CHAPITRE II ETUDE BIBILIOGRAPHIQUE SUR LES

PROFILS AERODYNAMIQUES

II.1 INTRODUCTION

L'aérodynamique des profils d'aile est une science très récente dans le domaine de la mécanique, puisque les premiers travaux de recherche numériques et expérimentaux remontent aux vingt unième siècle. L'aérodynamique d'un profil d'aile portant en mouvement par rapport à son milieu environnant, a suscité, de longue date, l'intérêt des chercheurs tant sur le plan fondamental qu'appliqué, et aussi bien numérique qu'expérimental [5].

II.2 HISTORIQUE

Les premiers travaux scientifiques sur les profils aérodynamiques ont commencé à la fin du 19^e siècle, basés sur la supposition qu'une forme incurvée, plus proche de la forme d'une aile d'oiseau, serait plus efficace . Les premiers développements étaient expérimentaux et basés sur la méthode des essais successifs, [H. PHILLIPS] (1884) brevette une série de profils basés sur des observations réalisées dans une soufflerie alimentée naturellement. À la même époque [O.LILIENTHAIL] travaille sur des formes d'aile basées sur ses observations des oiseaux. Il formalise ses recherches dans son ouvrage "Le vol de l'oiseau, bases de l'art du vol" paru en 1889, dans lequel apparaissent les premiers graphiques de polaires [6].

L'aérodynamique des profils d'ailes a été étudiée par [Kutta] (1902) sur des profils squelettes et [Joukowski] (1905) sur des profils présentant de l'épaisseur. Ces profils étaient obtenus par la transformation conforme d'un cercle en un contour fermé avec un arrondi à l'avant et une pointe à l'arrière. La théorie de Joukowski en mouvement plan, dite théorie de l'aile d'envergure infinie, marque le début de l'aérodynamique moderne. A la même époque, les travaux des pionniers de l'aviation, des frères Wright qui se sont basés sur l'analyse de la stabilité de l'avion faite par [Lanchester] en 1894, permettent de faire voler un avion en 1903 et ont réussi à faire décoller pour la première fois un avion propulsé par leur propres moyens, avant

même, que l'on ne connaisse les équations de la portance et de la traînée, personne ne se doutait de l'extraordinaire degré de développement qu'allait atteindre ce mode de locomotion. Bien que l'appareil ne se soit élevé que de quelques mètres et n'ait parcouru qu'une distance inférieure à 36m , cet événement historique allait marquer le début d'une période très féconde en perfectionnements techniques qui donnèrent naissance à des avions tels les chasseurs hautement supersoniques et les avions de transport capables de traverser l'Atlantique à des vitesses supérieures à la vitesse du son, comme le Concorde. parallèlement, les études expérimentales prennent un nouvel essor par l'essai en souffleries de maquettes faites en Angleterre par Wenham et Philips. Un pas nouveau fut franchi par Prandtl qui édifia la théorie de l'aile d'envergure limitée (1917-1918) qui fut présentée par une formule mathématique laborieuse qui honore de nos jours le domaine de l'aérodynamique [5].

Cette théorie donna un nouvel essor à l'aérodynamique. Pendant vingt ans, les théories de Joukowski et de Prandtl furent les points de départ de nombreux travaux théoriques et expérimentaux, et nous permettent dans ce contexte de décrire les propriétés aérodynamiques de l'aile de distribution elliptique et de distribution de forme arbitraire. Cette distribution représente l'aile avec une traînée minimale, alors il est convenable de présenter cette distribution de circulation en terme de séries infinies. Ce premier terme décrit une distribution elliptique, ce qui fait que les propriétés aérodynamiques des ailes de forme planes arbitraires ne diffèrent pas radicalement de celles des ailes elliptiques [5].

