absolute 

Error (MAE), Root Mean Square Error (RMSE), and Normalized Mean Average Error 

(NMAE). 

2. Set recommendation metrics: such as Precision, Recall, and Receiver Operating 

Characteristic (ROC). 

3. Rank recommendation metrics: such as the half-life and the discounted cumulative 

gain. 

1.7 Sequence-Aware Recommender Systems 

A type of recommender systems known as sequence-aware recommender systems considers the 

chronological order of items in a user's interaction history. They are employed to anticipate the 

following items a user will find interesting during a current session or to generate complete sequences 

of items to display to the user [22]. 

Sequence-aware recommendation issues differ in several ways from conventional matrix-completion 

issues. The problem, its inputs, outputs, and specific computing tasks are all presented in high-level 

detail in Figure 5. In general, the sequence in which the items that  presented can have an impact on 

both the inputs and the outputs. These points will be covered in more detail later on [23]. 
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Figure 5 :  Overview of sequence-Aware recommendation problem 

1.7.1 Inputs : The primary input to sequence-aware recommendation problems is an ordered 

and frequently timestamped list of previous user actions. Users can be known to the system or be 

anonymous. Each action can also be one of several predefined types, and each action, user, and 

item may have a number of additional attributes [23]. 

1.7.2 Outputs : Ordered lists of items are the result of a sequence-aware recommender. The 

results in this broad sense resemble those of a conventional "item-ranking" recommendation 

arrangement. The order of the objects in the recommendation list, however, can also be important 

in some sequence-aware recommendations cases. There are situations where the user should take 

into account each recommendation and do so in the order supplied rather than viewing the list of 

recommendations as a collection of choices [23]. 

1.7.3 Computational Tasks : The literature has identified a variety of computational 

occupations for sequence-aware recommenders. Four primary objectives are most frequently 

accomplished with the use of SARS in a variety of application scenarios: 

1) Context Adaptation: One of the main objectives of sequence-aware recommender systems is 

to understand the scenario and aims of the users in order to make recommendations that are 

appropriately tailored to those situations. It is crucial to effectively utilize interactional context 

information since there is no historical data accessible regarding the users' previous 

preferences. 

Based on the availability and significance of long- and short-term interactions, the following 

context-adaptation scenarios are distinguished in [23]: 

a) Last-N interactions: Only the most recent N user actions are taken into account in the 

last-N interactions-based recommendation. 

b) Session-based recommendations: are made using only the user's most recent sequence 

of actions, which are only known for the period of a session (the particular duration 

during which the user interacted with the website). 

c) Session-aware recommendations: are made when it is known both what users did in 

the most recent session and what they have done in the past. If there are identifiable 

returning consumers, this type of issue will arise. 

2) Trend detection: Another feasible, if less researched, objective that can be achieved is trend 

detection. Trend detection is the identification of trends in a given sequence dataset. In [23] 
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the sequential log data can be divided into the following categories for the information that can 

be extracted and used in the recommendation process: 

a) Community trends: SARS can try to find and use popularity patterns in the interaction 

logs to enhance the recommendations since the popularity of items may change over 

time in different domains. 

b) Individual trends: Shifts in people's preferences for particular things are also possible. 

When there is a natural interest drift, certain changes in interest may result. Modeling 

the dynamics of user musical preferences is one such issue. 

3) Repeated Recommendation: Recommending products that the user is already familiar with or 

has previously purchased can be effective in specific application domains. In the conventional 

matrix completion configuration, these eventualities are not at all taken into account. In [23] 

there are identified the following categories of scenarios: 

a) Identifying patterns of frequently occurring user activity: SARS can use historical 

interaction logs to discover patterns of frequently occurring user behavior. For example, 

SARS may propose launching the email or calls app after opening the contacts app, i.e., 

used to provide shortcuts. 

b) Recurring recommendations as reminders: Recurring recommendations can assist in 

reminding users of past interests. These reminders may be for items the user may have 

recently interacted with or may be for items they may have forgotten, depending on the 

domain, such as Amazon. 

1.8   Session-Based Recommendation Systems 
As seen in Section 1.7, session-based recommendations are considered one of the main computational 

task situations in sequence-aware recommender systems. An SBRS is a type of recommendation 

system that focuses on making personalized recommendations based on a user's current session or 

browsing behavior. Unlike traditional recommender systems that consider long-term user preferences 

and historical data, session-based recommendation systems prioritize the immediate context and the 

user's short-term interests. 

In a session-based recommendation system, the user's current session is treated as a sequence of 

interactions or actions, such as clicks, page views, or purchases, within a specific time frame. These 

interactions capture the user's preferences and interests in the present moment. The system analyzes 

this sequential data to generate real-time recommendations that cater to the user's immediate needs. 

Session-based recommender systems aim to predict the unknown part of a session (see Figure 6) or 

the future sessions based on modeling the complex relations embedded within a session or between 

sessions [24].Table 1 presents a comprehensive comparison between SBRS and other typical RSs. 

 

Figure 6 : An example of an e-commerce website using SBRS 
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 SBRS Collaborative 

Filtering (CF) 

Content-Based 

Filtering (CBF) 

Hybrid 

Recommender 

Systems 

Data Source User session 

interactions 

User-item 

interactions 

Item features Multiple sources 

(session, CF, 

CBF) 

Recommendation 

Type 

Session-based 

recommendations 

User-based or 

item-based 

recommendations 

Item-based 

recommendations 

Combined 

recommendations 

Personalization Highly 

personalized 

Moderately 

personalized 

Moderately 

personalized 

Highly  

personalized 

User Context Captures 

temporal context 

Temporal context 

limited 

No explicit 

context captured 

Captures 

multiple types of 

context 

Sequential 

Patterns 

Exploits 

sequential 

behavior 

Doesn't consider 

sequential 

patterns 

Doesn't consider 

sequential 

patterns 

May consider 

sequential 

patterns 

Cold Start Problem Suffers from cold 

start problem 

Suffers from cold 

start problem 

Less affected by 

cold start 

problem 

Moderate impact 

Scalability Can face 

scalability 

challenges 

Scalable Scalable Scalable 

Sparsity Handling Handles sparse 

session data 

effectively 

Requires denser 

data for accuracy 

Handles sparse 

data effectively 

Handles sparse 

data effectively 

Serendipity Can offer 

serendipitous 

recommendations 

Moderate 

serendipity 

Limited 

serendipity 

Moderate 

serendipity 

Explanation Limited explicit 

explanations 

Lacks explicit 

explanations 

May provide 

feature-based 

explanations 

May provide 

combined 

explanations 

Table 1: Comparison between SBRS and other RSs 

1.8.1   Categorization 

An SBRS makes the unknown session information as its target to be predicted by taking the prior 

session information as the context and condition, which is called a session context C in this work. A 

session context can either be an intra-session context 𝐶𝑙𝑎 or an inter-session context 𝐶𝑙𝑒 according to 

whether the session context comes only from one session (the current one) or across multiple sessions 

(before the current one) [19]. 

According to [24], SBRS can be generally categorized into two major branches: 
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 Next-item(s) Recommendations: given an intra-session context 𝐶𝑙𝑎 over the current session 

𝑆𝑛, the next-item(s) recommendations predict the next item(s) 𝑖𝑡 in 𝑆𝑛conditional on 𝐶𝑙𝑎. Next-

item(s) recommendations are the mainstream and the most common setting of session-based 

recommendations. 

 Next-session (next-basket) Recommendations: given an inter-session context 𝐶𝑙𝑒 for current 

session 𝑆𝑛, the next-session recommendations predict those items possibly occurring in session 

𝑆𝑛. 

1.8.2   Approaches 

We try to classify SBRS in this section from a technical point of view all currently published efforts 

are specifically divided into two branches: model-free techniques and model-based approaches, 

various types of techniques are present in each branch (Figure 7). 

 

Figure 7 : The classification of SBRS's approaches 

1.8.2.1  Model-Free Approaches  

Model-free approaches are typically devoid of complicated mathematical models and are based 

primarily on data mining techniques. Sequential pattern-based RS for ordinal session data and 

pattern/rule-based RS for unordered session data are two common techniques in this area. 

a) Pattern/Rule-based Approaches: Pattern/rule-based RS first mine frequent patterns or 

association rules and then use these patterns and rules to guide the subsequent 

recommendations. This is based on the assumption that most customers would follow the 

common shopping patterns [25].For instance, customers usually bought milk and bread 
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together when they go shopping, therefore {milk, bread} can be treated as a frequent pattern 

to recommend bread to those why have bought milk. It should be noted that pattern/rule-based 

RS are applied in unordered data [26]. 

b)  Sequential Pattern-based Approaches: To handle those data having a strict order over items 

or involving time-factor based effect, sequential pattern-based RS are proposed. Similar to 

pattern-based RS, they first mine a collection of sequential patterns and then recommend the 

remaining items after the occurrence of the prior items [27]. 

1.8.2.2  Model-based Approaches  

Model-based RS are typically constructed on stringent assumptions like ordering over objects and 

intricate models like Markov chain models, in contrast to model-free RS. The three primary groups 

of model-based approaches that are now in use are Markov Chain-based approaches, factorization-

based approaches, and neural model-based approaches. 

a)  Markov Chain-based Approaches  

Using transitional probabilities, Markov Chain-based RS models the first-order (and sometimes 

higher order) dependency over a sequence of items, and then uses that dependency to create 

recommendations for the next items. Markov Chain-based RS take into account all things and so 

significantly reduce information loss, in contrast to sequential pattern-based techniques that are 

simple to filter out such infrequent items and patterns and consequently result in information loss 

[28]. 

b) Factorization-based Approaches  

These methods create a latent representation vector for each item by first factoring the item co-

occurrence matrix or the item-to-item transitional matrix [29]. Then they use these latent 

representations to predict the subsequent items. Such methods should be distinguished from the 

frequently employed factorization machine (similar to matrix factorization) in collaborative 

filtering-based RS, which typically factors the user-item interaction matrix (similar to rating 

matrix) into latent factors of users and items [15]. 

c)  Neural Model-based Approaches  

take advantage of the neural network to learn the complex relationships and interactions over items 

within or between sessions and then generate recommendations based on such interactions. Based 

on the model structure, neural model-based approaches can be divided into shallow neural model-

based approaches, which sometimes are also called embedding models or representation learning 

models and deep neural model-based approaches like RNN [30].  
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Approaches 

 

Working 

mechanism 

 

Applicable 

scenarios 

 

Target issues 

 

Pros 

 

