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Abstract  

The behavior of LDPE films has been studied experimentally, as temperatures; UV rays 

and precipitation are accumulated in these films, which are responsible for the deterioration 

of greenhouses. Multilayer films have been subjected to the aging process in different ways, 

whether it is artificial over a specific period of time (such as multilayer Agro-film) or as a 

result of external factors. Based on the cost of these experiments in terms of time and the 

complexity of the factors to consider, we aim in this work to use computer simulations as a 

tool to study the aging process in these films.   

Deep learning-based AI has proven useful in a wide range of applications and research 

fields, as it can produce high-level graphical representations of large amounts of raw data, 

unlike traditional machine learning algorithms. Thus, it is an excellent solver for a wide range 

of linear problems and also shows high efficiency in solving nonlinear problems.   

The purpose of this study is to propose a methodology for designing a deep learning 

model for nonlinear analysis, and subsequently to develop a CNN model capable of dealing 

with this problem. Then it will be applied to solve real-world problems such as life prediction 

and mechanical performance degradation of multilayer polyethylene films in greenhouses. To 

carry out this work, we created a deep learning hybrid model that is able to meet this 

challenge, and the training and validation phases of the model were successful, indicating the 

feasibility of using the D1 CNN model for nonlinear analysis.  

Keywords: LDPE, Strain stress curves, Artificial intelligence, Machine learning, deep 

learning ,convolutional neural network.  

 

 

 

 



 

 

 

 

 

Résumé 

      Le comportement des films LDPE a été étudié expérimentalement, comme les 

températures ; Les rayons UV et les précipitations s'accumulent dans ces films, responsables 

de la détérioration des serres. Les films multicouches ont été soumis au processus de 

vieillissement de différentes manières, qu'il soit artificiel sur une période de temps 

spécifique (comme le multicouche Agro-film) ou à la suite de facteurs externes. Compte 

tenu du coût de ces expériences en termes de temps et de la complexité des facteurs à 

prendre en compte, nous visons dans ce travail à utiliser des simulations informatiques 

comme outil pour étudier le processus de vieillissement de ces films. 

     L'IA basée sur l'apprentissage en profondeur s'est avérée utile dans un large éventail 

d'applications et de domaines de recherche, car elle peut produire des représentations 

graphiques de haut niveau de grandes quantités de données brutes, contrairement aux 

algorithmes d'apprentissage automatique traditionnels. Ainsi, c'est un excellent solveur pour 

un large éventail de problèmes linéaires et montre également une grande efficacité dans la 

résolution de problèmes non linéaires. 

       Le but de cette étude est de proposer une méthodologie pour concevoir un modèle 

d'apprentissage profond pour l'analyse non linéaire, et par la suite de développer un modèle 

CNN capable de traiter ce problème. Ensuite, il sera appliqué pour résoudre des problèmes 

du monde réel tels que la prédiction de la durée de vie et la dégradation des performances 

mécaniques des films de polyéthylène multicouches dans les serres. Pour mener à bien ce 

travail, nous avons créé un modèle hybride d'apprentissage en profondeur capable de relever 

ce défi, et les phases d'apprentissage et de validation du modèle ont été couronnées de 

succès, indiquant la faisabilité d'utiliser le modèle D1 CNN pour l'analyse non linéaire. 

Mots clés : LDPE, courbes de contrainte de déformation, intelligence artificielle, apprentissage 

automatique, apprentissage en profondeur, réseau neuronal convolutif   

 



 

 

 

 ملخص 

تمت دراسة سلوك أفلام البولي إثيلين المنخفض الكثافة تجريبياً ، مثل درجات الحرارة ؛ تتراكم الأشعة فوق البنفسجية 

فلام متعددة الطبقات لعملية وهطول الأمطار في هذه الأغشية ، وهي المسؤولة عن تدهور البيوت المحمية. تعرضت الأ

متعددة الطبقات( أو  Agro-filmالشيخوخة بطرق مختلفة ، سواء كانت مصطنعة خلال فترة زمنية محددة )مثل أفلام 

كنتيجة لعوامل خارجية. بناءً على تكلفة هذه التجارب من حيث الوقت وتعقيد العوامل التي يجب أخذها في الاعتبار ، 

 ى استخدام المحاكاة الحاسوبية كأداة لدراسة عملية الشيخوخة في هذه الأفلام.نهدف في هذا العمل إل

أثبت الذكاء الاصطناعي القائم على التعلم العميق أنه مفيد في مجموعة واسعة من التطبيقات ومجالات البحث ، حيث 

ى عكس خوارزميات التعلم الآلي يمكنه إنتاج تمثيلات رسومية عالية المستوى لكميات كبيرة من البيانات الأولية ، عل

التقليدية. وبالتالي ، فهو حل ممتاز لمجموعة واسعة من المشاكل الخطية ويظهر أيضًا كفاءة عالية في حل المشكلات غير 

 الخطية.

الغرض من هذه الدراسة هو اقتراح منهجية لتصميم نموذج التعلم العميق للتحليل غير الخطي ، ومن ثم تطوير نموذج 

CNN ادر على التعامل مع هذه المشكلة. ثم سيتم تطبيقه لحل مشاكل العالم الحقيقي مثل التنبؤ بالحياة وتدهور الأداء ق

الميكانيكي لأفلام البولي إيثيلين متعدد الطبقات في البيوت البلاستيكية. لتنفيذ هذا العمل ، أنشأنا نموذجًا هجينًا للتعلم العميق 

دي ، وكانت مراحل التدريب والتحقق من صحة النموذج ناجحة ، مما يشير إلى جدوى قادرًا على مواجهة هذا التح

  للتحليل غير الخطي. D1 CNNاستخدام نموذج 

  منحنيات الإجهاد، الذكاء الاصطناعي، التعلم الآلي، التعلم العميق، الشبكة العصبية التلافيفية  المفتاحية  : الكلمات  
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GENERALE INTRODUCTION 

Greenhouse farming plays a critical role in modern agriculture by creating 

controlled environments that promote optimal plant growth and protect crops from 

external factors. An essential component of greenhouse systems is the greenhouse film, 

which serves as a protective cover and regulates environmental conditions such as 

temperature, humidity, and light intensity. However, over time, greenhouse films degrade 

due to exposure to factors such as UV radiation, temperature fluctuations, and chemical 

reactions. This degradation significantly affects the mechanical properties of the film and 

ultimately impacts its ability to maintain an ideal greenhouse environment. 

Accurate prediction of greenhouse film degradation is crucial for farmers and 

greenhouse manufacturers. It allows them to anticipate the film's lifespan, plan for 

maintenance or replacement, and optimize resource allocation. Traditional degradation 

prediction methods rely on empirical models based on physical experiments, which are 

time-consuming, expensive, and often lack accuracy. 

In recent years, deep learning models have emerged as powerful tools for various 

prediction tasks, leveraging the capabilities of artificial neural networks to learn complex 

patterns and relationships from large datasets. These models have demonstrated 

remarkable success in domains such as image recognition, natural language processing, 

and speech recognition. Applying deep learning techniques to greenhouse film 

degradation prediction offers a promising alternative to traditional methods, providing 

accurate and efficient predictions based on film characteristics and environmental 

conditions. 

In this study, we propose a deep learning model specifically designed for 

predicting greenhouse film degradation. Our model leverages the capabilities of deep 

neural networks to capture intricate relationships between various factors influencing film 

degradation and accurately forecast its lifespan. By combining convolutional neural 

networks (CNNs) and support vector machines (SVMs), our model extracts relevant 

features from raw data and classifies the film's degradation status. 

The main objective of this research is to develop a reliable and efficient tool for 

greenhouse farmers and manufacturers to predict greenhouse film degradation. Such a 

tool can optimize maintenance schedules, reduce downtime, and ensure optimal 

greenhouse conditions for crop growth. Furthermore, by providing accurate degradation 

predictions, the model contributes to sustainable farming practices by minimizing 

resource waste and environmental impact associated with premature film replacements. 
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In the following sections, we will discuss the methodology employed to develop the deep 

learning model, the dataset used for training and evaluation, and the experimental results 

obtained. 

To finalize our project, we have structured our work as follows  

CHAPTER I: Aging of greenhouse films  

CHAPTER II: DEEP LEARNING  

CHAPTER III: Implementation  



 

1  

  

 

 

 

 

 

 

 

 

   CHAPTER I  
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I.1 Introduction    

 In recent years, polymers have found many applications, especially in the field of 

packaging, where they are widely used. They are also used in mechanical systems such as 

bearings, pinions and seals due to their special mechanical properties and ease of use. In 

addition, they are commonly used for the manufacture of fluid transport tubes. However, 

the use of plastic materials can be limited by their aging, which is manifested by an 

irreversible degradation of their properties. In this chapter, we will present an overview of 

polymers, in particular low density polyethylene, which is relevant for our project. We will 

first describe this type of polymer, and then we will discuss the modes of polymer 

degradation.   

I.2 Definitions  

I.2.1 Polymer  

The term "polymer" originates from the Greek words "poly," meaning many, and 

"mer," meaning part. From a chemical perspective, a polymer is a large organic molecule 

with a high molecular weight, composed of repeating units joined by covalent chemical 

bonds. Due to its size, this type of molecule is often referred to as a macromolecule. [01]  

I.2.2 Monomers  

Monomers are the basic compounds of polymers. Relevant to organic chemistry, they 

associate covalent bonds with a sequence of similar additional molecules or not (of carbon 

atoms and atoms of hydrogen, oxygen, nitrogen, etc.) under the appropriate polymer 

formation reaction conditions used for a process particular, each carbon atom, tetravalent, is 

linked to neighboring atoms by four covalent bonds, oriented in space towards the four 

vertices of a regular tetrahedron. [03]  
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I.3 Polymer polymerization    

 The term 'polymerization' refers to all the processes for forming chains from smaller 

molecules (monomers); each monomer is isolated, it is then combined with other monomers 

of the same nature or of a different nature during a chemical reaction called the 

Polymerization reaction. [04]  

 

 

Figure I.1: Polymerization.  

I.4 Properties of polymers  

The properties of polymer materials are much more sensitive than those of metals 

to external influences such as temperature, hardness, intensity of applied stress, UV 

radiation and chemical agents. Their modulus of elasticity is generally two orders of 

magnitude less than that of metals. Resistance characteristics can differ only by an 

order of magnitude. Apart from the specific parameters or materials (molar mass, 

branching rate, chain mobility, crosslinking rate, etc.), and the external conditions 

(humidity, agents chemicals, temperature, rate of stress, type and intensity of stresses 

applied). [03]  
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I.4.1 Physical properties  

First of all, remember that there is a wide variety of plastic materials, just as there are a 

large number of metal alloys, one of the physical characteristics general polymers is: [5]  

• Density  

The density of plastics is low. The lightness of polymers is undoubtedly one of the 

qualities that has most widely contributed to their diffusion.   