Plusieurs chercheurs célèbres ont contribué à l'établissement de toutes les notions d'aérodynamique : Bernoulli (1700-1782), auteur du théorème qui régit l'écoulement des fluides incompressibles, Euler (1707-1783) avec ses travaux de l'hydrodynamique , Laplace (1749-1829) , qui a donné la formule exacte de la propagation du son dans l'air , Mach (1838-1916) ,qui a découvert les ondes de choc dans le domaine supersonique, Navier stokes , qui ont généralisé les lois qui gouvernent le mouvement d'un fluide visqueux, prandtl (1875-1953),qui a établi le concept de la couche limite et le théorie de l'aile d'envergure finie, [Reynolds] (1842-1912), qui a trouvé une des lois fondamentales de la similitude en dynamique des fluides , [Von Karman] (1881-1963), qui a développé le concept de la couche limite, Ackeret, qui a développé la première théorie de l'écoulement supersonique autour d'une aile en 1925 ,enfín [Busemann] qui, en 1935, a pu améliorer les résultats en utilisant une méthode encore plus perfectionnée. C'est au cours de la seconde guerre mondiale qu'on a entrepris les premières études sur le

régime transsonique, par la suite on a mis sur pied un vaste programme de recherche sur l'aérodynamique des avions (subsonique/supersonique, civils/militaires), des hélicoptères et des véhicules spéciaux [5].

Durant les années 1930 la NACA systématise l'étude des performances de profils. L'organisation utilise la classification NACA à 4 et 5 chiffres, encore utilisée de nos jours. À partir de 1939 les profils laminaires sont mis au point notamment à partir de méthodes analytiques. Ils présentent une meilleure finesse dans une gamme de vitesses limitée. À partir de 1950 les profils supercritiques sont mis au point, qui permet de maintenir une finesse acceptable à haute vitesse et d'atteindre des vitesses supersoniques [7].

II.3 QUELQUES TRAVEAUX SUR LES PROFILS

II.3.1 TRAVAIL DE [C. SARRAF ET AL] (2010) : Ils ont intéressé aux effets de l'épaisseur sur les performances de profils NACA symétriques et sur les couches limites. Leurs étude a permis de mettre l'influence de l'épaisseur relative sur les caractéristiques globales de l'écoulement à savoir, la diminution de la portance et l'augmentation de la trainée. Pour cela ils ont utilisées des différents types NACA symétrique, NACA0015, NACA0025 et NACA0035. Les résultats obtenus on montrer que le coefficient de portance diminue toute en augmentant l'épaisseur relative et que le décrochage est perçu à α =21°, α =35°, α =40° pour NACA0015, NACA0025 et NACA0035 respectivement d'une part. D'autre part l'analyse des profils de vitesse à α =10°, Re=5.10⁵ ont permis de montrer que le décollement de la couche limite turbulente est bien perçu au voisinage de bord de fuite sur les profils NACA0015, NACA0025 par contre sur NACA0035 le décollement est observer entre x/c =0.8 et x/c=0.9 [8].

Ils ont remarqué que les profils de 15 et 25% d'épaisseur relative ont un comportement linéaire aux faibles incidences ce qui n'est plus le cas du profil le plus épais.

FIGURE II.1: COEFFICIENTS DE PORTANCE POUR LES 3 PROFILS NACA0015, NACA0025 et NACA0035 [8]

Les coefficients de traînée présentés sur la figure II.2 montrent que, pour les incidences les plus faibles, la traînée du profil varie comme son épaisseur relative. Cet effet relève à la fois d'une augmentation de la traînée de pression et d'une augmentation de la surface mouillée du profil pour lequel les survitesses augmentent avec l'épaisseur.

FIGURE II.2: COEFFICIENTS DE TRAINEE POUR LES 3 PROFILS NACA0015, NACA0025 et NACA0035 [8]

II.3.2 TRAVAIL DE [A.BEKHTI ET AL] (2010)[9] Leurs travail consiste à simuler l'écoulement de l'air autour d'un profil d'aile pour prédire le phénomène de décrochage dynamique. L'objectif de cette étude est de bien comprendre le comportement physique de l'écoulement autour des pales et donc à travers un rotor d'éolienne. Les simulations sont basées sur la résolution des équations moyennées de Navier-Stockes (Modèles RANS ou Reynolds Averaged Navier Stockes) formulées en ALE (Arbitrary Lagrangian-Eulerien) pour le mouvement du maillage. Les résultats obtenus sont comparés avec des données expérimentales, ils ont confirmé L'efficacité du modèle de turbulence SST k - ω . Pour le profil en oscillation, de l'angle d'incidence moyen et de la fréquence réduite sont considérées. Les résultats obtenus mettent en évidence le cycle d'hystérésis du décrochage dynamique et montrent l'influence des différents paramètres qui caractérisent le mouvement oscillatoire sur la variation des charges aérodynamiques sur le profil [9].