Cons 

Pattern/rule-

based 

approaches 

Mine frequent 

patterns or 

association rules to 

guide 

recommendations 

Simple, 

balanced and 

dense session 

data without 

order 

Capture 

explicit co-

occurrence-

based 

dependency 

between items 

Intuitive, 

simple and 

effective on 

simple data 

Information 

loss, cannot 

handle complex 

data (e.g., 

imbalanced 

data, long tailed 

data) 

Sequential 

pattern-based 

approaches 

Mine sequential 

patterns to guide 

recommendations 

Simple, 

balanced and 

dense session 

data with 

order 

Capture 

explicit co-

occurrence-

based inter-

item sequential 

dependency 

Intuitive, 

simple and 

effective to 

capture 

sequential 

relations on 

simple data 

Information 

loss, cannot 

handle complex 

data (e.g., 

imbalanced 

data, long tailed 

data) 

Markov Chain-

based 

approaches 

Use Markov chain 

to model the 

transitions between 

items or sessions for 

recommendations 

Relative 

simple 

sequential 

data mainly 

with short-

term and low-

order 

dependency 

Capture 

explicit or 

implicit inter-

item sequential 

dependency 

Reduced 

information 

loss, 

flexible, 

good at 

modelling 

short-term 

sequential 

dependency 

Usually ignore 

long-term and 

higher-order 

dependency 

Factorization-

based 

approaches 

Factorize item 

transitions into 

latent 

representations of 

items for 

recommendations 

Relative 

simple data 

mainly with 

short-term and 

low-order 

dependency 

Learn latent 

item 

representations 

to fit for item-

to-item 

transitions 

Reduced 

information 

loss, good at 

modelling 

low-order 

dependency 

Easy to suffer 

data sparsity 

issues, cannot 

capture higher-

order 

dependency 

Neural model-

based 

approaches 

Model the complex 

dependency in a 

neural network and 

embed this 

dependency into the 

learned latent 

representations for 

recommendations 

Complex data 

with 

sequential or 

non-

sequential 

dependency 

Encode the 

complex 

dependency 

into latent 

representations 

of items or 

sessions 

Powerful, 

can capture 

both long 

term and 

short term, 

higher-order 

and low-

order 

dependency 

Hard to 

implement, 

computationally 

costly 

Table 2 : Comparisons between Different Technical Approaches for Session-based Recommendations 

1.8.3   Challenges and Limitations of SBRS 

Session-based recommendation systems face several challenges, including [31]: 
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1. Data Sparsity: Because sessions are frequently short and only contain a limited amount of user 

choices, session data may be naturally sparse. This makes it difficult to accurately determine 

the user's interests and offer pertinent recommendations. 

2. Dynamic User Preferences: During a single session, a user's preferences and intentions may 

quickly change. It might be challenging to accurately model and accommodate their dynamic 

choices because their demands and interests may change depending on the immediate 

situations. 

3. Cold-Start Issue: When a new user begins a session, little is known about their preferences and 

tendencies. Without historical data, it is difficult to give individualized recommendations due 

to the cold-start problem. 

4. Contextual Understanding: It might be challenging to comprehend a user's preferences and 

intents when sessions lack explicit user feedback or explicit item evaluations. Effective 

interpretation of the implicit signals from the session context is required by the 

recommendation system. 

5. Focus on the Short Term: Session-based recommendation systems are primarily concerned 

with the user's plans for the immediate future, which may not fully reflect the user's long-term 

goals. This may result in recommendations lacking diversity or failing to take into account a 

user's broader preferences. 

6. Session Ambiguity: Sessions can be ambiguous, and the system needs to disambiguate the 

user's intent from the observed behavior. Different users may have different motivations or 

goals for similar session behavior, making it challenging to generalize recommendations 

1.9   Conclusion  

In the beginning of this chapter, a survey of recommender systems, a description of the session-based 

recommendation problem, and a discussion of where it fits in the family of sequence-aware 

recommendations were provided. It generated a thorough comparison between SBRSs and other RSs, 

followed by the formations and associated definitions of SBRS, which in turn stimulated the need for 

session-based recommender systems research. Finally, approaches, challenges and difficulties were 

examined. The next chapter will introduce Graph ATtention networks as a recent approach for 

developing SBRS. 
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Chapter 2 : Graph ATtention  Networks 

2.1 Introduction 

Graphs are a common method of presenting structured data in many areas, such as social networks, 

natural language processing, and recommendation systems.  

Therefore, in the field of machine learning, it is becoming more and more crucial to be able to evaluate 

and model graph-structured data. As a new method of modeling graph-structured data, Graph 

Attention Networks (GATs) were introduced in 2018 and are a relatively recent advancement in the 

field of graph neural networks. 

This chapter provides an introduction to the core ideas required to comprehend Graph Attention 

Networks. 

2.2 Artificial Intelligence 

Artificial Intelligence (AI) refers to the effort to automate intellectual tasks normally performed by 

humans. It is a general field that encompasses various approaches, including machine learning and 

deep learning, that involve training algorithms to learn from data without being explicitly 

programmed. While the idea of AI has been around since the 1950s, it wasn't until the advent of 

machine learning that significant progress was made in this field. Machine learning is a subfield of 

AI that focuses on the development of algorithms that can learn from and make predictions on data. 

Deep learning, a subset of machine learning, is a more advanced approach that leverages deep neural 

networks to learn complex representations of data. 

Early AI systems, such as chess programs, were based on hardcoded rules crafted by programmers, a 

paradigm known as symbolic AI. However, this approach proved to be intractable for solving 

complex, fuzzy problems such as image classification, speech recognition, and language translation. 

This led to the rise of machine learning as a new approach to AI [32]. 

2.3 Machine learning 

The development of algorithms and statistical models that allow computer systems to automatically 

improve their performance on a given job constitutes the field of machine learning, which is a subset 

of artificial intelligence. To create predictions or choices, these algorithms use data to learn from, 

spotting patterns and relationships within the data. 

Predictive analytics, computer vision, natural language processing, and speech recognition are just a 

few of the domains where machine learning is used. Machine learning is becoming an increasingly 

essential topic for businesses and organizations wanting to extract insights and gain a competitive 

edge as the amount of data created continues to expand exponentially [33]. 

2.3.1 Data representations 

Data representation in machine learning refers to the process of transforming raw data into a format 

suitable for analysis and model training. Effective data representation is crucial because it determines 

the quality of features that can be extracted and the performance of machine learning models [34]. 
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Here are a few typical representations of data for machine learning [35]: 

 Numeric Representation: This is the most common data representation, using numeric values 

to represent data. Numerical data can be continuous (e.g., temperature, time) or discrete (e.g., 

age, counts). Numerical data is easy to process and can be used directly by many machine 

learning algorithms. 

 Categorical Representation: Categorical data represents non-numeric values that belong to a 

particular class or categories. Examples of this are gender, color, or product type. Before 

passing categorical data to a machine learning model, techniques such as one-hot encoding or 

sequential encoding are often used to convert categorical data into numerical form. 

 Text representation: Text data such as documents, tweets, or customer reviews require special 

display techniques. A common approach is to use vectorization methods such as bag-of-words 

or term-frequency-inverse document frequency (TF-IDF) to convert text to numeric feature 

vectors. Another approach is to use word embeddings such as Word2Vec or GloVe to capture 

semantic relationships between words. 

 Image representation: Image data is often represented as a grid of pixels, with each pixel 

having a color intensity value. Convolutional neural networks (CNNs) are widely used to 

process and extract features from image data. Pretrained CNN models such as VGG, ResNet, 

or InceptionNet can be used to extract high-level features or as a basis for transfer 

learning.Time series representation: Time series data represents measurements or 

observations taken over time, such as stock prices, sensor readings, or weather data. Time 

series data is typically represented as a sequence of data points with timestamps. Techniques 

like sliding windows or Fourier transformations can be used to extract relevant features from 

time series data. 

 Graph representation: Graph data represents relationships between entities using nodes and 

edges. Graphs can be used to model social networks, knowledge graphs, or biological 

networks. Graph Neural Networks (GNNs) were developed to process graph-structured data 

and allow feature extraction based on graph connections and topology. 

2.3.2 Types of machine learning  

Machine learning can be split into three major areas: 

1. Supervised Learning: This learning process is based on the comparison of calculated and 

projected results, which means that learning entails calculating the error and altering the error 

to get the desired outcome. 

For instance, a data set of houses of a particular size with actual costs is offered. The controlled 

formula is then used to produce additional of these accurate results, such as what the price of 

a brand-new home would definitely be [36].  

Regression and classification issues are subsets of supervised learning problems: 

 A classification problem occurs when the output variable is a category, such as "red" or 

"blue" or "disease" and "no disease." 

  A regression problem occurs when the output variable is a real value, such as "dollars" 

or "weight". 

Recommendation and time series prediction are two frequent sorts of challenges constructed 

on top of classification and regression. 

Some well-known supervised machine learning methods are: 
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 Linear regression is used to solve regression problems. 

 Random forests are used to solve classification and regression issues. 

 Support vector machines are used to solve classification difficulties. 

 

2. Unsupervised Learning: This learning process is dependent on a comparison of the calculated 

result and also the anticipated outcome, which means learning explains identifying the error as 

well as converting the error to achieve the anticipated result.  
Unsupervised learning differs from supervised learning in that there are no correct answers and 

no educators. Algorithms are left to their own devices to uncover and provide fascinating data 

structures. 

For instance, a specific collection of houses of a certain size with actual costs is provided 

following that, the controlled formula is to create more of these appropriate comments, such 

as 

what would undoubtedly be the cost of a new house [36]. 
Clustering and association problems are two types of unsupervised learning challenges: 
 

 Clustering: A clustering problem is one in which you wish to uncover the underlying 

groups in data, such as categorizing consumers based on their purchase activity. 

 Association rule learning: the issue is one in which you wish to identify rules that 

characterize substantial chunks of your data, such as persons who purchase X also tend 

to buy Y. 

 

Unsupervised learning methods that are widely used include k-means for clustering issues and 

the Apriori algorithm for learning association rules. 

 

3. Reinforcement Learning : Reinforcement learning is also distinct from unsupervised learning, 

which is often concerned with discovering structure buried in collections of unlabeled data 

[37]. 

Reinforcement learning is predicated on results and how a representative should respond to 

them in a given environment to maximize some notion of long-term motivation. For a 

successful conclusion, a benefit is provided, while a fee is applied for an unsuccessful 

outcome. Because appropriate input/output sets are never presented, nor are sub-optimal 

activities clearly addressed, reinforcement learning differs from the supervised learning 

problem [36]. 
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Figure 8 : Types of Machine Learning 

2.4 Deep Learning and Neural Networks 

Deep learning is a branch of machine learning that focuses on training artificial neural networks to 

learn and make choices in the same way that the human brain does. The term comes from the design 

of these neural networks, which are made up of multiple layers of linked nodes known as neurons. 