When it comes to the ratio (tensile strength / density), some polymers are actually far 

superior to metallic materials. The low density of plastics is due to the low atomic weight of 

the main atoms in their chains (mainly hydrogen and carbon). [5]  

• The amorphous state  

In the amorphous state, a chain unfolds in space to adopt a configuration in which no 

order can be distinguished. The absence of order gives the polymer a "frozen" liquid 

structure whose main characteristics are as follows: To. No TF melting point. b. Existence 

of a glass transition point TG marking the transition from the rubbery liquid state to the 

glassy state. Vs. Visible transparency. “Crystal” polystyrene or “crystal” poly (vinyl 

chloride) are transparent because they have an amorphous structure. [6]  

• The crystalline state  

The crystalline state is characterized by the existence of a long-range order. The chains 

having adopted a regular conformation in planar zigzag or in helix are bundled in a way 

neat and compact. We can then define a crystal lattice, which is repeated periodically in the 

three directions of space. The main characteristics of the state crystal are as follows:  

• Compactness greater than that of the amorphous phase.  

• Existence of a melting point TF, absence of glass transition.  

• Refractive index higher than that of the amorphous phase (nc>na).  
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• Total impermeability to most gases and vapors or liquids.  

• Stiffness greater than that of the amorphous phase. [6]  

 From the analysis of these two states, we can deduce the behavior of the polymer and 

generally classify polymers into different categories.  

 Linear polymers possess a certain cohesion thanks to physical bonds. So there are 

solvents for them. By heating them, we go through a plastic stage, then a liquid stage 

(physical bonds broken). They are thermoplastics. Solid thermoplastics are either 

semicrystalline (polyethylene, polypropylene, polyamide, etc.) or amorphous (polystyrene, 

polyvinyl chloride, poly (methyl methacrylate), etc.) and are fusible at High temperature. 

Thermoplastics are generally recyclable and easy to process in liquid form.  

 Network polymers have their cohesion due to chemical bonds. There is therefore no 

solvent or molten phase for them. If heated, the few ramifications of the network pendants 

cling. They are thermosets. They do not melt but decompose at high temperature. 

Thermosets are rigid, brittle and temperature-resistant materials. Thermosets are not 

recyclable and their automated implementation is more complex. On the other hand, they 

can be used as structural materials.  

I.4.2. Thermal properties 

The glass transition temperature "Tg" and the melting temperature "Tf" are the two 

fundamental temperatures necessary in the study of polymeric materials.The glass transition 

temperature is partly important for amorphous polymers, especially amorphous 

thermoplastics, for which there is no significant cohesive force other than entanglement. [7]  

 The characteristic temperatures of one and the same material can then be classified as 

follows:  

• Glass transition temperature  

• Crystallization temperature   
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• Melting temperature   

• Thermal decomposition temperature. [7]  

 Depending on the temperature to which it is subjected, a polymer material can exhibit 

different mechanical behavior. This can occur for semi-crystalline thermoplastics in even a 

narrow temperature range. [7]  

I.4.3 Mechanical properties  

      The success of polymers stems in part from the ease with which they can be formed 

into desired shapes; especially in the molten state they are very malleable (very plastic, 

hence their name). In fact, this plasticity varies in a wide range, from the most rigid, hard 

and brittle, to the most soft (pasta) or elastic (elastomers). [8]  

I.5 Polyethylene (PE)  

Today, polyethylene constitute a large family of products with very varied 

characteristics. The polyethylene used in the gas industry is a material thermoplastic made 

by chemical synthesis from ethylene. The finished product used is a rather complex mixture 

of various products such as carbon black, which gives its final colour, each providing 

enhancement and protection to the whole. In fact, the peculiarity that characterizes PE 

compared to other metallic materials is its evolution over time. In order to ensure its 

reliability, it is necessary to avoid any error at the level of manufacturing, storage – 

handling and implementation in particular.  

I.5.1 Definition (EP)   

     A polyethylene molecule is nothing more than a long chain of carbon atoms, with two 

hydrogen atoms attached to each carbon atom. Its name comes because it is the polymer 

obtained by the polymerization of ethylene monomers (CH2 = CH2) into a complex 

structure with the generic formula: [9] − (CH2 − CH2) n –. It may be easier to draw it, 

simply with the chains of carbon atoms several thousand atoms long:  
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Figure I.2: Representative diagram of polyethylene.  

Polyethylene is translucent, easy to handle and cold resistant. Polyethylene is 

thermoplastic. This plastic material represents about a third of the total production synthetic 

materials and constitutes half of the plastic packaging. Polyethylene takes precedence over 

most other materials because it can be reused. [10]  

I.5.2 Types of Polyethylene   

PE (polyethylene) are part of the thermoplastics. There are different types of 

polyethylene classified according to their density, which depends on the number and length 

of the branches present on the molecular chains. [11]   

• HDPE, high-density polyethylene synthesized under low pressure by the Ziegler 

process. It is in the form of a regular linear macromolecular chain. Some 

irregularities remain present (1%carbon) and appear in the form of short 

ramifications. Its density is the highest of all polyethylene has and varies between 

0.955 and 0.970 g/cm3.   

• LDPE, low-density polyethylene synthesized under high pressure by radical 

polymerization. Unlike HDPE, LDPE has a high number of relatively large branches 

(about 60% carbon) directly responsible for its low density (0.915 and  

0.935 g/cm3). [12]  

 

I.5.3 The properties of LDPE low-density polyethylene  

In general, industrial methods do not lead to a perfectly regular architectural edifice, 

made up of indicated structural patterns. Certain chemical acts, which are integral parts of 
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the polymerization mechanism, are at the origin of irregular structure, introduced according 

to the case in the chain or at its ends. These irregularities can influence, directly or 

indirectly, the physical or chemical properties of the polymer. Indeed, the breaking strength  
 

is directly linked to the concentration at the end of the chains. They represent certain 

beginnings to the phenomenon of rupture. In addition, they oppose crystallization; 

Therefore, the ends of chains play a role fundamental in mechanical properties. [12]  

I.6 Aging of polyethylene:  

Aging describes a set of complex mechanisms that result in a slow and irreversible 

change in the intrinsic properties of materials. Thus, exposed to the weather the 

polyethylene films degrading quite quickly. The responsible factors are solar radiation, 

variations in temperature, humidity, wind, hail, sand, oxygen in the air and atmospheric 

pollution. [13]  

I.6.1 General Aspects of aging  

The different types of aging are generally classified according to the external cause 

Thus, the high temperature is at the origin of the thermal aging the UV or ionizing rays 

cause photochemical aging etc.… There are, however, a certain number of aspects common 

to all types of aging (chain breaks, cross-linking, etc.) whose study methods and 

consequences on the physical properties of polymers do not vary from one type of aging to 

another. [14]  

• Statistical cut-off reactions  

This is the most important process. A wide variety of mechanisms can lead to 

"statistical" cuts, i.e. randomly distributed over the chains. Macromolecular by mechanisms 

that contribute to this operation. The break in the continuity of the covalent bonds results in 

the deterioration of the mechanical properties, thus causing a reduction in the stress at 

break.  
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• Depolymerisation reactions  

This is the reverse of polymerization reactions. They involve a sequential elimination of 

monomer molecules, from a particularly unstable site pre-existing (for example the end of 

the chain). In this case, the variation in molar mass of the polymer is much higher because 

each chemical act of depolymerisation leads to the release of a molecule of gaseous 

monomers.  

• Cross-linking reactions   

        These reactions result in the creation of a two- or three-dimensional network by certain 

elastic and plastic properties of the polymer. It strengthens resistance to decomposition. An 

exclusively thermal route can carry out the crosslinking reactions. Although most of the 

time a chemical agent (oxygen for example) intervene.  

I.6.2 Physical aging  

Physical aging manifests itself in several different ways, which we will discuss:  

• Lamination  

      Lamination Plasticization occurs when solvent molecules introduce themselves into the 

macromolecular network. This produces disorders that weaken, or even destroy, the bonds 

secondary between chains, responsible for the cohesion of the material. Thus, by destroying 

the secondary bonds of the polymer, water decreases the mechanical cohesion and increases 

the molecular mobility.  
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Figure I.3: Schematizes the penetration of a solvent into a polymer..  

Plasticization is characterized by a change in the mechanical properties of the material, 

which results in a drop in the glass transition temperature (Tg), transition between the 

rubber domain and the viscoelastic domain.  

• Swelling   

The penetration of solvent within the polymer material can induce a swelling likely to 

cause modifications of internal structure when there are heterogeneities which induce 

constraints between more or less swollen zones. These areas can be amorphous (relatively 

accessible), or crystalline (relatively impenetrable). This swelling can also occur when the 

diffusion kinetics of the solvent creates concentration gradients. Finally, it exists when the 

material undergoes successive cycles of aging.  

• The damage  

Stress damage can produce cracks or fissures in the material. Crazing relates to areas 

made up of voids and highly oriented fibrils in the polymer. Cracking is the result of 

cracking which can lead to the formation of a micro crack and then a crack.  
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I.6.3 Chemical aging  

Chemical aging brings together several phenomena that can sometimes be 

complementary to each other, which considerably complicates the analysis. They translate 

mainly by phenomena of hydrolysis, oxidation, leaching or diffusion and can lead to an  

  

alteration  of the macromolecular skeleton according to three distinct mechanisms:  

  

• Cuts in the backbone can induce a drop in the molar mass of the polymer, which 

leads to a drop in mechanical properties.  

• One or more cross-linking reactions can occur, especially on polymers that have 

double bonds in the chain or reactive groups that have not yet reacted before.  

• One or more reactions on the side groups can occur by substitution of one group on 

another, by elimination of the groups in favor of a double bond or a cyclization.   

They are generally classified according to the external cause that provokes them: 

thermochemical, photochemical, biological aging   

There is also another type of hydrolytic aging which mainly involves polymers whose 

chain contains hetero atoms. [15]  

It should be noted that most aging phenomena are thermoactive, and that the presence 

of defects in the material accelerates these processes.  

I.7 Stress-strain curves 

Stress-strain curves are crucial graphical representations that measure the mechanical 

properties of materials, frequently encountered by students studying Mechanics of 

Materials. However, they possess certain intricacies, particularly when dealing with ductile 

materials that undergo significant geometric changes during testing. This module serves as 

an introductory discussion on various key points necessary for interpreting these curves. 

Additionally, it offers a preliminary overview of several aspects related to a material's 

mechanical properties. It is important to note that this module does not aim to cover the 
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extensive range of stress-strain curves exhibited by modern engineering materials. For a 

comprehensive survey on this topic, the atlas by Boyer cited in the References section can 

be consulted. Furthermore, topics such as yield and fracture mentioned here will be 

explored in greater details in subsequent modules. [16]  

I.8 The engineering measures of stress and strain 

The tensile test is widely considered as the most crucial examination of a material's 

mechanical response. This test involves clamping one end of a rod or wire specimen in a 

loading frame while subjecting the other end to a controlled displacement δ (refer to Figure 

I4). A transducer connected to the specimen measures the load P(δ) corresponding to the 

displacement. Alternatively, modern servo-controlled testing machines allow for 

loadcontrolled testing, where the displacement δ(P) is monitored as a function of the 

applied load. In this module, the engineering measures of stress (denoted as σe) and strain 

(denoted as ε) are determined by using the original cross-sectional area A0 and length L0 of 

the specimen. They are calculated as follows:   

                                  σe = P/A0 ,  ε = δ/L0                                      (1).  