FIGURE II.3 VARIATION DU COEFFICIENT DE PORTANCE AVEC L'ANGLE D'INCIDENCE [9]

La figure (II.3) montre l'existence d'un premier décrochage (léger) à environ $a = 10^{\circ}$, suivi d'un seconde décrochage (profond) à environ $a = 15^{\circ}$ d'incidence où le coefficient de portance diminue brusquement.

Cette étude elle a permis de bien comprendre le phénomène de décrochage et ses conséquences, de prédire son apparence et d'identifier les étapes de processus physique.

II.3.3 TRAVAIL DE [C.HAFIEN ET AL][10](2013),ont présenté une simulation numérique d'un écoulement autour d'un profil d'aile muni d'un volet poreux.

Ils ont fait une configuration et modélisation numérique:

Le contrôle passif de l'écoulement 2D laminaire par un volet poreux sur l'extrados d'un profil d'aile a été simulé numériquement par le code Fluent.

Il s'agit d'un profil de type NACA 4415 de corde c équipé d'un volet poreux perméable placé en différentes positions sur l'extrados et braqué à différents angles. L'incidence du profil est fixée à 15° , la position du volet varie entre 0,5c et 0,75c et son angle de braquage est compris entre 30° et 65° . Sa porosité variant entre 10^{-6} et 10^{-12} .

L'influence des différentes caractéristiques du volet poreux sur les performances du profil est étudiée pour un nombre de Reynolds 3,33 10⁵

Ils ont montré que pour une certaine combinaison entre les caractéristiques du volet d'extrados, les coefficients de portance et de traînée ainsi que la finesse sont améliorés de façon significative dans le bon sens.

Dans la configuration, ils ont placé un profil d'aile de type NACA 4415, de corde c=1m dans une veine d'essai de longueur 15c et de hauteur 5c comme le montre la figure (Figure II.4) [10]

FIGURE. II.4 SCHEMA DU PROFIL NACA 4415 DANS LA VEINE D'ESSAI [10].

Ils ont étudié le contrôle de l'écoulement par un volet perméable fixé sur l'extrados du profil dont l'angle d'incidence égale à $\alpha = 15^{\circ}$.

Dans leur cas ils ont varié l'angle de braquage du volet pour différentes positions sur l'extrados du profil.

Les trois positions étudiées sont décrites sur la Figure II.5 :

position 1 : position du volet $X_{vlt} = 0.75c$ et angle de braquage $35^{\circ} \le \beta \le 65^{\circ}$

position 2 : $X_{vlt} = 0,66c$ et $35^{\circ} \le \beta \le 65^{\circ}$

position 3 : $X_{vlt} = 0$, 5c et 25° $\leq \beta \leq 45$

FIGURE II.5 : LES CONFIGURATIONS ETUDIEES [10]

Le problème de 2D a été simulé par le code commercial Fluent. Ils ont utilisé le modèle laminaire avec les différentes configurations pour chercher l'effet de la position, l'angle de braquage et surtout la porosité du volet sur les forces aérodynamiques

FIGURE II.6 : MAILLAGE DU DOMAINE DE TRAVAIL [10]

Amélioration des efforts aérodynamiques :

Les courbes Cz présentent la même évolution linéaire : une croissance pour atteindre une valeur maximale suivi d'une décroissance.

Les courbes Cx présentent une faible variation par rapport au cas sans contrôle

FIGURE II. 7 : VARIATION DES COEFFICIENTS AERODYNAMIQUES EN FONCTION DE β POUR $\sigma = 10^{-10} \text{m}^2[10]$

Les figures (II.8) représentent respectivement les courbes C_Z et C_X en fonction de la pérméabilité, ce dernier étant graduer en échelle logarithmique.

Il en ressort que C_Z augmente à mesure que la perméabilité σ diminue. Cette augmentation atteint 30% à 10⁻¹² dans le trois cas.

FIGURE II.8 : VARIATION DES COEFFICIENTS AERODYNAMIQUES EN FONCTION DE -log(σ) avec : β =45° POUR LA POSITION 1, β =35° POUR LA POSITION 2 ET β =25° POUR LA POSITION 3[10].