Deep learning algorithms may develop hierarchical representations of the input by processing data 

via various layers, allowing them to extract increasingly abstract features [38]. 

 

Figure 9: The relationship between AI, ML and DL 

“Neural Networks is an algorithm that's get to know the hidden Link in a data set with a similar way 

as  a human brain “ 

The subfield of machine learning called deep learning relies heavily on neural networks, which are 

among the most widely used and potent algorithms. Though neural networks may appear to be a 

mystery at first glance, with data flowing from the input layer into the "hidden layers," and then being 

processed in some unknowable way before emerging from the output layer, understanding the role of 
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these hidden layers are the crucial factor that determines the success of neural network 

implementation and optimization. 

A neural network is defined as a computer system consisting of a series of simple but highly 

interconnected elements or nodes called "neurons", organized in layers, using dynamic responses to 

external information to process information. 

This algorithm is useful for finding patterns too complex to manually extract and teach a machine to 

recognize. In this structure, the input layer introduces patterns into the neural network, and each 

component present in the input data has a neuron and communicates with one or more hidden layers 

in the network, which are simply called " hidden layers" .In these layers, all processing actually 

happens through a system Connections characterized by weights and biases.  

 

Figure 10:  Artificial neural network architecture 

2.4.1 Training Neural Networks  

In a neural network, the fundamental building block of computation is the neuron, also referred to as 

a unit or a node. This component receives input from other nodes or an external source and performs 

calculations to produce an output. Every input has its own associated value. The value of an input is 

calculated through the assignment of a weight, denoted as 'w', which is determined in relation to the 

significance of other inputs. The node then applies a function to the sum of these inputs, which has 

been weighed accordingly [39]. 

At the start, a neural network's weights are assigned arbitrary values, which means the network is 

only capable of producing random alterations. It's naturally far from what it should be, resulting in a 

high loss score. However, with every round of processing an example, the optimizer adjusts the 

weights slightly in the right direction, which in turn lowers the loss score. This process, known as the 

training loop, is repeated multiple times (usually hundreds or even thousands of examples over tens 

of iterations) until the weight values are minimized and the loss function is reduced. A network that 

has undergone this process is referred to as a trained network, with minimal loss such that the outputs 

are as close as possible to the targets. This simple mechanism, once scaled, appears to be magical 

[40]. 

So, the process of training neural networks encompasses various stages that can be succinctly 

summarized as follows: 
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 Data preparation : Prepare training, validation, and test datasets. This includes cleaning the 

data, splitting it into training, validation, and test sets, and preprocessing the network input. 

 Network architecture design: Choose the appropriate network architecture for the task at 

hand. This includes choosing the type of neural network (e.g., feedforward, convolutional, 

recurrent), the number of layers, and the number of neurons in each layer. 

 Initialization: Initialize the weights and biases of the network. This can be done randomly or 

with pretrained weights.  

 Forward propagation: Pass input data through the network to generate predictions. 

 Loss computation: Computes the difference (i.e. loss or error) between the predicted output 

and the actual output. 

 Backpropagation: Use backpropagation to compute loss gradients from network weights and 

biases. 

 Weight update: The weights and biases of the network are updated to minimize loss using an 

optimization algorithm such as stochastic gradient descent. 

 Repeat: Steps 4-7 are repeated for a fixed number of iterations (epochs) or until convergence. 

 Evaluation: Evaluate the performance of the network against the test set. 

 

 

Figure 11: The learning process of deep learning 

2.4.2 Back Propagation and Gradient Descent 

Backpropagation is an important part of reducing error in a neural network model. 

The backpropagation algorithm is frequently employed in machine learning. It operates by computing 

the gradient of the loss function, which serves as a guide towards the most optimal value for 

minimizing loss. To execute this, it utilizes the chain rule of calculus to calculate the gradient in 

reverse through the various layers of a neural network. Through the use of gradient descent, gradual 

progress towards the minimum value is made by taking small steps in the direction indicated by the 

gradient.  
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Gradient descent is the optimization algorithm used to update the weights of the network. It involves 

taking small steps in the direction of the negative gradient of the loss function. The learning rate 

determines the size of the steps [41]. 

Generally speaking, neural network or deep learning model training occurs in six stages: 

1. Initialization: setting the corresponding activation a 1 for the input layer, and initializing 

weights w l for all layers.  

2. Forward propagation7 : For each l = 2, 3, . . ., L compute Z𝑙 = W𝑙a𝑙−1 + b1and  

a𝑙= f (Z𝑙).  

3. Compute Error: defining an error function C, which captures the delta between the correct 

output and the actual output of the model, given the current model weights (in other words 

how far off is the model from the correct result). 

4. Backpropagate The Error: Actual Output – Desired Output 

5. Weight Update: changing weights and biases to the optimal values according to the results of 

the backpropagation algorithm 

6. Iterate Until Convergence: Similarly, the network needs to iterate several times to learn. After 

each iteration, the backpropagation updates the weights towards less and less global loss 

function. At the end of this process, the model is ready to make predictions for unknown input 

data. New data can be fed to the model, a forward pass is performed, and the model generates 

its prediction. 

 

Figure 12: Gradient descent 

2.4.3 Activation Function  

An activation function is a mathematical equation that controls whether a neuron should be activated 

or not in a neural network model. It also helps to normalize the output of any input. There are a variety 

of activation functions that can influence the speed and how well a neural network converges, as well 

as sometimes prevent it from doing so [42]. 

 

https://aitechtrend.com/understanding-cost-function-and-gradient-descent-in-machine-learning/
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Figure 13: Activation function use in neural networks 

1. Binary Step Function 

A step function with two possible outcomes is commonly known as a binary step function. 

The activation of a neuron in a binary step function is determined by a threshold value, which 

determines whether or not the neuron should be activated. When the input is supplied to the 

activation function, it is compared to a specific threshold. If the input is higher than the 

threshold, the neuron is stimulated, but if it is lower, it is inactive and its output is not 

transmitted to the succeeding hidden layer [43]. 

Mathematically it can be represented as: 

f(x) = {
0  𝑓𝑜𝑟 𝑥 < 0
1  𝑓𝑜𝑟 𝑥 > 0

 

 

Figure 14: Binary step function 

2. Linear Activation Function 

The activation function that follows a linear relationship between input and output is known 

as the Linear Activation Function. The identity function, or "no activation," is a linear 

activation function where the input and activation are directly proportional to each other, with 

the identity function being multiplied by x1.0. The function's output only reflects the value it 

receives and does not affect the weighted sum of the input in any way [43]. 
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Mathematically it can be represented as: 

𝑓(𝑥) =  𝑥 

 

Figure 15: Linear activation function 

3. Non-Linear Activation Functions 

The activation function that is displayed linearly above is nothing more than a model of linear 

regression. Due to its limited capability, the model is unable to establish intricate connections 

between the inputs and outputs of the network [43].  

The limitations of linear activation functions are resolved by non-linear activation functions, 

which offer the following solutions [43]:  

 Backpropagation is permitted due to the relationship between the derivative function and the 

input, which enables a retrospective analysis of the weights in the input neurons that could 

potentially enhance the accuracy of predictions.  

 Neural networks allow for the stacking of several layers of neurons, resulting in a non-linear 

combination of input that has passed through multiple layers. Any output can be expressed 

as a functional computation within a neural network. 

Here some common non-linear activation functions are:  

 Sigmoid / Logistic: sigmoids can reduce extreme values or outliers in data without removing 

them: 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
=

𝑒𝑥

𝑒𝑥 + 1
 

The reason why the sigmoid/logistic activation function is extensively used is due to the 

following factors:  

1. When creating models that require prediction of probabilities, it is typical to use the 

sigmoid function as the ideal choice. The reasoning behind this is that probabilities 

can only exist within the range of 0 and 1, and sigmoid is able to accommodate this 

range.  
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2. The sigmoid activation function is identifiable by its distinctive S-shape, which 

represents the function's differentiability and capacity to provide a fluid gradient. This 

allows for a lack of abrupt changes in the output values of the function. 

 

Figure 16: Sigmoid activation function graph 

 

 TanH / Hyperbolic Tangent : The Tanh function is known for its resemblance to the sigmoid 

or logistic activation function, as both share the same S-shaped curve. However, the Tanh 

function has a distinct output range of -1 to 1. As the input value grows larger and more 

positive, the output value will approach 1.0. Conversely, as the input value becomes smaller 

and more negative, the output will approach -1.0. 

𝑓(𝑥) =
(𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥)
 

 

Figure 17: TanH activation function graph 

 ReLU (Rectifed Linear Unit) : The rectified linear activation function or ReLU is a non-linear 

function or piecewise linear function that will output the input directly if it is positive, 

otherwise, it will output zero. It is the most commonly used activation function in neural 

networks, especially in Convolutional Neural Networks (CNNs) & Multilayer perceptrons 

[44]. 

ReLu is a non-linear activation function that is used in multi-layer neural networks or deep 

neural networks. This function can be represented as: 



Chapter 2 : Graph ATtention Networks 

 

 
27 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

where 𝑥  an input value. According to equation , the output of ReLu is the maximum value 

between zero and the input value. 

 

Figure 18: ReLU activation function graph 

 Leaky ReLU : is an activation function used in artificial neural networks. It is similar to the 

standard ReLU function, except that it has a small non-zero output for negative input 

values. This allows the network to learn faster and reduces the risk of the network getting 

stuck in a local minimum. Leaky ReLU is popular in tasks where we may suffer from sparse 

gradients, for example training generative adversarial networks [45]. 

𝑓(𝑥) = 𝑚𝑎𝑥(0.1𝑥, 𝑥) 

 

Figure 19: Leaky ReLU activation function graph 

 Softmax : In machine learning, the Softmax function is frequently used. It is often used to 

convert a set of values into a probability distribution. This enables us to forecast the likelihood 

of a specific result. The function is computed by taking the exponentiation of each array 

member and dividing it by the total of all exponentiated array values. As a consequence, a 

probability distribution is represented by a set of values that add to one. 