By plotting the stress σe against the strain ε, we obtain an engineering stress-strain 

curve as shown in Figure I.5.  

  

Figure I.4: The tension test.  
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Figure I.5: low-strain region of the engineering stress-strain curve for annealed 

polycrystalline copper.  

Figure I.5illustrates the low-strain region of the engineering stress-strain curve for 

annealed polycrystalline copper, which is typical for many ductile metals. In the initial 

portion of the curve, often referred to as the low strain region, many materials 

approximately obey Hooke's law. According to Hooke's law, stress is directly proportional 

to strain, and the constant of proportionality is known as the modulus of elasticity or 

Young's modulus (denoted as E):   

                                                  σe = Eε                            (2).  

As the strain increases, many materials deviate from this linear proportionality, which is 

usually observed at a point called the proportional limit. This nonlinearity is associated with 

stress-induced "plastic" flow in the specimen, indicating a rearrangement of the material's 

internal molecular or microscopic structure. During this process, atoms move to new 

equilibrium positions. In crystalline materials, plasticity occurs due to dislocation motion, 

which is discussed in detail in a later module. Materials lacking molecular mobility, such as 

those with internal microstructures that impede dislocation motion, tend to be brittle rather 

than ductile. The stress-strain curve for brittle materials typically remains linear over the 

entire range of strain, leading to fracture without significant plastic flow.  
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It is worth noting in Fig. 5 that in ductile materials, the stress required to increase the 

strain beyond the proportional limit continues to rise. The ma  terial demands progressively 
 

higher stress to continue straining, a phenomenon referred to as strain hardening. The 

microstructural rearrangements associated with plastic flow are usually irreversible when 

the load is removed. As a result, the proportional limit often coincides with or is close to the 

material's elastic limit. Elasticity refers to the property of complete and immediate recovery 

from an imposed displacement upon load removal, and the elastic limit is the stress value at 

which the material experiences permanent residual strain that is not lost upon unloading.  

Another related term is the yield stress (denoted as σY in this module), which 

represents the stress required to induce plastic deformation in the specimen. Since 

determining the exact stress at which plastic deformation initiates can be challenging, the 

yield stress is often defined as the stress necessary to induce a specified amount of 

permanent strain, typically 0.2%. Fig. 5 demonstrates a construction used to find the "offset 

yield stress," where a line with a slope of E is drawn from the strain axis at ε = 0.2%. This 

line represents the unloading behaviour that would result in the specified permanent strain. 

The stress at the point of intersection with the σe-ε curve corresponds to the offset yield 

stress.  

In Figure I.6, we observe the engineering stress-strain curve for copper with an 

enlarged scale, depicting strains from zero up to specimen fracture. It appears that the rate 

of strain hardening diminishes up to a point labeled UTS (Ultimate Tensile Strength, 

denoted as σf in this module). Beyond this point, the material seems to undergo strain 

softening, where each additional increment of strain requires less stress.  
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Figure I.6: Full engineering stress-strain curve for annealed polycrystalline copper.  

However, it is important to note that the apparent transition from strain hardening to 

strain softening and the maximum observed in the curve at the UTS are artifacts of the 

plotting procedure. Additionally, beyond the yield point, molecular flow causes a 

significant reduction in the specimen's cross-sectional area A, leading to the true stress σt = 

P/A  being larger than the engineering stress computed from the original cross-sectional 

area (σe = P/A0). As long as strain hardening increases σt sufficiently to compensate for the 

decreased area A, the load and engineering stress continue to rise with increasing strain. 

Eventually, the decrease in area due to flow surpasses the increase in true stress due to 

strain hardening, and the load begins to decrease. This geometric effect implies that if the 

true stress rather than the engineering stress were plotted, no maximum would be observed 

in the curve. At the UTS, the load P reaches a maximum, resulting in an analytical 

relationship between the true stress and the area at necking:  

P = σtA → dP = 0 = σtdA + Adσt → -dA/A = dσt/σt          (3)  

The last expression indicates that the load and engineering stress reach a maximum as a 

function of strain when the fractional decrease in area equals the fractional increase in true 

stress. Although the UTS is commonly reported in tensile tests, it is not a direct measure of 
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the material's properties due to the influence of geometry, as discussed earlier. Thus, 

caution should be exercised when using the UTS as a design criterion. In designing with  

  

 ductile metals, the yield stress σY is usually preferred over the UTS. However, the UTS 
 

remains a valid design criterion for brittle materials that do not exhibit flow-induced 

reductions in cross-sectional area.  

During the tensile test, the true stress is not uniformly distributed throughout the 

specimen, and there will always be a location, such as a nick or surface defect, where the 

local stress is maximum. Once the maximum point on the engineering curve is reached, the 

localized flow at that site cannot be compensated by further strain hardening, leading to a 

further reduction in the area. This intensifies the local stress, accelerating the flow even 

more. This localized and increasing flow eventually results in the formation of a "neck" in 

the gage length of the specimen, as shown in Figure I.7.  

  

Figure I.7: Necking in a tensile specimen.  

After necking occurs, all subsequent deformation takes place within the necked region, 

while the rest of the specimen experiences limited deformation. The neck continues to 

decrease in size, causing an increase in local true stress until the specimen ultimately fails. 

This necking failure mode is common for most ductile metals. As the neck shrinks, the 

nonuniform geometry alters the stress state from uniaxial stress to a complex state involving 

shear components in addition to normal stresses. The final failure of the specimen often 

exhibits a "cup and cone" geometry, as depicted in Fig. 8, where the outer regions fail in 

shear, while the interior fails in tension.  
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Upon fracture, the engineering strain at break (denoted as εf) includes the deformation 

in both the necked and unnecked regions. Since the true strain in the neck is greater than  
 

that in the unnecked material, the value of εf depends on the fraction of the gage length that 

has necked. Therefore, εf is influenced by both the specimen's geometry and the material 

properties, making it only an approximate measure.   

  

Figure I.8: Cup-and-cone fracture in a ductile metal.  

Figure I.9 presents the engineering stress-strain curve for a semi crystalline 

thermoplastic, which exhibits a similar response to copper as seen in Fig. 5. It shows a 

proportional limit followed by a maximum in the curve where necking occurs. In plastics, 

this maximum is commonly referred to as the yield stress, although plastic flow actually 

begins at earlier strains.  
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Figure I.9: Stress-strain curve for polyamide (nylon) thermoplastic.  

However, polymers differ significantly from copper in that the necking process does 

not continue until failure. Instead, the material in the neck stretches only up to a "natural 

draw ratio," which depends on temperature and specimen processing. Beyond this point, the 

material in the neck stops stretching, and new material at the neck shoulders down. This 

neck propagation continues until it spans the full gage length of the specimen, a process 

known as drawing. This drawing process can be observed without the need for a testing 

machine by stretching a polyethylene "six-pack holder," as shown in Figure I.10.  

It is worth noting that not all polymers can sustain this drawing process, as it occurs 

when the necking process produces a strengthened microstructure with a breaking load 

greater than that needed to induce necking in the untransformed material just outside the 

neck.  
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Figure I.10: Necking and drawing in a 6-pack holder.  

I.9 True stress and strain measurements:  

As discussed in the previous section, the engineering stress-strain curve must be 

interpreted with caution beyond the elastic limit, since the specimen dimensions experience 

substantial change from their original values, and obtaining a more accurate representation 

of material behaviour using true stress and strain measurements. We mention the following:  

• To account for dimensional changes during plastic flow, true stress (σt) is preferable 

over engineering stress (σe), which doesn't consider these changes.  

• True strain (εt) is calculated using the logarithmic strain measurement (dt = ln (L / 

L0)), where L and L0 represent current and original lengths.  

• The volume constraint during plastic flow is expressed as AL = A0/L0, where A and  

A0 are current and 

original cross-sectional 

areas. The extension ratio 

(λ = L / L0) represents 

this constraint.  

• Equations connecting true and engineering stress and  true  strain  

 facilitate the derivation of true stress- 
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strain curves from the engineering curves.  

  

• Ductile metals often exhibit power-law behavior  

 in the true stress-strain relationship,  

with the strain hardening parameter (n) indicating resistance to necking.  

• The "Considère construction" graphical technique uses true stress (σt) and extension 

ratio (λ) to analyze yield characteristics, with different shapes of true stress-strain 

curves indicating distinct behaviours.  

The three shapes observed are:  

a) always concave upward, leading to fracture before yielding;   

b) concave downward with one tangent, signifying a yield drop and necking; and   

c) sigmoidal with two tangents, indicating initiation of yielding, necking, and drawing.  

Semicrystalline polymers undergo microstructural transformations during strain, 

resulting in increased strain hardening rates, higher strengths, and stiffnesses, leading to a 

second tangent in the true stress-strain curve.  

Overall, the paragraph emphasizes the importance of considering true stress and strain 

measurements and discusses their relevance in understanding material behaviour beyond 

the elastic limit and during plastic flow.   

I.10 Area under stress-strain curve  

The total mechanical energy per unit volume consumed by a material during straining up to 

a specific strain value is represented by the area under the engineering stress-strain curve.  

This can be demonstrated as follows:  

                            (7)  
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In the absence of energy dissipation mechanisms like molecular slip; this mechanical 

energy is stored reversibly within the material as strain energy. When the stresses are within 

the elastic range, the strain energy is proportional to the triangular area under the 

stressstrain curve in Figure I.11.  

  

Figure I.11: Strain energy = area under stress-strain curve.  

It's important to note that the strain energy increases quadratically with stress or strain. 

As the strain increases, the energy stored per unit increment of strain grows as the square of 

the strain. This has practical implications, such as the design of archery bows. A real bow, 

when strung, stores substantial strain energy due to the bending of the initially straight piece 

of wood. This stored energy is then available to propel the arrow when the bow is further 

bent upon drawing. A curved piece of wood without the initial bending wouldn't store as 

much energy.                        

Figure I.12 schematically illustrates the amount of strain energy available for two equal 

increments of strain (∆) applied at different existing strain levels. The area up to the yield 

point represents the modulus of resilience, while the total area up to fracture represents the 

modulus of toughness, as shown in Figure 13. The term "modulus" is used because strain 

energy per unit volume shares the same units as stress or modulus of elasticity (N-m/m3 or 

N/m²)  

σ 

ϵ
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Figure I.12: Energy associated with increments of strain  

 

Table I.1: Energy absorption of various materials  

The modulus of resilience refers to the material's ability to absorb energy without 

suffering damage until the point of yielding. The modulus of toughness represents the 

energy required to completely fracture the material. Materials with high moduli of 

toughness tend to exhibit good impact resistance.  

