Figure I.1	Description géométrique d'un palier lisse	0
Figure I.2	Palier lisse « long» au comportement d'une liaison pivot glissant	0
Figure I.3	Liaison pivot réalisée par deux paliers courts au comportement d'une linéaire annulaire	0
Figure I.4	Éléments du torseur d'action appliqué par la bague sur l'arbre, réduit en 0	0
Figure I.5	Évolution de f en fonction de $\frac{\mu\Omega}{\rho}$	0
Figure I.6	Évolution typique de l'usure	1
Figure I.7	Évolution de la durée nominale de vie en fonction du produit p V	1
Figure I.8	Palier hydrodynamique	1
Figure I.9	Palier hydrostatiques	1
FigureI.10	Définition de la géométrie d'un palier lisse	1
Figure I.11	Schéma des trois phases d'un palier lisse sous charge	1
Figure I.12	Schéma d'un palier a deux lobes	1
Figure I.13	Palier à trois lobes	1
Figure I.14	Caractéristiques géométriques d'un palier à 3 lobes	2
Figure I.15	Schématisation d'un palier à patin oscillant	2
Figure I.16	Distribution des vitesses	2
Figure II.1	Générateur de vapeur d'une centrale nucléaaire à eau pressurisée	3
Figure II.2	Grappe de commande d'une centrale nucléaire a` eau pressurisée	3
Figure II.3	Température dans un film d'huile cisaille par deux disques en rotation	
Figure II.4	symbolisant un embrayage en position ouverte (d'après Changent) Simulation des grandes échelles : collision axiale de deux anneaux tourbillonnaires	3
Figure II.5	Organigramme algorithme équation Reynolds	4
Figure II.6	Système d'axes et notation	4
Figure II.7	démarche globale d'étude de la cfd	4
Figure II.8	Les étapes de simulation avec CFX	5
Figure III .1	Géométrie du problème étudié	4
Figure III.2	Présentation détaillée de la géométrie droite	5
Figure III.3	Représentation le maillage de conduite	5
		_

Figure III.4	Les conditions aux limites	52
Figure III.5	Vérification de la convergence	54
Figure III.6	Profile de vitesse le long de l'épaisseur du film mince	54
Figure III.7	Profile de la pression le long de la direction du mouvement	54
Figure III.8	Le champ de pression dans le plan milieu parallèle au film mince	55
Figure III.9	Profile de vitesse le long de l'épaisseur du film mince, étude 3D présente	55
Figure III.10	Profil de la pression le long de x par le modèle k-ɛ et le modèle BSL en utilisant	55
	deux configurations de maillage, étude 3D présente	
Figure III.11	Le champ de pression dans le plan milieu parallèle au film mince pour déférent	55
	nombre de cellules, étude 3D présente	
Figure III.12	Profils de la pression le long de x par les 4 modèles en régime permanent sur	56
	Ansys-CFX	
Figure III.13	Le champ de pression dans le plan milieu parallèle au film mince pour déférent	56
	Model de turbulence, étude 3D présente	