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑖) =
𝑒𝑥𝑝(𝑍𝑖)

∑ 𝑒𝑥𝑝(𝑍𝑖)𝑗
 

https://deepai.org/machine-learning-glossary-and-terms/relu
https://deepai.org/machine-learning-glossary-and-terms/relu
https://www.bing.com/ck/a?!&&p=1dbf084e20c2a47dJmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY2Ng&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly93d3cuc3VyZmFjdGFudHMubmV0L3JlbHUxLWFuZC1yZWx1Ni1hY3RpdmF0aW9uLWZ1bmN0aW9ucy13aXRoLWJlbmVmaXRzLWFuZC1kcmF3YmFja3Mv&ntb=1
https://www.bing.com/ck/a?!&&p=f5c4e709b3f43e39JmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY2OA&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly93d3cuc3VyZmFjdGFudHMubmV0L3JlbHUxLWFuZC1yZWx1Ni1hY3RpdmF0aW9uLWZ1bmN0aW9ucy13aXRoLWJlbmVmaXRzLWFuZC1kcmF3YmFja3Mv&ntb=1
https://www.bing.com/ck/a?!&&p=f5c4e709b3f43e39JmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY2OA&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly93d3cuc3VyZmFjdGFudHMubmV0L3JlbHUxLWFuZC1yZWx1Ni1hY3RpdmF0aW9uLWZ1bmN0aW9ucy13aXRoLWJlbmVmaXRzLWFuZC1kcmF3YmFja3Mv&ntb=1
https://www.bing.com/ck/a?!&&p=f5c4e709b3f43e39JmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY2OA&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly93d3cuc3VyZmFjdGFudHMubmV0L3JlbHUxLWFuZC1yZWx1Ni1hY3RpdmF0aW9uLWZ1bmN0aW9ucy13aXRoLWJlbmVmaXRzLWFuZC1kcmF3YmFja3Mv&ntb=1
https://www.bing.com/ck/a?!&&p=ca109ab876e4747bJmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY3MA&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly93d3cuc3VyZmFjdGFudHMubmV0L3JlbHUxLWFuZC1yZWx1Ni1hY3RpdmF0aW9uLWZ1bmN0aW9ucy13aXRoLWJlbmVmaXRzLWFuZC1kcmF3YmFja3Mv&ntb=1
https://www.bing.com/ck/a?!&&p=ca109ab876e4747bJmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY3MA&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly93d3cuc3VyZmFjdGFudHMubmV0L3JlbHUxLWFuZC1yZWx1Ni1hY3RpdmF0aW9uLWZ1bmN0aW9ucy13aXRoLWJlbmVmaXRzLWFuZC1kcmF3YmFja3Mv&ntb=1
https://www.bing.com/ck/a?!&&p=a2839c1005d8f1fdJmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY3Mg&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly9wYXBlcnN3aXRoY29kZS5jb20vbWV0aG9kL2xlYWt5LXJlbHU&ntb=1
https://www.bing.com/ck/a?!&&p=a2839c1005d8f1fdJmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY3Mg&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly9wYXBlcnN3aXRoY29kZS5jb20vbWV0aG9kL2xlYWt5LXJlbHU&ntb=1
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Figure 20: Softmax activation function graph 

2.4.4 Loss Function 

 A loss function is a critical tool in evaluating the effectiveness of a neural network for a specific task. 

The method to accomplish this is relatively straightforward: for each training example, the network 

processes the data to obtain a numerical value. Then, this value is subtracted from the desired result, 

and the difference is squared. This is done because both positive and negative differences are equally 

undesirable. 

𝐿(𝑦, ŷ) =
1

𝑚
∑(𝑦𝑖, ŷ𝑖)

2

𝑚

𝑖=1

 

In our neural network, y is the desired output we aim to obtain, while y with a hat represents the actual 

output we receive after processing a given example through the network. The index of a training 

example is denoted by i. For instance, let's take the example of dogs-vs-cats dataset, which contains 

images of labeled dogs and cats, with one representing a dog and zero representing a cat. The label 

we want to obtain from the network after passing the image through it is represented by y. To calculate 

the loss function, we must iterate over each training example in the dataset, calculate y for each 

example, and then apply the function as per the formula defined above. A higher value of the loss 

function indicates poor performance by the network; hence, we aim for the smallest possible value. 

We can further comprehend the relationship between the loss function and the neural network by 

substituting y with the network's actual output in the formula. 

2.4.4.1 Loss Functions for Regression  

 Mean squared error loss (MSE): The squared loss function is utilized when working on a 

regression model that requires a real-valued output. 

Consider the scenario when just one output feature must be predicted; the error in a forecast 

is squared and averaged over the number of data points, basic and straightforward [46]. 

𝐿(𝑊, 𝑏) =
1

𝑁
∑(ŷ𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1
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 Mean absolute error loss (MAE): In the same vein, (MAE) is similar to (MSE) showing in the 

following equation: [45] 

𝐿(𝑊, 𝑏) =
1

2𝑁
∑∑|𝑦𝑖�̂� − 𝑦𝑖𝑗|

𝑀

𝑗=1

 

𝑁

𝑖=1

 

 Mean Squared Log Error (MSLE):  another function used for regression with this equation 

[46]:  

𝐿(𝑊, 𝑏) =
1

2𝑁
∑∑|log 𝑦𝑖�̂� − log 𝑦𝑖𝑗|

𝑀

𝑗=1

𝑁

𝑖=1

 

2.4.4.2 Loss Functions for Classification 

When developing neural networks for classification issues, the emphasis is frequently placed on 

assigning probabilities to these classifications [46].  

These differing conditions necessitate distinct loss functions: 

 Hinge loss  

When the network must be tuned for a hard classification, the most commonly utilized loss 

function is the hinge loss and it is mostly used for binary classifications. There are extensions for 

multiclass classification [46]. 

𝐿(𝑊, 𝑏) =
1

𝑁
∑𝑚𝑎𝑥(0,1 − ŷ𝑖 ∗ 𝑦𝑖)

2

𝑁

𝑖=1

 

 Logistic loss  

they are utilized When probabilities are more interesting than hard classifications [46]. 

𝐿(𝑊, 𝑏) =
1

𝑁
∑∑𝑦𝑖�̂� − 𝑦𝑖𝑗

𝑀

𝑗=1

 

𝑁

𝑖=1

 

2.4.4.3 Loss Functions for Reconstruction 

This set of loss functions is related to the concept of reconstruction. The concept is straightforward. 

A neural network is taught to precisely replicate its input [46].  

2.5 Deep Learning challenges 

Deep learning involves training complex neural networks with a large number of parameters, which 

can lead to a number of challenges related to testing, validating, and overfitting. 

2.5.1 Testing, Validating and Overfitting 

Once a model has been trained, it is crucial to ensure that it can effectively generalize to new cases, 

rather than relying on mere hope. To achieve this, the model needs to undergo evaluation and fine-

tuning if necessary. The most reliable way to assess the model's generalization capabilities is by 

testing it on new cases. One approach involves deploying the model into production and monitoring 
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its performance. Although this method can be effective, if the model proves to be flawed, it may result 

in user complaints, making it less than ideal. A better alternative is to divide the available data into 

two distinct sets: the training set and the test set. As their names suggest, the model is trained using 

the training set, while the test set is employed to evaluate its performance. 

The measure of the model's error on new cases is known as the generalization error or out-of-sample 

error. By evaluating the model on the test set, one can obtain an estimation of this error. This value 

provides valuable insights into the model's performance on instances it has not encountered during 

training. In cases where the training error is low, indicating that the model makes few mistakes on 

the training set, but the generalization error is high, it signifies that the model is overfitting the training 

data. Preventing poor generalization necessitates the ability to halt the training process as soon as 

overfitting commences. 

To address this concern, the training process is divided into epochs. An epoch refers to a single 

iteration over the entire training set. Specifically, for a training set of size 'd' and performing gradient 

descent with a batch size of 'b', an epoch would encompass 'd/b' model updates. At the conclusion of 

each epoch, it becomes essential to measure how effectively the model generalizes. To accomplish 

this, an additional validation set is utilized. The validation set provides insights into the model's 

performance on data it has not encountered previously. If the accuracy on the training set continues 

to improve while the accuracy on the validation set remains stagnant or deteriorates, it serves as an 

indication that training should be stopped to avoid overfitting [47] [48] . 

It is worth noting that the opposite of overfitting, known as underfitting, also exists. Underfitting 

occurs when the model is too simplistic to grasp the underlying structure of the data. For instance, a 

linear model attempting to predict life satisfaction is susceptible to underfitting, as reality is more 

intricate than the model's capabilities, leading to inaccurate predictions even on the training examples. 

2.5.2 Hyperparameters 

In machine learning, hyperparameters are model parameters that cannot be learnt from training data 

and must be defined before training begins. They have control over parts of the training process such 

as the model's learning rate and the number of iterations through the training data. Learning rate, 

regularization strength, the number of hidden layers in neural networks, and the number of trees in a 

random forest model are all examples of hyperparameters. The selection of hyperparameters may 

have a substantial impact on the model's performance and generalization ability, therefore 

determining the best hyperparameters is an important stage in the machine learning workflow [49]. 

2.6 Graph Neural Networks 

A graph neural network (GNN) is a neural network that uses a graph data structure that encodes 

relationships between entities. GNNs are used to learn representations of nodes and edges on graphs 

and can be used for various tasks such as node classification, link prediction, and graph classification. 

GNNs typically involve the propagation of node features in a graph, using message passing 

techniques to update features based on those of neighboring nodes. The architecture of GNNs can 

vary depending on the specific task and the type of graph to be analyzed. There is different types of 

GNNs, ranging from traditional models such as Graph Convolutional Networks (GCN) to recent 

advances such as Graph Attention Networks (GAT) and GraphSAGE [37]. 

A graph neural network (GNN) has two distinguishing attributes: 

 It takes a graph as input. 
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 It produces permutation equivariant results. 

GNNs are designed to build node representations that take into account both the topology of the graph 

and any accessible feature information. 

2.6.1 Main Concepts 

In the following section we are going to describe the main concepts that enable graph neural networks: 

the nature of non-Euclidean data, graph neighborhoods, concepts of neural message passing. 

2.6.1.1 Non-Euclidean space data 

The majority of deep learning techniques that exist today are designed to work with structures that 

are either Euclidean or grid-like in nature, such as images, videos, or textual data. For instance, images 

can be thought of as a function on the Euclidean space (plane), sampled on a grid, which allows us to 

leverage their local connectivity and use Convolutional Neural Networks that utilize this information 

about the data. Similarly, textual data can be represented as a sequence on a Euclidean plane, which 

also has structural concepts of "before" and "after" that NLP models take advantage of. However, 

there are many other types of data - such as social networks in computational social sciences, sensor 

networks in communications, molecule structures in computational chemistry, and meshed surfaces 

in computer graphics - that do not fit the Euclidean mold, and can instead be categorized as non-

Euclidean space data. The non-Euclidean nature here generally means that there are no common 

systems of coordinates, data priors or common structures that represent such data [50]. Therefore, 

basic approaches that work on Euclidean data, fail to work on its generalization, non-Euclidean case, 

where prior structure can be arbitrarily represented. It is also worth noting how the Euclidean data 

can be seen as a particular case of non-Euclidean data. For example, an image grid of N × N pixels 

can be viewed as a graph with N2 nodes and at most 8 edges per node (connecting to the nearest grid 

of pixels) with each node associated a feature vector representing the image’s pixel intensity. 