 

Material 
Maximum 

Strain, % 

Maximum 

Stress,MPa 

Modulus of 

Toughness,

MJ/𝒎𝟑 

Density 

kg/𝒎𝟑 

Max. 

Energy 

J/kg 

Ancient Iron 0.03 70 0.01 7,800 1.3 

Modern spring steel 0.3 700 1.0 7,800 130 

Yew wood 0.3 120 0.5 600 900 

Tendon 8.0 70 2.8 1,100 2,500 

Rubber 300 7 10.0 1,200 8,000 
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Figure I.13: Moduli of resilience and toughness.  

Table I.1 provides energy absorption values for various common materials. Natural and 

polymeric materials, in particular, can offer high-energy absorption per unit weight.   

During loading, the area under the stress-strain curve represents the strain energy per 

unit volume absorbed by the material. Conversely, the area under the unloading curve 

represents the energy released by the material. In the elastic range, these areas are equal, 

resulting in no net energy absorption. However, if the material is loaded beyond the elastic   

range, as shown in Figure I.14, the absorbed energy exceeds the released energy, and the 

difference is dissipated as heat.  

  

Figure I.14: Energy loss = area under stress-strain loop.   
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I.11 Conclusion  

Low-density polyethylene (LDPE) is extensively employed in 

plasticulture, particularly as agricultural greenhouse covers. It offers several 

advantages due to its ease of use and temperature resistance. Additionally, 

LDPE can be treated with various methods, such as anti-UV treatment, to 

enhance its properties. Its favorable attributes and cost-effectiveness make it a 

preferred choice in various applications. The present study aims to investigate 

the impact of different conditions on the structure and behavior of low-density 

polyethylenes and subsequently assess the long-term performance of this 

polymer. 
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II.1 Introduction  

AI stands for artificial intelligence, which refers to the development of computer 

systems capable of performing tasks that normally require human intelligence, such as 

visual perception, speech recognition, decision-making and language translation. Artificial 

intelligence is achieved through algorithms and statistical models designed to learn from 

data and make predictions or decisions based on that learning. This process is called 

machine learning, which involves training a computer system with large amounts of data 

so that it can learn from patterns and make predictions or decisions on its own. AI has a 

wide range of applications in various industries, including healthcare, finance, 

manufacturing, transportation and entertainment. Some examples of AI applications 

include self-driving cars, virtual personal assistants, facial recognition systems, and 

recommendation systems for e-commerce websites. Overall, AI has the potential to 

transform many industries and improve our lives in many ways, but it also raises important 

ethical and social issues that need to be addressed.  

II.2 Artificial Intelligence  

  

Figure II.1: Deep Learning  
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 “Artificial Intelligence or AI is the art of making computers think and behave in the same 

manner as human brain in order to solve more complex problems without the need of 

programmer’s guide”  

Artificial intelligence, commonly referred to as AI, is a field of computer science 

concerned with the development of intelligent machines capable of performing tasks that 

normally require human intelligence. These tasks range from understanding natural 

language to recognizing images and patterns to making decisions based on complex data. 

[18]  

The history of artificial intelligence dates back to the mid-20th century, when 

computer scientists began exploring the concept of machine intelligence. In 1956, a group 

of researchers organized the Dartmouth Conference, where they floated the idea of 

creating a machine that could "think" like a human. The conference is widely considered 

the birthplace of artificial intelligence as a field of research.  

Over the years, artificial intelligence has evolved from simple rule-based systems to 

more advanced algorithms that can learn and improve on their own. A major breakthrough 

came in the 1990s with the development of machine learning, a subfield of AI that focuses 

on creating algorithms that can learn from data.  

Today, artificial intelligence is used in a variety of applications, from virtual assistants 

like Siri and Alexa, to self-driving cars, to medical diagnosis and treatment. As the 

technology continues to advance, there are concerns about its impact on society, 

particularly in terms of job losses and possible misuse of AI by governments and 

businesses  

Despite these concerns, artificial intelligence has the potential to revolutionize many 

industries and improve our lives in countless ways. As the field continues to grow and 

evolve, it will be important for researchers, policymakers, and the public to work together 

to ensure that AI is used responsibly and ethically.  

While symbolic AI has shown good improvements in solving well-defined logical 

problems, figuring out clear rules to solve complex problems like image classification or 
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language translation and speech recognition has been very difficult. This opens up a lot of 

room for a new approach called machine learning ML [19]  

II.3 Distinction between AI, ML and DL   

 Some challenges experience exponential growth, such as processing time, which depends 

on the size of the given examples. In certain cases, the problem may be impossible to solve 

within a reasonable timeframe using human capabilities. To address this concern, various 

processing techniques have been developed to break down the problem into quantifiable 

sub-problems that can be solved.  

There is often confusion in public discussions regarding the distinctions between 

"artificial intelligence," machine learning, and deep learning. However, these concepts are 

not equivalent but interconnected:  

 Artificial intelligence is a broad term that encompasses machine learning, which, in 

turn, encompasses deep learning.  

 Artificial intelligence can also encompass other types of software components, such 

as rule engines.[20]  

II.4 Machine Learning   

Learning is a concept to define the acquisition of knowledge and the reuse of this new 

knowledge. We learn from perceiving the environment with our five senses, from life 

experiences, and from repeating events with memory. For machines, since they are not 

endowed with senses or dynamic judgment, they obey instructions in a program with input 

data and an output or program response. [21] 

Tom Mitchell, on the other hand, defined learning as a computer program that learns a 

specific task T from experiential data E, with a measure of performance P.   

Machine Learning is currently a popular term that is widely discussed, and rightfully 

so, as it is one of the most captivating subfields within the realm of Computer Science.  
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Tasks related to machine learning focus on a practical definition rather than defining 

the field based on cognitive terms. This approach aligns with Alan Turing's proposition in 

his paper titled "Computing Machinery and Intelligence." In this paper, Turing replaces the 

question "Can machines think?" with the question "Can machines perform the tasks that 

we, as thinking entities, are capable of?"  

By asking this question, a new programming paradigm emerges. In traditional 

programming, known as symbolic AI, humans provide rules (a program) and data to be 

processed according to these rules, resulting in answers. In contrast, machine learning 

involves humans providing both data and the expected answers derived from that data, 

resulting in the discovery of rules (a program). These rules can subsequently be applied to 

new data to generate original answers. [22]  

II.4.1 Types of machine learning 

             

                       

Figure II.2: Machine Learning Approaches with Algorithm  
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There exist various types of machine learning algorithms, which include supervised 

learning, unsupervised learning, semi-supervised learning, and reinforcement learning.  

A) Supervised learning   

 

Figure II.3 : Supervised learning example  

Supervised learning is synonymous with classification. Learning guidance is based on 

labeled examples from the educational dataset. For example, in the zip code recognition 

problem, a set of handwritten zip code images and their corresponding machine-readable 

translations are used as training examples to guide the learning of the classification model.  

It can be grouped into two types:  

 Classification  

Classification  is the  main task of machine learning, which aims to classify input data into 

different classes or categories. This technique is widely used in many applications including image 

recognition, text classification, speech recognition and  many other applications   

The main purpose of a classification algorithm is to identify the class of a given data set, and these 

algorithms are mainly used to predict the output of categorical data.   

Some of the most important classification models:  

 Logistic regression: Logistic regression is a simple and widely used classification 

model. It estimates the probability of a binary outcome given the input 

characteristics using a logistic function. Despite its name, logistic regression is 
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actually a classification algorithm.  2. Naive Bayes: Naive Bayes is a probabilistic 

classifier that applies Bayes' theorem by assuming independence of features. It is 

known for its simplicity and efficiency, making it particularly useful for text 

classification tasks.   

 Decision trees: Decision trees are versatile classifiers that recursively partition 

data based on various characteristics, creating a tree-like decision model. Each 

internal node represents an attribute or attribute, and each leaf node represents a 

class entry or decision.    

 Support Vector Machines (SVM): SVM is a powerful classification algorithm that 

finds a hyperplane in a high-dimensional space to separate  classes. This 

maximizes the margin between  classes, which helps generalize to unseen data. 

SVM can also handle non-linear decision constraints using the kernel trick.    

 k-Nearest Neighbors (k-NN): k-NN is a non-parametric classification algorithm 

that classifies new instances based on most of their k nearest neighbors in the 

feature space. It is a simple but powerful algorithm that does not require special 

training.    

Figure II.4: Example of Classification 

 Regression  

Regression models predict a continuous output value based on an input independent 

variable. This technique is used when the predicted output variable must be a continuous 

value, such as for weather forecasting or market trends. Different regression models exist and 

they vary depending on the relationship between the dependent and independent variables 

being considered and the number of independent variables used in the model.   
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Some of the most important regression models :  

• Linear Regression: This is the simplest and most commonly used regression 

algorithm. It assumes a linear relationship between the dependent variable and the 

independent variables.  

• Poisson regression: it is a statistical model used to analyze census data, where the 

outcome variable represents the frequency of occurrence of an event during a 

specified time period. This is particularly useful when the data follows a Poisson 

distribution characterized by a discrete set of non-negative values. In this regression 

framework, the goal is to estimate the relationship between the predictor variables 

and the expected value of the outcome variable, which is assumed to be linearly 

related to the predictors through a logarithmic link function.  

Figure II.5: Example of Regression 

 

 

 

 

 

 

 

 

Figure II.6: Unsupervised learning example  

B )   Unsupervised Learning     
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Unsupervised learning is a type of machine learning in which an algorithm learns 

patterns and relationships in data without explicit identifiers or instructions. The algorithm 

is given a dataset and tasked with finding structure or underlying patterns on its own, 

without any specific objective or goal. This can be useful for tasks such as clustering, 

dimensionality reduction, and anomaly detection.  

• Clustering (or data separation)  

This unsupervised classification method combines a set of learning algorithms that aim 

to group unlabeled data with similar properties. Thus, the separation of schemes or 

families also prepares the ground for the subsequent use of supervised learning algorithms 

(eg, KNN).   

 Clustering is especially used when data labeling is expensive. However, this is a 

mathematically ill-defined problem: different measures and/or different representations of 

the data lead to different groupings that are not necessarily better than others. Thus, the 

clustering method must be carefully chosen according to the expected result and the 

intended use of the data.  

• Association Rule Learning  

Association rule learning focuses on finding interesting relationships or associations 

between variables in large datasets. The purpose of these algorithms is to find co-

occurrence patterns, dependencies or rules between objects. The Apriori algorithm is a 

well-known technique used for association rule learning.  