2.6.1.2 Graph neighborhood 

In graph theory, the neighborhood of a node inside a graph refers to the collection of nodes that are 

immediately related to it by an edge. In simple terms, it includes the nodes that are close to the given 

node. 

In an undirected graph, the neighborhood of a node v is defined mathematically. G is officially defined 

as N(v) = {u ∈ V(G) : uv ∈ E(G)}, where V (G) is the set of vertices in G and E(G) is the set of edges 

in G. 

Understanding a node's neighborhood is critical in graph theory because it gives insights into the local 

structure of the graph surrounding that node. For example, the size of a node's neighborhood might 

indicate its degree of centrality. 
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Figure 21:  1hop and 2hop neighborhoods of a given target node A. 

2.6.1.3 Permutation equivariance and invariance 

In GNNs, permutation equivariance indicates that the network's output stays constant when the nodes 

in the input graph are permuted. If we shuffle the node order, the GNN should provide the same 

output, but with the node order reflecting the new permutation. This characteristic enables the GNN 

to identify the graph's underlying symmetry and deliver symmetric results [51]. 

Permutation invariance Operations applied to graph data must be permutation-invariant, i.e. 

independent of the order of neighbor nodes, as there is no specific way to order them [51].  

Permutation equivariance and permutation invariance are critical properties of Graph Neural 

Networks (GNNs). These properties are especially important in situations when node ordering does 

not transmit meaningful information or when the network structure stays unaltered after permuting 

its nodes. GNNs with these features can successfully capture the local structure and linkages existing 

in the network without being influenced by node order. This capacity to generalize and generate 

reliable representations is critical in tasks like node classification, graph classification, and link 

prediction [51]. 

2.6.1.4 Neural message passing 

The term "neural message passing" refers to a specific framework utilized within the context of graph 

neural networks (GNNs). This framework enables the exchange and assimilation of information 

between the nodes present within a graph. 

At its core, neural message passing assumes that each node u ∈ V in a given graph G = (V, E), is 

associated a feature vector xu ∈ R d, where d is some feature dimension. In order to update a node 

u’s feature vector, producing a new feature vector h (k) u , we need to be able to collect feature 

information coming from the node’s neighbors, as well as to integrate this information, to produce a 

new representation for the node This procedure is reiterated for several message passing steps, 

enabling the nodes to exchange information and enhance their representations. 

The equation for this process can be articulated in the following manner: 

2. ℎ(𝑘 + 1)𝑢 =  𝑈𝑃𝐷𝐴𝑇𝐸(𝑘)(ℎ(𝑘)𝑢, 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸(𝑘)({ℎ(𝑘)𝑣, ∀𝑣 ∈  𝑁(𝑢)})) 

In this context, the functions UPDATE and AGGREGATE are differentiated by their arbitrary 

characteristics, which are usually established as neural networks. The AGGREGATE function 

collects the embeddings of surrounding nodes in the neighborhood N(u) to produce a message 
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m(k)_N(u) based on this compiled data. Conversely, the UPDATE function combines the message 

m(k)_N(u) with the previous embedding h(k-1) u to create the new and improved embedding h(k)_u. 

All nodes begin with initial embeddings set to the input features xu for all nodes u at iteration k=0. 

By repeating the process of message-passing K times, the desired outcome is achieved, we can use 

the final layer output to define the embeddings for each node [52] .  

 
Figure 22: Neural  message passing of target node A 

2.6.2 Types of Graph Neural Networks 

1. Graph Convolutional Networks (GCNs): A GCN is a type of GNN that uses convolutional layers 

to process graph data. These layers apply a set of learnable filters to the graph, designed to take 

into account the structure of the graph and the relationships between vertices. 

Some of the most common uses of GNNs in graph classification include: 

 Social Network Analysis: GNNs can classify people in a social network based on their 

relationship to other people. 

 Bioinformatics: GNNs can classify protein-protein interaction networks and predict 

protein functions. 

2. Graph Autoencoders (GAEs): GAEs use graph convolutional layers to learn a low-dimensional 

representation of the input graph. The network is trained to encode the graph into a lower 

dimensional space, and decode it back to the original graph. 

3. Graph Recurrent Networks (GRNs): GRNs are designed for processing graph-structured data in 

a sequence or time-series setting. They use recurrent neural networks to propagate information 

between nodes across several time-steps. 

4. Graph Transformers: Graph Transformers are inspired by the Transformer architecture used for 

natural language processing tasks. They use self-attention mechanisms to capture the 

relationships between nodes in the graph. 

5. Graph Attention Networks (GATs): GAT is a GNN that uses an attention mechanism to weigh the 

importance of different vertices in a graph when processing data. This allows GNNs to focus on 

the most relevant cornerstones and relations when making predictions.  

2.7 Graph ATtention Networks 

In a research paper titled "Graph Attention Networks" published in 2018, Petar Velikovi and 

colleagues introduced the Graph Attention Network (GAT), a form of Graph Neural Network (GNN). 
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GAT was created in order to overcome some of the limitations of conventional GNNs when modeling 

complicated dependencies and relationships in graph-structured data. Typical traditional GNNs treat 

each neighbor equally when aggregating input from nodes in the neighborhood. However, many 

nodes may have differing degrees of importance or relevance in many real-world settings. 

To tackle this challenge, GAT incorporates attention mechanisms into the GNN architecture. 

Attention mechanisms allow the network to dynamically weigh the importance of different nodes 

when aggregating information. In other words, GAT assigns attention coefficients to each pair of 

nodes in the graph, indicating the importance of one node's information for another. These 

coefficients are learned during the training process. 

By leveraging attention, GAT enables nodes to focus on the most relevant neighbors and weigh their 

contributions accordingly. This adaptive aggregation process allows GAT to capture more nuanced 

relationships and dependencies within the graph, leading to improved performance in various graph-

related tasks [53]. 

2.7.1 Architecture of Graph ATtention Networks 

The architecture of a Graph Attention Network (GAT) typically consists of the following 

components [53]: 

1. Input Graph: GAT takes as input a graph represented by nodes and edges. Each node is 

associated with a feature vector, which could encode attributes or characteristics of the node. 

2. Node Embedding Layer: The initial node features are fed into a node embedding layer, which 

maps each node's feature vector to a lower-dimensional space. This layer aims to capture 

meaningful representations of the nodes. 

3. Graph Attention Layer(s): The core component of GAT is the graph attention layer. It consists 

of multiple attention heads, which operate in parallel to learn different sets of attention 

coefficients. Each attention head computes attention scores between a central node and its 

neighboring nodes. 

a. Attention Coefficient Computation: For each pair of nodes (a central node and one of its 

neighbors), attention coefficients are computed. The coefficients measure the importance 

of the neighbor's information for the central node and are calculated based on their 

respective feature vectors. 

b. Attention Aggregation: The attention coefficients are used to compute weighted 

aggregations of the neighboring node features. This aggregation step ensures that the 

central node can focus on the most relevant information from its neighbors. 

c. Multi-Head Attention: The outputs of the attention heads are concatenated or averaged 

to produce a combined representation for each node. This allows the model to capture 

different aspects or perspectives of the graph. 

4. Optional Additional Layers: Depending on the specific task, additional layers such as fully 

connected layers or pooling operations can be added to further process the node 

representations and perform higher-level computations. 

5. Output Layer: The final node representations obtained from the graph attention layers are fed 

into an output layer for the specific task at hand. This could be a node classification layer, link 

prediction layer, or any other layer appropriate for the target problem. 
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The parameters of the GAT model, including the attention coefficients, are learned through 

backpropagation and optimization techniques such as gradient descent, minimizing a task-specific 

loss function. 

2.7.2 Graph ATtention Networks advantages 

The Graph Attention Network (GAT) model offers several advantages, including: 

1. Adaptive Information Aggregation: GAT involves an attention mechanism that supports 

adaptive information aggregation. It allows nodes to dynamically weigh the importance of 

neighboring nodes when aggregating information. This adaptability helps capture complex 

relationships and dependencies in the graph, thereby improving performance. 

2. Flexible contextual representation: GAT captures contextual information by considering 

related nodes in the graph. By focusing on the most informative neighbors, GAT generates 

node representations responsive to local context. Because of this flexibility and context 

awareness, GAT is well-suited for tasks where local neighborhood plays a key role. 

3. Multi-Head Attention Mechanism: GAT uses a multi-head attention mechanism, which uses 

multiple attention heads to simultaneously capture different aspects or views of a graph. This 

allows the model to learn diverse and complementary representations. The combination of 

multiple heads increases the expressiveness of GAT and improves the performance of various 

tasks. 

4. Handling large and sparse graphs: GAT works well even when dealing with large and sparse 

graphs due to its ability to selectively consider relevant nodes. By focusing on the most 

important nodes and considering the interactions between them, GAT efficiently handles 

graph-structured data, making it applicable to real-world scenarios with complex and large-

scale graph structures. 

5. Versatility and generalizability: GAT have been successfully applied to various graph-

related tasks, including node classification, link prediction, recommender systems, and 

graph-level prediction. Its flexibility and ability to capture complex dependencies make it a 

versatile model that can be adapted to different applications. 

It's important to note that the advantages of GAT may depend on the specific problem, dataset, and 

implementation details. It's always recommended to carefully evaluate the model's performance and 

compare it with other baselines or state-of-the-art methods for a given task. 
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2.7.3 Comparison of GAT and different GNN’s architectures 
 

Model Key Idea Attention Aggregation Message 

Passing 

Advantages 

Graph 

Attention 

Network 

(GAT) 

Attention-

based message 

passing 

Yes Weighted sum Linear 

combination of 

node features 

and attention 

scores 

Captures node 

importance, 

allows for 

flexible feature 

weighting 

Graph 

Convolutional 

Network 

(GCN) 

Convolution-

based message 

passing 

No Averaging Convolution 

of node 

features 

and adjacency 

matrix 

Simple, easy 

to implement 

Graph 

Isomorphism 

Network 

(GIN) 

Learnable 

function-based 

message 

passing 

No Multi-layer 

perceptron 

Aggregation of 

node features 

and fixed 

function 

Powerful, can 

learn complex 

functions 

GraphSAGE Sampling-

based message 

passing 

No Max 

pooling or 

concatenation 

Aggregation of 

node features 

from sampled 

neighborhood 

Scalable to 

large graphs 

GNN-LSTM LSTM-based 

message 

passing 

No LSTM LSTM-based 

message 

passing 

Captures 

temporal 

dependencies 
 

Table 3: Comparison of GAT and different GNN’s architectures 

2.8 Conclusion 
In this chapter, we have defined the main concept of deep learning as a subset of the field of machine 

learning, which is a subfield of AI, and at the very core are graph neural networks (GNNs), The terms 

deep learning and neural networks in reality encompass a wide variety of architectures. Most of these 

networks will share elements i.e., gradient descent, the backpropagation algorithm  activation 

functions, loss functions. While the space of models is diverse, most of them can be grouped into 

some broad categories. One of the major ones was the subject of the last section: Graph Attention 

Networks (GATs)  

In summary, the subsequent chapter will delve into the practical use of GATs, providing a 

comprehensive understanding of their applications in machine learning. By applying the concepts and 

methodologies presented thus far. 
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Chapter 3 : Graph ATtention Networks for the development of session-based 

recommendation systems 

3.1 Introduction 

E-commerce platforms frequently inundate their users with an overwhelming number of products for 

sale. To improve user the experience, recommender systems provide customized and practical 

recommendations. However, conventional recommender systems rely on user profiles, which can be 

difficult to create for new users, anonymous visitors, or individuals who have deleted their tracking 

data. In such circumstances, session-based recommendations provide an alternative method. 

The following chapter delves into the practical application of Graph Attention Networks (GATs) in 

the context of session-based recommendations. The utilization of graph attention mechanisms allows 

us to enhance the precision and efficacy of customized recommendations, leading to a personalized 

and uninterrupted shopping experience for all users. GATs provide a powerful tool to analyze the 

browsing behavior within the current session and generate relevant suggestions based on this context. 

This chapter delves into the methodologies and techniques employed to optimize GATs for session-

based recommendations, with the goal of delivering enhanced user satisfaction and engagement. 

3.2 Deep learning-based recommendations 

In just a few years, numerous deep recommender systems have been put out. Innovation is definitely 

thriving in the industry. It would be simple to dispute the necessity of using so many distinct 

architectures at this point and perhaps even the effectiveness of neural networks for the given problem 

domain. To this purpose, the benefits of deep learning-based recommendation models were outlined 

as follows in [54]: 

 Nonlinear Transformation: contrary to linear models, deep neural networks is capable of 

modeling the non-linearity in data with nonlinear activation functions such as relu, sigmoid, 

tanh, etc. This property makes it possible to capture the complex and intricate user-item 

interaction patterns. 

 Representation learning: Learning complex patterns and representations from large-scale and 

high-dimensional data is where deep learning models excel. They can automatically learn rich 

representations of items, users, and their interactions, capturing intricate relationships and 

latent factors that conventional methods may struggle to uncover. 

 Flexibility and scalability: Deep learning models offer flexibility in modeling different types 

of recommendation tasks. They can handle various data types such as textual, visual, and 

sequential data, enabling the incorporation of diverse information sources into the 

recommendation process. Moreover, deep learning models can scale well to handle large 

datasets and are amenable to distributed computing frameworks. 

 

3.3 A GAT Based-Model for Session Based Recommender Systems 

A Graph Attention Network (GAT) can be used as a model for session-based recommender 

system to recommend items to users based on their current session or sequence of interactions. . 

By leveraging attention mechanisms and graph convolutions, Graph Attention Networks excel in 
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capturing the dependencies and interactions among items in a session-based recommendation 

system. They can effectively model the dynamic nature of user behavior and provide accurate 

recommendations based on the sequential patterns observed in the session data. 

 Architecture of the proposed model 

The proposed model based on GAT for building SBRS is depicted in Fig 23. After representing 

a session with a graphical structure (nodes and edges), this model processes the resulting graph 

with its adjacency matrix through several layers iteratively.  

1. Input layer: The layer receives a set of node features as its input 

h= {ℎ⃗ 1, ℎ⃗ 2, ℎ⃗⃗  ⃗
3, . . . , ℎ⃗ 𝑁} , ℎ⃗ 𝑖 ∈ 𝑅𝐹 where N is the number of nodes, and F is the number 

of features in each node The layer outputs a new set of node features of the form (of 

potentially different cardinality F’ ), h’= {ℎ′⃗⃗  ⃗1, ℎ′⃗⃗  ⃗2, ℎ′⃗⃗⃗⃗  ⃗
3, . . . , ℎ′⃗⃗  ⃗𝑁}, as its output. 

2. Linear Transformation layer: To represent each node in a lower dimension, the 

feature matrix x (set of ℎ⃗ 𝑖 ) is transformed using a shared weight matrix W and a bias 

𝑏 to produce the output 𝑌. 

ℎ∗ = 𝑊ℎ + 𝑏 
This linear transformation allows making the required features simpler to identify and 

classify to compute the attention coefficients on a reduced feature space. 

 

3. Attention mechanism Layer: an attention mechanism is used to compute the 

importance of each neighboring node for a given node i. Two main operations are 

carried out in this layer, namely: 

a. Attention Coefficients: The attention coefficients are computed by a shared 

neural network with parameters of {a}. The output of this network is a scalar 

value 𝒆𝒊𝒋  that represents the compatibility between nodes i and j. 

                      3.      𝑒𝑖𝑗 = a (Wℎ⃗ 𝑖 ,Wℎ⃗ 𝑗) 

Where : 

a is the weight vector of the attention mechanism 

ℎ⃗ 𝑖, ℎ⃗ 𝑗  are the transformed feature vectors of nodes i and j 

W is the weight matrix of the linear transformation 

 
b. Attention Scores: The softmax function is then used to normalize the attention 

coefficients in order to produce a probability distribution for node i's 

neighbors. The model can then focus on the nodes that are the most important 

for each node. 

 

                  4.     α𝑖𝑗= softmax (𝑒𝑖𝑗 ) = 
exp(𝑒𝑖𝑗)

 ∑ exp(𝑒𝑖𝑘) 𝑘𝑖 ∈𝑁           
 

Where: 
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𝛂𝒊𝒋is the attention score for the edge (i,j) 

𝒆𝒊𝒋 is the attention coefficient between nodes i and j 

Attention mechanism is a single layer neural networks, the input for this network are 

the two transform node features vectors for an edge, and applying the LeakyReLU 

nonlinearity (with negative input slope α = 0.2). the output indicates the importance 

between these nodes so the attention coefficients, and applying the LeakyReLU 

nonlinearity (with negative input slope α = 0.2). 

                      5.   α𝑖𝑗= softmax (𝑒𝑖𝑗 ) = 
exp( LeakyReLU(a⃗ T[(Wℎ⃗⃗ 𝑖||Wℎ⃗⃗ 𝑗] ))

 ∑ exp( LeakyReLU(a⃗ T[(Wℎ⃗⃗ 𝑖||Wℎ⃗⃗ 𝑘] )) 𝑘𝑖 ∈𝑁           
 

4. Aggregation and Update Layer: By aggregating the embeddings of node i's neighbors, 

weighted by their attention scores, the final embedding vector can be Updated. This 

is done by using a weighted and nonlinearity sum operation σ. 

                                    ℎ′⃗⃗⃗  
𝑖  =  σ ∑ ( α𝑖𝑗  Wℎ⃗ 𝑗) 𝐽∈𝑁𝑖

 

Where : 

ℎ′⃗⃗  ⃗𝑖   is the final embedding vector of node i 

σ is the activation function  

α𝑖𝑗is the attention score for the edge (i,j) 

||   is the concatenation 

W is the weight matrix of the linear transformation 

of (potentially, with a different cardinality F'), h’= {ℎ′⃗⃗  ⃗1, ℎ′⃗⃗  ⃗2, ℎ′⃗⃗⃗⃗  ⃗
3, . . . , ℎ′⃗⃗  ⃗𝑁}. 

5. Next-item recommendation layer: The final embedding vector with final scores are 

used to presents a ranked list of next-item recommendations. 

 

Figure 23: Functioning process of GAT based-model for SBRS 
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3.4 Material environment  

The experiments were conducted on a computer system with the following specifications: 

 Processor: Intel Core i5 6th generation 

 RAM: 8 GB 

 Graphics Card: Integrated graphics 

 Storage: Solid State Drive (SSD) 

3.5 Development tools and Libraries 

The development and implementation of the model were carried out using the following tools and 

libraries: 

1.5.1 Jupyter  

Jupyter 1 is an open source web application for creating and sharing interactive notebooks. 

Released in 2014 and derived from IPython. Jupyter allows combine code, visualizations, and text 

into one document. It supports multiple programming languages and facilitates reproducible 

research. Jupyter enables users to iteratively develop code, analyze data, and communicate 

insights. The ecosystem includes JupyterLab and JupyterHub for advanced functionality and 

collaboration. The user-friendly interface, language flexibility, and active community make 

Jupyter a valuable tool in data science and research. 

 
Figure 24: Jupyter logo 

3.5.2 Python 

Python 2 is a powerful, high-level, interpreted programming language. Designed by Guido van 

Rossum in 1991, it is known for its simplicity and readability. Python's simple and short syntax places 

great emphasis on code readability, making it ideal for beginners. It is compatible with various 

programming paradigms, including procedural, object-oriented, and functional programming. Due to 

its rich ecosystem of libraries and frameworks, Python is popular in web development, data analysis, 

machine learning, and automation. Its widespread adoption and continued expansion is supported by 

extensive community support and documentation. Overall, Python is a powerful and easy-to-use 

programming language that continues to grow and prosper. 

                                                           
1 Project Jupyter | Home 
2 Welcome to Python.org 

https://jupyter.org/
https://www.python.org/
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Figure 25: Python programming language logo 

3.5.3 PyTorch 

PyTorch 3 is an open source machine learning library for Python. It was developed by Facebook's AI 

research lab and released in 2016. PyTorch provides a dynamic arithmetic framework that enables 

efficient tensor computation and automatic differentiation. It is widely used to build and train neural 

networks, especially in deep learning applications. PyTorch's intuitive and flexible design, as well as 

its extensive collection of pre-built modules and utilities, make it a popular choice among researchers 

and practitioners. With an active community and constant development, PyTorch remains at the 

forefront of the deep learning ecosystem, enabling users to accelerate research and build cutting-edge 

machine learning models. 