• Dimensionality Reduction  

Dimensionality reduction techniques aim to reduce the number of features or 

variables in the data while preserving the most significant information. These techniques 

help visualize high-dimensional data and extract meaningful representations. Common 

dimensionality reduction algorithms include Principal Component Analysis (PCA) and 

tdistributed Stochastic Neighbor Enrollment (t-SNE).  
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C) Semi-Supervised Learning   

 

Figure II.7: Semi-supervised learning example  

Semi-supervised learning is a type of machine learning that combines labeled and 

unlabeled data to improve performance. The algorithm is trained on a small amount of 

labeled data and a large amount of unlabeled data. Labeled data is used to guide the 

learning process, while unlabeled data is used to discover hidden patterns and structures 

Some of the application areas where semi-supervised learning is used are machine 

translation, tag information, fraud detection and text classification  

 

  

Reinforcement learning is a problem faced by an agent that needs to learn behavior 

while interacting with a dynamic environment. The work described here has a strong 

D)   Reinforcement Learning    

Figure II. 8 :   Reinforcement   learn ing   
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family resemblance to the psychological work of the same name, but it changes 

significantly in  details and in the reinforcement of the word used.The agent acts in the 

environment and receives feedback in the form of rewards or punishments as a result of its 

actions. The goal of the agent is to learn a policy that maps states to actions so that the 

expected cumulative reward over time can be maximized  

II.5 Real-world applications   
  

 

Figure II.9: Real-world applications  

 Artificial intelligence has many real-world applications in many industries. Here are some 

examples:   

 Healthcare: Artificial intelligence is used to develop personalized treatment plans 

for patients based on their medical history, genetics and other factors. It is also used 

for early detection and diagnosis of diseases, drug development and medical image 

analysis.   

• Finance : Artificial intelligence is used to detect fraud, predict market trends and 

automate financial processes such as loan approval and risk assessment.   
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• Transport : Artificial intelligence is used to develop self-driving cars, optimize 

traffic flow and improve transport infrastructure.   

• Retail : Artificial intelligence is used for product recommendations, inventory 

tracking and customer service through chatbots.   

• Manufacturing : Artificial intelligence is used for predictive maintenance, defect 

detection and quality control in manufacturing processes.   

• Energy : Artificial intelligence is used to optimize energy production and 

consumption, monitor and manage energy networks and reduce energy losses.   

• Agriculture : Artificial intelligence is used in precision agriculture, crop 

monitoring and crop optimization.   

• Education : AI is used for personalized learning, assessment and feedback  

II.6 DEEP LEARNING  

Deep learning has seen big success in latest time with applications like speech 

recognition, image processing, language translation, and listing is going on. Deep neural 

networks in general refer to neural networks with many layers and large number of 

neurons, frequently layered in a manner this is usually not area specific. Availability of 

compute power and large quantity of data has made those massive structures very effective 

in learning hidden capabilities along with facts patterns. [23]  

II.6.1 Artificial Neural Network  

Artificial Neural Networks (ANNs) take inspiration from the structure of biological 

neural networks. They are highly parallel computing systems consisting of a large number 

of interconnected processors. The objective of ANN models is to mimic the organizational 

principles found in the human brain. Specifically, one type of network views its nodes as 

'artificial neurons', computational models that imitate natural neurons. ANNs primarily 

focus on information processing and find applications in various fields related to this 

domain.  
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There is a diverse range of ANNs used for different purposes. Some are designed to 

simulate real neural networks, allowing researchers to study animal and machine behavior 

and control. Others serve practical engineering tasks such as pattern recognition, 

forecasting, and data compression. These networks operate through the interaction of 

inputs, similar to synapses, which are multiplied by associated weights. These weights 

represent the flow of information between nodes and are computed using mathematical 

functions that determine neuron activation. Additionally, an output function, often 

involving a threshold, calculates the final output of the artificial neuron. In this network, 

neurons simply sum their inputs. Input neurons, having only one input, produce an output 

equal to the received input multiplied by a specific weight. [24]  

  

 

Figure II.10: Artificial Neuron  

When the weight is set to a higher value, it signifies a stronger input. The adjustment 

of weights in an artificial neuron allows us to achieve desired outputs for specific inputs. 

However, when dealing with ANNs comprising hundreds or thousands of neurons, 

manually determining all the required weights becomes extremely complex. Fortunately, 

there are algorithms available that can automatically adjust the weights of the ANN to 

achieve the desired output from the network. This process of weight adjustment is known 

as learning or training. During training, the weights are initially assigned random values, 

and the objective is to fine-tune them to minimize errors. [24]  
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II.6.2 Activation Function  

An activation function is a mathematical function applied to the output of a neuron in a 

neural network. It introduces non-linearity into the model, allowing neural networks to 

approximate complex non-linear functions, which makes them powerful for various 

machine learning tasks. Activation functions play a crucial role in determining the output 

of a neuron and the overall performance of a neural network. Some common activation 

functions used in neural networks are:  

Sigmoid Function  Used for models where 

we have to predict the 

probability as output It 

exists between 0 and 1  

 

 

 

 

  

Threshold Function  It is a threshold based 

activation function  If Y 

value is greater than 

certain value, the 

function  is activated and 

firef else not   

  

 

ReLU Function  It is the most widely 

used Activation function  

and gives an output of X 

If X is positive and 0 

otherwise  
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Table II.1: Activation Function  

II.6.3 LOSS FUNCTIONS  

Neural network loss functions play a crucial role in training and optimization of neural 

networks. The loss function measures the discrepancy between the predicted output of a 

neural network and the actual target output. By minimizing this discrepancy, the neural 

network learns to make more accurate predictions.  

  

  

  

Hyperbolic  Tangent  

Function   

This function is similar to  

sigmoid  and is bound to  

range ( - 1) ,  1   

  

  

Softmax   The Softmax function is  

often used as an activation  

function in the output  

layer of a neural network  

multi in  - class  

It  classification  tasks.  

maps the output values to  

a probability distribution  

between classes such   that  

the sum of all class  

probabilities  is equal to 1   
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  Formula  Application  Example  

Mean Squared 

Error (MSE)  

MSE = (1/n) *  

∑(y_true - y_pred)^2  

Regression problems where 

the magnitude of errors is 

important.  

predicting  

housing  

prices  

  

Binary 

CrossEntropy  

BCE = -(y_true * 

log(y_pred) + (1 - 

y_true) * log(1 - 

y_pred))  

Binary classification 

problems where each sample 

belongs to one of two 

classes.  

email spam  

classification  

  

  

Categorical 

Cross-Entropy  

CCE = -∑(y_true * 

log(y_pred))  

Multi-class classification 

problems where each sample 

belongs to one of more than 

two classes.  

image  

recognition 

with  

multiple 

categories  

Sparse  

Categorical  

Cross-Entropy  

SCCE = -∑(y_true * 

log(y_pred))  

Similar to categorical 

crossentropy, but suitable 

when the true class labels are  

integers instead of one-hot 

encoded vectors.  

image  

recognition 

with  

multiple 

categories  

Kullback- 

Leibler  

Divergence  

(KL  

Divergence)  

KL = ∑(y_true * 

log(y_true / y_pred))  

Used in scenarios where 

measuring the difference 

between two probability 

distributions is required.  

variational 

autoencoders  

Log-cosh Loss  Log-cosh = 

log(cosh(y_true - 

y_pred))  

Similar to mean squared 

error, but with better  

handling of outliers due to 

the logarithmic and  

hyperbolic cosine function.  

regression 

tasks  

  

  

 

Table II.2 : Loss Functions  
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II.6.4 Deep Learning Technique  

  

 

Figure II.11: Deep learning technique  

Deep learning techniques are a class of machine learning methods that aim to emulate 

the functionality of the human brain. These techniques involve constructing models that 

can perform various tasks, such as classification, using data from different domains like 

text, images, and sounds. The key building blocks of these models are neural networks, 

which consist of multiple layers, including hidden layers.   

Neural networks are composed of interconnected nodes, or neurons, organized in 

layers. Each layer, from the left most to the rightmost, progressively extracts and learns 

increasingly abstract and high-level features from the input data. Initially, the lower layers 

capture low-level features such as edges, gradients, or textures. As information flows 

through the network, higher layers combine these low-level features to form more complex 

representations, eventually leading to accurate predictions or classifications.   

  

Deep learning models leverage the hierarchical structure of neural networks to 

automatically learn relevant features directly from raw data. By iteratively adjusting the 
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weights and biases associated with each neuron, these models optimize their performance 

through a process known as training or learning.   

This learning process involves minimizing a predefined loss function, which quantifies 

the discrepancy between the predicted outputs and the ground truth. The ability of deep 

learning models to autonomously discover and exploit intricate patterns in data has led to 

remarkable advancements in various domains, including computer vision, natural language 

processing, and speech recognition. These models have shown tremendous success in tasks 

such as image classification, object detection, sentiment analysis, language translation, and 

speech synthesis, among others.  

II.6.5 Deep learning models  

• Recurrent Neural Networks (RNNs): RNNs are designed to process data 

sequences  with a temporal component, such as time series data or text. They have 

chains that allow information to persist over time, allowing them to capture 

sequential dependencies. Popular variants of RNNs include Long Short-Term 

Memory (LSTM) and Gated Recurrent Unit (GRU) networks, which solve the 

vanishing problem associated with traditional RNNs.   

• Generative Adversarial Networks (GANs): GANs consist of two neural 

networks, a generator and a discriminator, which are trained together in a process 

called adversarial training. A generator learns to create realistic data, such as 

images or text, while a discriminator learns to distinguish between real and 

generated data.  

GANs are used for tasks such as image synthesis, text generation, and video 

generation.   

• Autoencoders : Autoencoders are a type of neural network used for unsupervised 

learning that aims to reconstruct the input data. They consist of an encoder that 

maps the input data to a lower-dimensional representation and a decoder that 

reconstructs the input data from the lower-dimensional representation. 
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Autoencoders are used for tasks such as image denoising, anomaly detection and 

data compression.   

• Reinforcement Learning Networks : Reinforcement learning (RL) networks are 

used in machine learning, called reinforcement learning, where an agent learns to 

make decisions by acting on the environment to maximize a reward signal. RL 

networks typically consist of a policy network that selects actions and a value 

network that evaluates the value of various states or actions. RL networks are used 

for example in gaming, robotics and recommendation systems.  

• Convolutional Neural Networks (CNN): which we will discuss in the next 

heading. 

II.6.6 Convolutional Neural Network [25]  

In recent years, Convolutional Neural Networks (CNNs) have become crucial and  

advanced deep learning algorithms. CNNs are structured as feedforward neural networks 

with multiple layers, including one or more convolutional layers, which are inspired by the 

organization of the visual cortex in animals. The name "convolutional" comes from the 

mathematical operation of convolution used in these networks, which is similar to matrix 

multiplication.  

Unlike traditional fully connected networks, CNNs exhibit local connectivity, meaning 

that neurons in CNNs have sparse interactions and do not need to be connected to all 

neurons in the previous layer. This characteristic allows CNNs to efficiently process data 

in the form of arrays. For instance, 3D CNNs excel at handling 3D data like videos or 

volumetric images, while 2D CNNs are designed for 2D data such as images or audio 

spectrograms. Similarly, 1D CNNs are specifically tailored for 1D data, including signals 

and sequences.  