 

Figure 26: PyTorch logo 

3.5.4 Numpy 

NumPy is the fundamental library for numerical computation in Python. It provides support for large 

multidimensional arrays and matrices, and a collection of mathematical functions for manipulating 

these arrays. First released in 2006, NumPy has grown to become a cornerstone of scientific 

computing and data analysis. It provides efficient data structures, transfer functions, and vectorized 

operations to improve the performance of numerical calculations. Due to its rich functionality and 

integration with other scientific libraries, NumPy is widely used in fields such as data analysis, 

machine learning, and scientific research, enabling users to process and manipulate numerical data 

efficiently.  

                                                           
3 PyTorch 

https://pytorch.org/
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Figure 27: Numpy logo 

3.5.5 Scikit-learn 

Scikit-learn is a powerful machine learning library for Python. It provides a comprehensive set of 

tools for various machine learning tasks, including classification, regression, clustering, and 

dimensionality reduction. First released in 2007, Scikit-learn has grown to become the go-to 

resource for machine learning practitioners and researchers. It provides a user-friendly interface, 

extensive documentation, and a wide range of algorithms and techniques. Scikit-learn integrates 

seamlessly with other scientific libraries in the Python ecosystem, making it a versatile choice for 

data analysis and model development. With its powerful features and community support, scikit -

learn enables users to efficiently explore, model and solve complex machine learning problems.  

 
Figure 28: Scikit-learn logo 

There are countless additional libraries and frameworks available in Python for a variety of uses. Here 

are a few famous examples: 

 Torch_geometric: A PyTorch library for geometric deep learning. It provides modules for 

constructing graph data structures (for example, Data), graph operations (for example, to 

undirected), and neural network layers for graph data (for example GATConv). 

 Pandas (imported as pd): A data manipulation and analysis library. 

 Unbalanced-learn (imblearn): A library for dealing with imbalanced datasets that includes 

oversampling (e.g., RandomOverSampler) and undersampling (e.g. RandomUnderSampler) 

approaches. 

 

3.6 Experiments and implementations 

3.6.1 Evaluation metrics 

The performances of the proposed model and compared methods are evaluated by 

 Accuracy : The percentage of cases that were successfully predicted out of all instances is 

used to calculate accuracy. The number of accurate forecasts divided by the total number of 

predictions is used to compute it. Accuracy, however, might not be the best statistic for 

datasets with imbalances. 
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                                         Accuracy = (TP + TN) / (TP + TN + FP + FN) 

 Precision  is the percentage of accurate positive predictions compared to all positive forecasts. 

It measures the proportion of true positives to the total of true positives and false positives 

and focuses on the accuracy of positive forecasts. 

                                                    Precision = TP / (TP + FP) 

 Recall (Sensitivity or True Positive Rate): Recall counts the number of actual positive cases 

out of all the true positive forecasts. It is measured as the ratio of true positives to the total of 

true positives and false negatives and focuses on the model's capacity to detect positive cases. 

                                              Recall = TP / (TP + FN) 

 F1-Score: The harmonic mean of recall and precision is the F1 score. When you wish to take 

both the precision and recall values into account, it offers a balanced measurement between 

the two. It is determined by dividing the sum of precision and recall by two times the product 

of precision and recall. 

              

                                F1 Score = 2 * (Precision * Recall) / (Precision + Recall) 

Where TP represents the number of correct recommendations, TN represents the number of 

correctly identified non-relevant items, and FP indicates the number of incorrect 

recommendations. FN indicates the number of desired items that are not included in the 

recommendation list. 

3.6.2 Datasets 

The measurements made for datasets are from two different domains: e-commerce and movies 

 E-Commerce Datasets: the following e-commerce dataset is used  

1. RetailRocket 4: A publicly accessible e-commerce dataset called Retail Rocket covers user 

interactions with online retail platforms. It is frequently employed in the study and assessment 

of recommendation systems. The collection is made up of anonymous user behaviors 

including add-to-cart, buy, and view actions. Each event has a timestamp, user session ID, and 

object ID attached to it. 

2. Yoochoose 5 : The YooChoose dataset is another publicly available e-commerce dataset 

commonly used for recommendation system research and evaluation. It contains user click 

data from an online retail platform. The dataset captures user interactions such as clicks, 

views, and purchases, along with the associated session information. 

The YooChoose dataset is particularly suitable for session-based recommendation tasks, 

where the goal is to recommend items based on the user's current session or recent browsing 

history. It provides a valuable resource for studying user behavior, session dynamics, and 

developing personalized recommendation algorithms. 

 Media Datasets:  

1. MovieLens100K6  

The MovieLens 100K dataset is a widely used benchmark dataset in the field of recommender 

systems. It contains movie ratings provided by users of the MovieLens website. The dataset 

                                                           
4 Available at: Retailrocket recommender system dataset | Kaggle 
5 Available at: yoochoose | Kaggle 
6 Available at: MovieLens 100K Dataset | Kaggle 

https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset
https://www.kaggle.com/datasets/phhasian0710/yoochoose
https://www.kaggle.com/datasets/prajitdatta/movielens-100k-dataset
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is commonly used for tasks such as collaborative filtering, where the goal is to predict user 

ratings for movies based on historical ratings and user preferences. 

The statistics for the datasets are given in Table : 

 RetailRocket Yoochoose MovieLens 

Rows 35309 74708 100226 

Sessions 3636 14514 22202 

Items 15144 9255 9723 

Table 4: Characteristics of the datasets 

3.6.3 Loss functions  

While using GAT to address session-based or more general sequential prediction problems is a natural 

choice, the specific network architecture, choice of attention mechanism, and use of session-parallel 

mini-batches to speed up the training phase are key innovative elements of the technique. method. 

The GAT architecture is able to capture complex relationships and dependencies between elements 

in a session using an attention mechanism, which proves to be well suited for modeling sequential 

data. By assigning different importance weights to neighboring nodes, GAT selectively focuses on 

related items, allowing efficient learning and representation of the importance of different items in a 

single session. Furthermore, the choice of attention mechanism in GAT demonstrates its ability to 

handle complex dependencies within session data, making it an effective solution for session-based 

prediction tasks. 

Typically, there are several hyper-parameters that can be adjusted, such as the learning rate, 

in_features, out_features, num_heads, and a dropout factor that helps maintain network stability. 

Another essential aspect determining the effectiveness of SBRS with GAT is the selection of the loss 

function. 

 The method of Cross-Entropy Loss is frequently employed in architectural work to evaluate 

the difference between the probabilities of the predicted class and the target class. In this case, 

the predicted class probabilities are derived from the GAT model's output, whereas the target 

class is the subsequent item in each session. The loss function works by computing the 

negative logarithmic-likelihood of the anticipated class probabilities concerning the target 

class. And it is defined with the following equation: 

                                               𝐿𝐶𝐸 = −∑ 𝑡𝑖𝑙𝑜𝑔(𝑝𝑖)
𝑛
𝑖=1  

For n classes, where 𝑡𝑖 is the truth label and 𝑝𝑖 is the Softmax probability for the 𝑖𝑡ℎclass. 

And the hyperparameters include: 

1. In_features: The input feature dimension of each node in the graph. In this case, it is set to 1 

because node characteristics are represented by the position of each element in the session. 

2. Out_features: The output feature dimension of each node after applying GAT convolution. In this 

code, it is set to 100. 



Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems 

 

 
46 

3. Num_heads: The number of attention heads used in GAT convolution. It controls how often the 

attention mechanism is applied. The code uses 8 attention heads. 

4. Dropout: The dropout rate applied after GAT convolution to prevent overfitting. Setting it to 0.1 

means that 10% of node features are randomly set to zero during training. 
 

3.6.4 Implementation 

The code performs a session-based recommendation using a Graph Attention Network (GAT). The 

implementation can be summarized as follows: 

1) The necessary libraries are imported, including pandas, numpy, scikit-learn, torch, and 

imbalanced-learn. 

 
Figure 29: Import necessary libraries 

2) The data is read from a CSV file and preprocessed. Irrelevant columns are dropped, and the 

timestamp is converted to datetime format. The data is sorted based on visitor ID and 

timestamp. The previous item ID for each visitor is added as a new column. Any rows with 

missing values are dropped. 

 

Figure 30: Preprocessing the data 

3) The data is split into training and testing sets using a train-test split with a 80:20 ratio. 
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Figure 31: Split the dataset 

4) Item IDs are mapped to indices. Unique item IDs from both the training and testing sets are 

combined, and each item is assigned a unique index using a dictionary. 

 

Figure 32: Mapping the Item IDs to indices 

5) Out-of-range indices are filtered out, and sessions are constructed for the training and testing 

data. Sessions are grouped by visitor ID, and each session contains a sequence of item indices. 

 

 

Figure 33: Filtering any out of range indices 

 

Figure 34: Construct sessions for training and testing data 

6) The lengths of the sessions in the training and testing sets are calculated. 

7) Dynamic graphs are created for the training and testing data. The graphs consist of node 

features, edge indices, edge attributes, and edge timestamps. The number of nodes is equal to 

the total number of unique items. 



Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems 

 

 
48 

 

Figure 35: Create the dynamic train graph 

8) A Graph Attention Network (GAT) model is defined using the torch_geometric library. The 

GAT model is implemented as a subclass of the nn.Module class and includes the necessary 

layers and functions. 

 
9) The GAT model is trained and evaluated. An Adam optimizer is used with a learning rate of 

0.01, and the cross-entropy loss is used as the loss function. The training loop iterates over a 

specified number of epochs. In each epoch, the model is trained using the training graph, and 

then evaluated using the testing graph. Training and testing loss, as well as accuracy, are 

computed and can be tracked. 

 

This implementation utilizes session data, constructs dynamic graphs, and applies a GAT model for 

session-based recommendation. It provides a framework for training and evaluating the GAT model 

on the given data. 

Note: In the implementation, the Graph Attention Network (GAT) model utilizes a dynamic graph 

representation. A dynamic graph consists of time-varying relationships between nodes, where the 

edges in the graph are associated with timestamps and attributes. This allows the model to capture 

temporal dependencies and consider the order of interactions between nodes. 

However, it is important to note that handling dynamic graphs can consume a significant amount of 

memory, particularly when dealing with large datasets. Due to memory constraints, in this 
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implementation, a smaller dataset is used to avoid potential session crashes or out-of-memory errors, 

particularly when running the code in an environment like Google Colab. By using a smaller dataset, 

the memory usage is reduced, enabling the successful execution of the model without encountering 

memory-related issues. 

3.7 Results 

Table 5 shows the results of the proposed GAT-based SBRS model on the aforementioned 

evaluation datasets using the accuracy metric. Several architectures were examined and a single 

layer of GAT was found to be the best performer. 

 

 

 

 

 

 

 

 

Table 5: The results of the proposed GAT-based SBRS model 

 

3.7.1 Comparison with Baselines  
 

POP Baseline: also known as the popularity baseline, is a simple recommendation approach that 

suggests items to users based on their overall popularity or frequency of occurrence in a dataset. 