The 1D CNNs mentioned here are newer versions of the well-known 2D CNNs, 

introduced only a few years ago. They have rapidly achieved state-of-the-art performance 

in various applications, including cardiac arrhythmia classification, electrical motor fault 

detection, wind prediction, and acoustic waste sorting.  
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Typically, a CNN structure consists of alternating convolution and pooling layers, with 

the final output provided by a fully connected layer. This arrangement is illustrated in 

figure  

  

 

 Convolution layer  

The convolution operation is a fundamental operation in convolutional neural 

networks (CNNs). It involves applying a small square matrix of numbers, called a kernel 

or filter, to an input matrix of numbers, known as a tensor. The kernel is systematically 

moved across the input, and at each position, a Hadamard product (element-wise 

multiplication) is performed between the kernel and the corresponding portion of the input. 

The resulting products are then summed to obtain the output value at the corresponding 

position of the target tensor. To illustrate this process, let's consider a two-dimensional 

input data, denoted as I, with dimensions p*q, a two-dimensional kernel, denoted as K, 

with dimensions n*n. The discrete convolution, often represented by an asterisk symbol, is 

calculated using the following formula:   

Figure II.12: An example of a convolutional neural . [25]  
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𝑉(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 + 𝑥, 𝑗 + 𝑦)𝐾(𝑥, 𝑦), (6)

𝑛

𝑦=0

𝑛

𝑥=0

 

Here, V(i, j) represents the output value at the corresponding position (i, j) in the target 

tensor. In summary, the convolution operation in a CNN involves applying a kernel to an 

input tensor, calculating the Hadamard product and summing the results at each position, 

resulting in an output value in the corresponding position of the target tensor.  

 

Figure II.13: convolution layer neuron and the discrete convolution. [25] 

A convolutional layer in a neural network consists of a set of kernels that are learned 

during training. Neurons within the same layer and sharing the same feature map also 

share the same kernel. Each neuron in the convolutional layer performs a discrete 

convolution between the input and the corresponding kernel to generate its input feature 

map. This input feature map is then passed through a nonlinear activation function 

(denoted as f) to produce the output feature map for that neuron. By stacking the feature 

maps of all kernels along the depth dimension, the output volume of the convolutional 

layer is obtained. The main objective of the convolutional layer is to identify local 

intersections of features from the previous layer. In addition, biases can be incorporated in 
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the forward operations of the convolutional layer, similar to other neural networks. Each 

unique kernel in the convolutional layer has its own associated bias, denoted as bij.   

Therefore, for the jth feature map in the ith layer of the convolutional neural network, 

the value at the xth row and yth column, denoted as  𝑉𝑖𝑗
𝑥,𝑦

 is computed using the following 

formula:  

                            𝑉_𝑖𝑗^(𝑥, 𝑦) = 𝑓( 𝑏𝑖𝑗  + ∑ ∑ 𝑤𝑖𝑗𝑚
𝑝𝑃𝑖

𝑝=0 𝑣(𝑖−1)𝑚
𝑥+𝑝,𝑦

)𝑚                   (7)   

Here, m indexes over the set of feature maps in the (i-1)th layer that are connected to the 

current feature map. 𝑤𝑖𝑗𝑚𝑝 represents the value at position p of the convolutional kernel, 

and Pi is the length of the convolutional kernel. The activation function f is applied to the 

sum of the convolutional operation and the corresponding bias value bij.  

 Pooling layer  

The pooling layer, also known as a subsampling layer, creates its own feature map by 

applying a pooling operator to aggregate information within small regions of the input 

feature maps and downsampling the results. The purpose of the pooling layer is to 

summarize the input information and reduce the spatial dimensions of the feature maps. It 

is important to note that pooling layers do not have any learnable parameters. One of the 

most widely used pooling operations is max pooling. In max pooling, the maximal values 

within each rectangular neighborhood of each point (i, j) are reported. The computation 

can be expressed using the following formula:   

                                     𝑉𝑖𝑗
𝑥,𝑦

=  𝑚𝑎𝑥 1≤𝑞≤𝑄𝑖(𝑣(𝑖−1)𝑗
𝑥+𝑞,𝑦

)        ( 8)  

Here, Qi represents the length of the pooling region, which determines the size of the 

neighborhood. The most common form of max pooling uses a stride of 2 and a pool size of 

2. This corresponds to dividing the feature map into a regular grid of squares with a side 

length of 2 and taking the maximum value within each block for each input feature.  
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Overall, the pooling layer aggregates information through pooling operations and 

reduces the spatial dimensions of the feature maps, typically using max pooling with a 

stride of 2 and a pool size of 2.  

 

                       Figure II.14: feature map and the output. [25] 

                         

 Fully connected layer   

The fully connected layer, also known as the dense layer, is an essential component 

that takes the extracted information from previous layers and transforms it into the final 

output, typically used for tasks like classification. The structure of the dense layer 

resembles that of a regular multi-layer perceptron (MLP) layer found in traditional neural 

networks.   

Before passing the data to the dense layer, a process called flattening is commonly 

applied. Flattening involves converting the output feature maps obtained from the 

preceding convolutional or pooling layers into a one-dimensional array of numbers, 

effectively creating a vector. This transformation allows the information to be represented 

in a sequential format, which can then serve as the input to the dense layer.   

By flattening the output feature maps, the spatial structure and organization of the data 

are lost, but the important extracted features are retained. The resulting one-dimensional 
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vector can be easily connected to the neurons in the dense layer. Each element in the 

flattened vector is connected to every neuron in the dense layer, establishing a fully 

connected network structure.   

In the dense layer, computations are performed on the input vector, utilizing weights 

and biases associated with each neuron. These computations produce the final output, 

which can be utilized for various purposes, such as classification tasks. In summary, the 

fully connected layer in a convolutional neural network (CNN) converts the extracted 

information from previous layers into the desired output. The process of flattening 

converts the output feature maps from convolutional or pooling layers into a one-

dimensional vector, allowing seamless connectivity between the flattened input and the 

dense layer.  

  

Figure II.15: The fully connected layer. [25] 
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II.6.7 Training   

• Optimizers  

Optimizers are algorithms utilized in machine learning model training to minimize the 

loss or error function. They dictate how the model's parameters are updated throughout 

training to achieve optimal values. Commonly used optimizers include Stochastic Gradient 

Descent (SGD), Adam, RMSprop, and Adagrad. Each optimizer possesses its own 

advantages and can yield different performance outcomes depending on the specific 

problem.  

• Learning rate schedule  

The learning rate schedule pertains to the strategy employed to adjust the learning rate 

during the training process. The learning rate determines the rate at which the model's 

parameters are updated or the step size. A learning rate schedule can be either static, where 

the learning rate remains constant throughout training, or dynamic, where the learning rate 

is altered based on predefined rules. Typical techniques for learning rate scheduling 

include step decay, exponential decay, and cyclical learning rates.  

• Learning rate schedule  

Batch normalization is a technique used to normalize the activations of each layer in a 

neural network. It helps in stabilizing the learning process by reducing the internal 

covariate shift, which refers to the change in the distribution of layer inputs during 

training. By normalizing the inputs, batch normalization accelerates training, allows for 

higher learning rates, and reduces the dependence on initialization.  

• Batch size effects  

The choice of batch size in training has several effects on the training process. Batch 

size refers to the number of training examples used in each iteration of a training step. A 

larger batch size can result in faster convergence and better utilization of parallel 

processing capabilities, but it may require more memory. Smaller batch sizes provide a 
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more noisy estimate of the gradient but can lead to improved generalization and 

exploration of the parameter space.  

• Regularization  

Regularization is a technique implemented to prevent overfitting in machine learning 

models. It introduces a penalty term to the loss function to discourage the model from 

closely fitting the training data. The regularization term aids in controlling the model's 

complexity and reducing the impact of noisy or irrelevant features. Common regularization 

techniques include L1 regularization (Lasso), L2 regularization (Ridge), and dropout.  

• Multitask learning  

Multitask learning involves training a machine learning model to perform multiple 

tasks simultaneously. Instead of training separate models for each task, multitask learning 

leverages shared information among related tasks to enhance generalization and overall 

performance. By jointly optimizing multiple tasks, the model can learn more robust and 

transferable representations.  

• Transfer learning  

Transfer learning is a technique where knowledge acquired from training one model 

on a specific task is transferred or applied to a different but related task. Instead of starting 

the training process from scratch, transfer learning utilizes the learned features of a pre-

trained model as a foundation for the new task. This approach is particularly valuable 

when the new task has limited labeled data, as it enables the model to benefit from the 

generalization learned on a larger, pre-existing dataset.  

• Learning rate schedule  

Curriculum learning is a training strategy inspired by human learning. Instead of 

randomly presenting training examples to the model, curriculum learning involves 

presenting the examples in a meaningful order or curriculum. The curriculum begins with 

easier examples and gradually increases the difficulty as the model learns. By providing a 
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curriculum, the model can build upon simpler concepts before tackling more complex 

ones, potentially improving learning efficiency and convergence.   

 

II.8 Conclusion   

In this chapter, we introduced the groundbreaking technique of deep learning, 

along with its architectures and methods. We initiated a conceptual study of the 

architecture of the convolutional neural networks we employed, exploring their 

various stages and highlighting their usefulness in regression. 
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III.1 Introduction   

In this chapter, we embark on the realization and implementation phase of our 

solution. We commence by introducing the software and external libraries utilized in our 

project. Subsequently, we provide a detailed description of the architecture of the deep 

learning model, specifically the convolutional neural networks, employed for predicting 

traction curves. 

The objective of our work is to characterize and forecast the mechanical aging 

behavior of multilayer LDPE films using deep learning techniques, particularly CNN. 

  Before delving into the implementation details, we will present the essential tools 

that were employed in our study. 

III.2 Technical choices   

In order to carry out our project we used as development tools the Pycharm IDE to develop our 

application with the Python language.   

III.2.1 Python   

To develop our application, we opted for the programming language Python v3.9.64bit. Python 

is an interpreter, object-oriented, programming language high level with dynamic semantics. Is a 

simple language, easy to learn and allows a good reduction in the cost of code maintenance, 

Libraries (packages) python encourage code modularity and reusability. Contrary to many other 

languages, it does not use braces to delimit blocks, and semicolons after are optional. It has fewer 

syntactic exceptions and special cases than C or Pascal. [26]   

  

III.2.2 Anaconda  

     Anaconda is a free and open source distribution of the programming languages. Python and R 

programming for scientific computing (data computing, machine learning and deep learning 

applications with scikit-learn, TensorFlow and Theano, large-scale data processing and performance 

with Dask, NumPy, pandas and Numba., predictive analysis, etc.), which aims to simplify the 

management and package deployment. Package versions are managed by the package management 
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system. Package conda. The Anaconda distribution 1400 popular computer data packages suitable 

for Windows, Linux and MacOS. [27]   

III.2.3. Pycharm  

It is an integrated development environment (IDE) used in computer programming, especially 

for the Python language. It provides code analysis, a graphical debugger, an integrated unit tester, 

and supports web development with Django as well as Data Science with Anaconda. PyCharm is 

cross-platform, with Windows, macOS, and Linux versions. Community Edition is distributed under 

the Apache License. [28]   

In the next sections we will present the libraries and the main tools used in this development.   

III.2.4.Additional Libraries   

In order to achieve the goals of this project, we used other external libraries to perform some 

specific tasks. In this part, we will present the main libraries used. in addition to those provided by 

the Python standard library.   

• Scikit-Learn   

Scikit-learn [29] is a free open-source library for Python dedicated to machine learning, this tool 

is simple and efficient for data mining (Data Mining) and data analysis (Data Analysis). It notably 

features various classification, regression and clustering algorithms, including support vector 

machines (SVM: support vector machines), random decision forests classifier, gradient boosting 

classifier, k-means etc... and many other useful functions for analysis and data preprocessing. This 

Library is designed to harmonize with the numerical and scientific libraries of Python namely 

NumPy and SciPy.    

We used to divide the dataset into two parts, one dedicated to training and the other to testing.  

• Keras   

Keras [30] is a high-level neural network API, written in Python and able to run on a TensorFlow 

backend to simplify the build process deep learning applications. It is designed to allow easy and fast 
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experimentation with deep neural networks, it focuses on modularity, scalability and user-friendly 

application design. Keras offers simple and consistent APIs, and minimizes the number of user actions 

required for cases of common use, and it provides clear and practical feedback on user errors. It was 

developed as part of the ONEIROS (Open-ended Neuro Electronic Intelligent Robot Operating System) 

project at Google. [31]    

We used Keras to create the convolutional neural network, and train this model on an 

environment with CPU support.   

• Tensorflow   

TensorFlow [32] is a flexible open-source platform employed for diverse machine learning 

endeavors. It presents an extensive array of tools and features to oversee various facets of a machine 

learning system. While TensorFlow provides an expansive scope of capabilities, this course 

primarily highlights the utilization of a specific TensorFlow API for constructing and training 

machine learning models.   

TensorFlow is an all-encompassing platform that empowers developers and researchers to 

address an extensive range of machine learning tasks. It streamlines the procedure of constructing 

and training machine learning models while offering adaptability, scalability, and ample resources to 

facilitate the complete machine learning workflow.   

TensorFlow simplifies the implementation of machine learning models, abstracting complexities 

and offering high-level APIs such as Keras that facilitate the construction and training of neural 

networks. Additionally, TensorFlow excels in handling large datasets and efficiently performing 

computations across various hardware devices, including CPUs, GPUs, and specialized accelerators.   

The platform further enhances the machine learning experience by providing tools for 

visualizing and monitoring training progress, optimizing model performance, and facilitating the 

deployment of models in real-world applications.   

 PyQt library   

 PyQt5 [32] is a free module that links the Python language with the Qt library [33] distributed 

under two licenses, a free open-source license[35] and an other commercial as needed.. It allows to 
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create graphical interfaces in Python. We used this module to create the GUI (Graphical User 

Interface) for our application.   

A certain amount of data is necessary to develop an efficient convolutional neural network model, 

including its architecture (Number of CNN layers, of grouping, the number of neurons of the fully 

connected layers), the learning functions, the learning algorithm and other network parameters.   

The convolutional neural network development process involves the following four steps:   

 Data preparation: we have data analysis and processing.   

 Network training: this includes the choice of architecture, training functions and network 

parameters.   

 Trained network test, to assess network performance.   

 Using the trained network for prediction. The system inputs are strain, temperature and time, 

and the system output is stress. Tests Experiments were conducted to determine the tensile 

properties of an Agro-film:   

III.3 Experimental Source of the database   

III.3.1 Materials   

This film is made up of three layers of polyethylene (PE). The various additives in the film are 

anti-condensation, anti-UV, antiparasite, anti-virus, anti-dust, anti-drop, etc. The exact nature of the 

additives is not provided by company. During extrusion, a film is formed with a thickness of 180 

µm. This film is studied, when it is virgin, after having undergone artificial aging at temperature (10, 

40 and 50°C) Precautions have also been taken to avoid stretching the film which could modify 

some of its mechanical and/or optical properties and to ensure good fixing. This last point is 

particularly important, poor fixing being the most frequent cause of tears. One of their main 
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weaknesses is the tearing of plastic films in general, in that after a cut, often accidental, has been 

made, the tear spreads slowly under the action of very weak forces. [34].   

Data set preparation 

  We have used dataset  of Engineering Laboratory, Materials Science Faculty, University of 

Tiaret , where the mechanical behavior of the unaged/virgin and naturally and artificially aged films 

was evaluated in different combined condition of temperatures (10, 40 and 50°C) water and UV-A 

radiations by conducting the tensile test: 

 10°C in 120 hours-550 hours -2040 hours-4000 hours. (4 strain-stress curves) 

 40°C in 10 hours-100 hours-500 hours-1000 hours-2480 hours-4000 hours-5480 hours.  

(7 strain-stress curves) 

 50°C in 10 hours-100 hours-500 hours-1000 hours-2480 hours-4000 hours. (6 strain-

stress curves)  

 

• Virgin polyethylene   

The material used is a film supplied by the company AGROFILM to the industry of Setif 

(Multinational).   

• Aged polyethylene   

Samples of low density polyethylene and aged at 10 .40 and 50°C. [34]   

III.4 Training and Parameterization of Models   

After several runs, we ended up identifying the parameters that return the best accuracy for each 

convolutional network. In what follows, we will argue our choices in relation to the learning 

parameters:   
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III.4.1 Optimization Function    

Adam "Adam" optimization algorithm is an extension of stochastic gradient descent.   

We chose Adam because it is the most widely used optimization algorithm in deep neural 

network implementations. And for its remarkable advantages:   

• Efficient calculation.   

• Simple to implement.   

• Not greedy in memory space.   

• Appropriate for problems with a lot of noise.   

• Well suited for problems that have a large number of data and parameters.   

III.4.2 Error Function   

     The logcosh loss function is a smooth approximation of the logarithm of the hyperbolic cosine of 

the difference between the predicted and target values. It is often used in regression tasks and can 

handle outliers more effectively compared to other loss functions like mean squared error.   

model.compile (optimizer='adam', loss=keras.losses.log_cosh)  

III.4.3 Activation Function  

Rectified Linear Unit (ReLU) (see section II) Relu is used in all network layers.   

III.4.4 Number of Iterations (Epochs)  

An iteration corresponds to a forward pass through the entire neural network plus a backward 

pass (Backpropagation) to modify the weights.   
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III.4.5 Force stopping "early stopping"  

It is a form of regularization used to avoid overlearning when training a learner with an iterative 

method, such as gradient descent. These methods update the learner to better fit the training data 

with each iteration. To a certain extent, this improves the learner performance on data external to the 

training set. Beyond this point, however, improved fit of learner training data comes at the expense 

of increased generalization error. Stopping force rules provide guidance on how many iterations can 

be executed before the learner does begin to get oversized. [35]   

Callback = tf.keras.callbacks.EarlyStopping (monitor='loss', patience=5)  

• Monitor : quantity to monitor.    

• Patience : number of epochs without improvement after which training will be stopped.   

• Mode : one of {auto, min, max}. In min mode, the drive stops when the monitored amount 

has stopped decreasing ; In max mode, it stops when the controlled quantity has ceased to 

increase ; In auto mode, the direction is automatically inferred from the name of the quantity 

controlled  

III.4.6 A callback   

It is a function to be applied to given steps of the procedure of training. to get a view of the 

internal states and statistics of the model during the training we implemented the Callback method.   

Callback = tf.keras.callbacks.EarlyStopping (monitor='loss', patience=5)  

III.5 The suggested model   

     First, we developed a CNN model taking into account the three inputs simultaneously, which 

led to the following results: 
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Figure III.1: Graphical experimental 

Then, a hybrid model called hybrid SVM-CNN is introduced by combining a deep 

Convolutional Neural Network (CNN) and a Support Vector Machine (SVM). This hybrid model 

aims to predict both the complete stress-strain curves and the material lifespan under specific usage 

conditions.   

Predicting a stress-strain curve involves addressing two problems. The first problem is a 

classification task that involves separating each point on the curve based on strain values, essentially 
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classifying material fractures. The second problem is a regression task that entails predicting stress 

values.   

Figure III.2 illustrates the hybrid SVM-CNN model, which comprises two submodels : the SVM 

submodel and the CNN submodel. These submodels are trained independently and subsequently 

combined for testing purposes.   

In this proposed model, the SVM submodel acts as a classifier, while the CNN submodel 

functions as a feature extractor. The SVM component performs the classification task, whereas the 

CNN component focuses on extracting relevant features from the data.   

By combining the strengths of SVM and CNN, the hybrid SVM-CNN model aims to leverage 

the classification capabilities of SVM and the feature extraction capabilities of CNN to enhance the 

accuracy and performance of stress-strain curve prediction.   

This hybrid approach offers the potential to achieve more accurate and robust predictions by 

capitalizing on the unique strengths of both SVM and CNN.   

   

  

  

Figure III.2: The proposed hybrid SVM-CNN model architecture   
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 The convolutional neural network submodel   

The configuration of a deep convolutional neural network (CNN) and the hyperparameters 

governing its learning process significantly impact its performance. Deep CNNs are commonly 

employed for feature extraction in image analysis, but there is a lack of guidance on constructing 

deep CNN models for regression problems. Designing an appropriate model for continuous input 

and output, which entails addressing nonlinear regression challenges, is a crucial task. The finalized 

architecture of the 1D CNN submodel used in this study is depicted in Figure III.3.   

 

   Figure III.3 : 1D CNN submodel architecture  

Figure III.3 illustrates the proposed 1D CNN submodel, comprising an input layer, two 

convolutional layers, a pooling layer, a fully connected layer, and an output layer. The two 
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convolutional layers serve as feature extractors, while the subsequent layer consolidates semantically 

similar features, and the final layer maps the extracted features to the desired output. In this 1D CNN 

submodel, the relevant stress is estimated based on inputs such as percent strain, temperature, and 

ageing time. The hyperparameters, including filter sizes, stride, padding, pool size, and number of 

filters, were optimized through empirical experience to achieve an optimally designed 1D CNN.   

Table III.1 presents the selected hyperparameters values.    

   

Table III.1: A list of hyperparameters in the 1D CNN submodel   

 

The training of the model utilized the log hyperbolic cosine (log-cosh) loss function, which is 

commonly employed in regression-based problems to smoothen the curve [25].  

The formula for the log-cosh loss is as follows:   

                                           (8)   

                                                        (9)   

                                                 (10)   
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                       (11)   

  

Here,  ( )  represents  the  predicted  values, 𝑦𝑖  is  the  true  values,  and             

  . N denotes the number of samples.   