S-POP Baseline: In session-based recommendation systems, where user interactions are captured in 

sequential sessions or sessions of user activities, S-Pop refers to a popularity measure that takes into 

account the popularity of items within a specific session. It focuses on recommending items that are 

popular within the current session. 

Random Recommendations : Random recommendation baseline is a simple and straightforward 

approach in recommendation systems where items are selected randomly and recommended to users. 

It serves as a basic benchmark for evaluating the performance of more sophisticated recommendation 

algorithms. 

 

 

 

 

 

Epochs RETAILROCKET YOOCHOOSE MOVIELENS 

100 0.7923 0.6158 0.5751 

200 0.7933 0.6165 0.5743 
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The table allows comparisons between the three baselines with the outcomes of the GAT-based 

SBRS model with metrics ( precision, recall, and F1-score), it clearly shows that our model 

dominates the other methods. 

 

 

Baselines 

RETAILROCKET 

 

YOOCHOOSE 

Precision         Recall F1-Score Precision        Recall F1-Score 

POP 0.4546       0.6462    0.5333 0.5342      0.9241    0.6771    

S-POP 
0.0792 0.2229    0.1169    0.1106  0.1944      0.1410       

Random 
recommendations 

0.0721 
0.2920 0.1156 

 

0.1014 0.1842 0.1308 

GAT-based SBRs 
model 

0.7084       0.7807      0.7428 0.9505     0.6036     0.7384 

 

                                Table 6: Comparison of GAT-based SBRS model with the baselines 

Based on the previous results, we can draw a comparison between the proposed model and the 

baselines using these graphs, which vividly illustrate the performance differences. 

 

Figure 36: Model performance comparison with RETAILROCKET dataset using precision metric 
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Figure 37: Model performance comparison RETAILROCKET dataset using recall metric 

 

Figure 38: Model performance comparison YOOCHOOSE dataset using F1-score metric 

 

 

Figure 39: Train and test losses for RETAIL-ROCKET dataset 
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3.7.3 Discussion 

In this study, we compared the performance of our GAT-based SBRS (Session-Based 

Recommendation System) model with three baselines (POP, S-POP and  Random recommendations) 

on the RETAILROCKET and YOOCHOOSE datasets. The evaluation was based on precision, recall, 

and F1-score metrics. 

The results clearly demonstrate the superiority of our GAT-based SBRS model over the baselines. 

On the RETAILROCKET dataset, our model achieved a precision of 0.7084, a recall of 0.7807, and 

F1-score of 0.7428. Similarly, on the YOOCHOOSE dataset, our model achieved a precision of 

0.9505, recall of 0.6036, and F1-score of 0.7384. In comparison, the baselines exhibited lower 

performance across all metrics. 

The performance improvements of our GAT-based SBRS model can be attributed to several factors. 

Firstly, the GAT architecture employed in our model has the ability to capture complex relationships 

and dependencies among items in sessions. By leveraging attention mechanisms, the model assigns 

higher weights to important items in the session, thereby enabling more accurate recommendations. 

This is particularly beneficial in session-based recommendation scenarios where user preferences can 

change dynamically. 

Furthermore, the inclusion of temporal edge indices, edge attributes, and edge times in our model 

enhances the understanding of session dynamics. By considering the order of items, their attributes, 

and the timing of interactions, our model gains a deeper insight into the evolving preferences and 

interests of users. This additional contextual information aids in making more personalized and 

relevant recommendations. 

The practical implications of our GAT-based SBRS model are significant. By providing accurate 

session-based recommendations, e-commerce platforms can enhance the user experience and increase 

user engagement. Personalized and relevant recommendations can lead to improved customer 

satisfaction, potentially resulting in higher conversion rates and revenue for retail companies. Our 

model's performance improvements offer a promising avenue for businesses to deliver more effective 

recommendations and drive user engagement. 

Despite the promising results, it is important to acknowledge some limitations of our study. Firstly, 

the evaluation was performed on two specific datasets, RETAILROCKET and YOOCHOOSE. While 

these datasets are widely used in the field, they may not fully represent the diversity of real-world 

scenarios. Future research should consider evaluating the model on additional datasets to validate its 

performance across different contexts. 

In terms of future directions, there are several avenues to explore. One potential area for improvement 

is the incorporation of additional contextual information, such as user demographics, item attributes, 

or session context. By leveraging a wider range of information, the model can gain a deeper 

understanding of user preferences and provide even more accurate recommendations. Additionally, 

exploring alternative graph-based architectures or integrating other deep learning techniques could 

further enhance the performance of session-based recommendation systems. 

In conclusion, our study demonstrates the effectiveness of the GAT-based SBRS model in session-

based recommendation scenarios. The model's superior performance compared to the baselines and 
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its competitive standing in relation to existing approaches validate its potential contributions to the 

field. The practical implications of accurate session-based recommendations emphasize the value of 

our model in improving user experience and driving business outcomes. Further research and 

advancements in this area will continue to refine and extend the capabilities of session-based 

recommendation systems. 

3.8 Conclusion 

At the beginning of this chapter, the Deep learning-based recommendations were discussed. The 

focus then shifted towards the use of one of the deep learning models: GATs on session-based 

recommendations, which are becoming one of the most important recommendation approaches in 

practice for many domains, including movies, and general e-commerce. A GAT Based-Model was 

proposed for SBRS and proved to perform better than the three baselines used (pop, s-pop, random 

recommendations) in terms of the three-evaluation metrics introduced: precision, recall and F1. 
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4. General conclusion 

 

A. Summary 

First, a session-based recommender System was reported in Chapter 1 by a survey that was conducted 

to determine the recommendation system, the problem of a session-based recommender, and the 

position of session-based in the family of sequence-aware recommendations by a comparison of 

SBRS and other RSs. Also, categorization, approaches, challenges, and limitations concluded it. 

Then, in Chapter 2, deep learning is studied in detail from the basics, namely H. Neural Networks, 

Backpropagation, Gradient Descent, Loss, and Activation Functions to Address the Challenge of 

Employing Deep Learning Approaches Representing Graph Attention Networks in Session-Based 

Recommendation. 

In Chapter 3, in order to answer the research question, a recommender system is created, refined, and 

evaluated based on the session-based model. The end result of this work is a consideration of research 

findings and their implications. 

The research questions discussed are: 

“"How can a Graph Attention Network (GAT) model be effectively utilized in session-

based recommendation systems to capture the intricate and dynamic patterns of user 

 behavior within individual sessions, leading to improved and personalized  

recommendations?" 
Session-based recommendation using GAT is now widely recognized as one of the primary means of 

recommendation in many areas, To enhance the performance of session-based recommendation 

systems (SBRS), With the proposed GAT-Based-Model approach, it was demonstrated how Graph 

ATtention Networks can incorporate sessions in recommender systems, which provides superior 

results on the three primary evaluation metrics (precision, recall, and F1) compared to the four 

baselines employed (pop, spop, Random, and popularity). on three datasets, each from a different 

domain (e-commerce and music). 

It is also relevant to note that a part of this research has been published in the RIA’2023 Conference 

( for more information, refer to the appendix at the end of this document). 

B. Directions for future research 

From this survey, and based on the results of GAT shows in the field of Session-based recommender 

systems, we plan to perform the following research: 

1. Enhancing Graph Attention Mechanisms: 

 Investigate innovative ways to increase the effectiveness of graph attention 

mechanisms in session-based recommendation systems. 

 Explore other attention mechanisms, such as self-attention or multi-head attention, to 

capture more complicated interactions within the graph. 

2. Incorporating Temporal Dynamics: 

 Study techniques to include temporal dynamics into session-based recommendation 

systems using graph attention networks.
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 Develop methods for modeling the evolution of user preferences over time and modify 

the recommendations accordingly. 

3. Evaluation Metrics and Benchmarks: 

 Develop standardized evaluation standards and benchmark datasets particularly 

tailored for session-based recommendation systems leveraging graph attention 

networks. 

 Enable fair comparisons between different techniques and encourage improvements 

in the field. 

4.  Real-world Application: Job Recommendation Website under the name of 

“KHADEMNI.DZ”.
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5. Prototype 

 

In the future, we plan to launch a job recommendation website called "KHADAMNI.DZ." 

 

Figure 40: Home page of the job recommendation website 

 The job recommendation website "KHADEMNI.DZ" uses graph attention network 

architecture to provide personalized job recommendations based on user session data. Even 

users who are new to the platform or have limited browsing history can benefit from tailored 

recommendations ,This website offers two modes of interaction: one through registration or 

inscription, and the other in an anonymous manner. The site's recommendation system 

analyzes user sessions for preferences and interests to ensure accurate and relevant job 

recommendations. 
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Figure 41 :Exploring the Dual Pathways Registration and Anonymity in Website Interaction 

 The site provides job postings from various industries, ensuring users have access to a wide 

range of employment opportunities. Covering industries such as technology, medical care, 

finance, and education, users can explore employment opportunities in their favorite industries. 

 

Figure 42: Job postings 

 The job recommendation website "KHADEMNI.DZ" employs a graph attention network 

architecture to deliver job recommendations primarily based on user session interactions 

within the platform. By examining user behavior during each session, such as job 

advertisements viewed and jobs applied for, the site generates personalized suggestions that 

cater to the user's immediate interests and activities. This approach ensures that the job 

recommendations provided align closely with the user's recent session interactions, 

maximizing relevance and enhancing the overall user experience. 
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Figure 43: Job recommendation 

The development process involved designing and building a web platform integrating the graph 

attention network approach. The method leverages the power of graph neural networks to analyze 

and understand relationships among various job attributes such as job title, skills, and industry. By 

taking these relationships into account, the system can generate more accurate and relevant 

recommendations. 
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6. Appendix 

The following appendix presents an article on a novel session-based recommendation system utilizing 

Graph Attention Networks (GAT) named “Session-Based Recommender Systems with Graph 

Attention Networks” . This article, published in RIA23 the First National Conference in Computer 

Science Research and its Applications  , focuses on the design and architecture of the proposed model, 

aiming to address the challenges associated with session-based recommendations. 

The article provides an in-depth description of the GAT-based architecture, outlining the key 

components and their functionalities. We delve into the attention mechanism employed by GAT and 

explain how it enables the model to dynamically weigh the importance of individual items based on 

their relevance to the current session context. 

Note: that the following content represents only the first page of the article. This limitation is 

imposed to respect copyright laws and restrictions. 

 

This appendix includes an attestation that was granted to us subsequent to the successful online 

presentation of our article
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