To ensure a more stable error gradient, batch gradient descent was employed for training [37], 

leading to improved convergence. In batch gradient descent, the error is estimated for each example 

in the training dataset, but the model parameters are updated only after evaluating all training 

examples. This process continues until convergence is achieved.An epoch is a hyperparameter 

representing a single pass across the entire training dataset.   

For the training of the 1D CNN submodel, (80% of the dataset) were used. The remaining curve 

(20% of the dataset) was kept as the test set, which the trained 1D CNN was tasked with predicting. 

The output of the network was then compared with the available experimental data to assess the 

submodel's validity.   

During backpropagation, the Adam optimizer was employed to update the model's parameters. 

The training process consisted of up to 1750 epochs. To prevent overfitting, early stopping was 

applied using Callback functions. This approach ensures that the network exhibits high accuracy 

during training but also maintains accuracy when presented with new data during testing. At the end 

of the training process, the training error value was measured to be 0.0028.   

We assessed the performance of the prediction model using three commonly used metrics: mean 

squared error (MSE), root-mean squared error (RMSE), and mean absolute error (MAE). These 

metrics are widely employed to evaluate the accuracy of regression models in predicting outcomes. 

The results obtained from the evaluation are presented in Table III.2. To calculate these evaluation 

metrics, we utilized the keras-metrics Python package [41]. Let 𝑦𝑖∗ denote the predicted values of 
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the stress variable for n prediction samples, and let 𝑦𝑖 represent the observed values. The equations 

(9 to 11) represent the formulas for calculating MSE, RMSE, and MAE, respectively.   

  

  

  

  

 

 

 

Table III.2: Evaluation metrics for 1D CNN submodel  

 

To ensure the validity of the submodel, the trained network was tested by simulating a stress-

strain curve for an ageing time and temperature of (5480hours, 50°). It is important to note that this 

specific curve was not included in the training data. The simulated curves closely align with the 

existing experimental data ; however, the predicted curve extends beyond the fracture point, even for 

the training curves, requiring manual intervention to stop the simulation. Consequently, an additional 

submodel was introduced to predict the fracture point using SVM. Once the fracture point is 

predicted, the simulation automatically halts without any manual intervention. This hybrid model 

employs automatic feature extraction from raw data and generates predictions accordingly.   

The data initially passes through the SVM submodel, which categorizes the percent strain value 

into the appropriate class based on the ageing time, determining whether the material is fractured or 

not. If the material is broken, the process concludes. Otherwise, the data proceeds through the CNN 

submodel to predict the stress value, and the procedure repeats from the beginning, incrementing 

only the percent strain value.   

 

Activation functions in hidden layers 

 

Evaluation metrics 

---------------------------------------------- 

MSE        RMSE              MAE 

Tanh 

Sigmoid 

ReLU 

1.467                1.207                        0.71 

1.518                 1.234                      1.487 

0.00246            0.012                       0.017 
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Figure III.4: Graphical comparison between predicted and unseen experimental stressstrain curve  

 The Support Vector Machine (SVM) submodel   

We used the same model developed by (aid&al 2022) which proved its effectiveness and we did 

the same process 

Figure III.4 depicts the fracture point or fracture stress, which represents the ultimate point in the 

stress-strain curve. To predict the fracture stress of aged films, a support vector machine submodel 

was proposed. Each data point on the stress-strain curve was treated as a separate binary 

classification problem. The first class on the curve was assigned a label of '1', corresponding to strain 

values ranging from zero to the breaking strain. Beyond this threshold, the second class was labelled 

as '0'.   

    



  CHAPTER III                                                   Implementation                         

 

 

66  

  

 Figure III.5: The two classes of stress-strain curve  

The SVM submodel takes percent strain , temperature and ageing time as inputs. The desired 

output is a binary value of 1 or 0, representing "not fractured" or "fractured," respectively. The SVM 

submodel was trained using a dataset of 17 stress-strain curves, which were automatically labelled 

using a script.   

To evaluate the performance of the SVM submodel, we employed two widely used metrics: 

accuracy and AUC (Area Under the Curve). Accuracy measures the proportion of correct predictions 

among all predictions made. If 𝑦𝑖 ∗ represents the predicted value of the 𝑖𝑡
ℎ sample and 𝑦𝑖 represents 

the corresponding true value, the accuracy can be defined as follows:   

                       𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦, 𝑦 ∗) =
1

𝑁
∑ 1(𝑦𝑖 

𝑁−1
𝑖=0 ∗=  𝑦𝑖)           (12)   

Here, 1(x) is the indicator function that returns 1 if x is true and 0 otherwise.  AUC, on the other 

hand, is a combined measure of sensitivity and specificity. Given a dataset D = {(xi, yi)} with N 

examples, where 𝑦𝑖 belongs to {-1, +1} representing class labels and xi represents input vectors, let 

𝑁𝑝𝑜𝑠 denote the number of positive examples (yi = +1) and 𝑁𝑛𝑒𝑔 denote the number of negative 

examples (𝑁𝑛𝑒𝑔 = N - 𝑁𝑝𝑜𝑠). The AUC of a predictor f is defined as: [41]   

                                        (13)   

In this equation, 1(a) is the indicator function that returns 1 if a is true and 0 otherwise.   
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(550H/20°),(2000H/20°) (1000H/55°),(3000H/55°) 

We calculated the AUC and accuracy using Python 3.9 with the Sklearn.metrics package [42]. The 

obtained values were 0.981 for AUC and 0.98 for accuracy, indicating that the submodel performs 

well in predicting whether the material is fractured or not.   

III.5.1 Findings and Analysis   

The outcomes of the hybrid SVM-CNN model are presented in Figure III.6. All visualizations in 

this study were generated using Matplotlib [41]. For each specified ageing time (10 ,100 ,120 ,500 

,550 ,2040 and 4000h) and temperature (10°, 40° and 50°), the model was tasked with predicting the 

stress-strain curve. The predicted output was then compared with the available experimental data. It 

is evident that the curves align closely with each other, indicating the model's ability to accurately 

simulate the curve trends. The model demonstrates strong performance in predicting mechanical 

properties such as yield strength, fracture stress and strain, with accuracy approaching 100%. 

Moreover, the predicted stress-strain curves enable the calculation of other mechanical properties 

such as tensile strength, strain at break, percent elongation, Young's modulus, toughness, and the 

ratio of tensile strength to Young's modulus. 

 Predicted stress-strain curves for virgin film and for different ageing time and temperature 
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(500H/60°),(1400H/60°) (200H/15°),(3000H/15°) 

(600H/42°),(7000H/42°) (300H/14°),(5500H/14°) 

(2500H/21°),(7500H/21°) (120H/10°),(500H/10°) 
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(2480H/50°), (4000H/50°) (10H/40°), (1000H/40°) 

 
 

 
 

 

Figure III.6: Graphical comparison between experimental and 

predicted stress-strain curves 

Our dataset consists of five ageing periods up to (5480 h,50°). However, the hybrid 

SVM-CNN model has the capability to predict stress-strain curves for any given ageing 

time, extending beyond the range of our dataset. Figure III.6 demonstrates this ability, 

as the model effortlessly predicts curves for (9000 h,25°). This showcases the model's 

powerful capacity to learn high-level feature representations through deep CNN.   

Furthermore, the hybrid SVM-CNN model can be utilized to predict the maximum 

degradation time under specific usage conditions. By incrementing the ageing time up 

to (18000 h,25°) (2 years) using a Python loop, the model was instructed to predict the 

stress at each interval. The maximum degradation time observed was (14325 h,25°), 

beyond which the model indicates "material fractured," indicating complete destruction 

of the material. On the other hand, the predicted curve represents the stress-strain curve 

of the LDPE film during degradation at the selected periods. Consequently, both the 

predicted curve and the corresponding stress-strain curve for the unaged material can be 

plotted on the same graph, as demonstrated in our analysis. This provides valuable 

information regarding the limit of service time based on the criterion of a 50% loss in 

the original property [43].   
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In the subsequent sections, we will compare the performance of our model with the 

commonly used types of neural networks for supervised learning.   

  

Figure III.7: Predicted stress-strain curves for maximum degradation time        

III.6 Software   

Once we achieve our objective of developing an efficient hybrid model capable of 

predicting the complete stress-strain curve and the material lifespan under real usage 

conditions, it is essential to provide users with an efficient and user-friendly software 

application.   

III.6.1 User interaction and design  

Recognizing that using a command-line interface (CLI) can be challenging and 

complex for many users, we have opted to utilize PySimpleGUI to develop a 

straightforward and user-friendly graphical user interface (GUI). PySimpleGUI is a 

Python package that simplifies the tkinter, Qt, and WxPython GUI frameworks, 

providing a more accessible interface, which aligns with our goal of simplicity.   

The main window of the application will have the following appearance :   
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Figure III.8: main window   

Our application features a canvas that occupies the majority of the window, 

displaying an initial curve representing the virgin film for comparison with the stress-

strain curves generated by the model. At the bottom of the window, there is an input 

field where users can specify the aging time for which they want to generate the curve. 

By entering the desired time and temperature values and clicking the "Draw" button, the 

model will predict and plot the corresponding stress-strain curve. This user-friendly 

process simplifies the task of generating and visualizing the curves.   
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Figure III.9: plot the stress strain curve  

Several stress-strain curves can also be depicted side by side.   
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Figure III.10: multiple stress strain curves adjacent to each other  

To examine the chart in more detail, we can click the "Show" button, which allows 

us to zoom in and navigate through the chart.   

Additionally, we have the option to save the chart as an image on our disk for future 

reference or sharing.   
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Figure III.11: detailed view at the chart  

By clicking the "Save" button in the main window; we can easily store the predicted 

stress-strain curve generated by the model into an Excel file. This functionality allows 

us to conveniently save and access the data for further analysis or sharing purposes.   
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Figure III.12: saving to excel    

III.7 Conclusion   

In this chapter, we initially introduced the various tools and 

programming languages employed for the implementation of our application. 

Subsequently, we developed a deep learning model to forecast the stress-

strain curve of LDPE under changing time and temperature conditions.  

We presented our application, elucidating its usage and providing 

insights into the testing and prediction results. 
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General conclusion  
 

We have developed and validated a hybrid deep learning model to effectively predict 

the lifetime and mechanical performance degradation of tri-layer LDPE films used in 

greenhouses. The deep learning (DL) model demonstrated remarkable success during both the 

training and validation phases, showcasing its capability to accurately predict stress-strain 

curves for aged LDPE films at different time intervals. By combining SVM and CNN models, 

the hybrid SVM-CNN model offers a time-saving and cost-effective solution, providing a 

user-friendly tool to forecast both the mechanical properties and lifespan of greenhouse 

coverings under various usage conditions. This advancement will assist manufacturers in 

creating durable materials for long-term use and prove beneficial for engineering designers. 

The findings of this study strongly support the potential of DL as a promising model 

approach, inspiring further exploration and application within the field of polymer 

characterization. 
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