Dans le cas sans contrôle il y a présence d'un grand tourbillon sur l'extrados du profil dans la zone de bord de fuite et un autre petit tourbillon en aval de bord de fuite. le grande tourbillon explique l'existence d'une zone de dépression sur l'extrados du profil, et le petit tourbillon indique l'augmentation de pression dans la zone aval de bord de fuite.

FIGURE II.9 ÉVOLUTION DU COEFFICIENT DE PRESSION SUR LEXTRADOS DU PROFIL POUR LES DIFFERENT CAS.

Ils ont conclu que l'augmentation de Cz par rapport au cas sans contrôle est assurée dans tous les cas de figure. Le Cz est d'autant plus important que la position du volet d'extrados s'approche du bord de fuite et que le braquage est important.

La présence du volet entraîne une chute brutale de pression sur l'extrados du profil ce qui induit une amélioration des efforts aérodynamiques dans le bon sens et une augmentation de la finesse.

II.3.4 TRAVAIL DE [NICOLAS MAZELLIER] [11]

Le contrôle actif à l'aide d'actionneurs fluidiques a été appliqué à un profil NACA0015 en vue d'améliorer les performances aérodynamiques à grandes incidences. A l'aide la simulation numérique par résolution des équations de Navier-Stokes moyennées et des équations de fermeture de la turbulence en utilisant le concept de viscosité turbulente les effets des actionneurs stationnaires et instationnaires ont été étudiés. Des actionneurs basés sur des jets continus, jets pulsés ou jets synthétiques ont été étudiés. Des gains importants de la portance ont été obtenus (jusqu'à 50%). Les études paramétriques ont permis de sélectionner les caractéristiques donnant les meilleures performances [11].

II.3.4.1 ETUDE DE L'ECOULEMENT AVEC CONTROLE

Il a appliqué le contrôle à l'aide d'un jet continu. en cherchant à déterminer la meilleure position et la meilleure inclinaison pour obtenir l'amélioration maximale de la portance.

Il a choisi d'étudier trois positions du jet 15%, 25% et 50% de la corde, quatre inclinaisons 15° , 30° , 45° et 90° et deux vitesses 60 et 120 m/s

II.3.4.1.1EFFET DE L'INCLINAISON DU JET

β°	sans	15	30	45	90
Cz	0,96	1,292	1,475	1,431	1,253

TABLEAU II.1: EFFET DE L'INCLIAISON DU JET (β)

Le tableau (II.1) donne l'évolution du coefficient de portance en fonction de l'inclinaison du jet. La portance maximale est obtenue avec une inclinaison du jet de 30°.

Le tableau (II.2) et la figure (10) donnent l'évolution de la portance en fonction de l'incidence pour les deux positions du jet comparé au cas sans contrôle. L'augmentation de la portance est supérieure quand le jet est positionné à 25% de la corde. L'incidence de décrochage est repoussée dans les deux cas. Elle est cependant supérieure dans le cas où le jet est à 15% de la corde. Elle est de 20° dans ce cas alors qu'elle est de 18° dans le cas où le jet est à 25% de la corde. On constate cependant que le maximum de coefficient de portance est supérieur dans le cas 25%.

CHAPITRE II ETUDE BIBILIOGRAPHIQUE SUR LESPROFILS AERODYNAMIQUES

α°	4	6	8	10	12	14	16	18	20	22
sans	0,368	0,547	0,709	0,841	0,96	1,05	1,08	1,02	0 <mark>,</mark> 85	0 <mark>,</mark> 6
25%	0,752	0,966	1,161	1,337	1,456	1,53	1,56	1,57	1,32	0 <mark>,98</mark>
15%	0,574	0,761	0,927	1,074	1,196	1,29	1,37	1,44	1,52	1,26

TABLEAU II.2 : EFFET DE LA POSITION DE LA POSITION DU JET SUR LE COEFFICIENT DE PORTANCE

FIGURE II.10 EFFET DE LA POSITION DU JET SUR LE CEFFICIENT DE PORTANCE

FIGURE II.11: GAIN DE PORTANCE PAR RAPPORT AU CAS SANS CNTROLE

Cette étude elle a permis de voir comment se comporte l'écoulement notamment décollé sous l'effet de l'actionnement. Elle a également permis de statuer sur la position et l'inclinaison de l'actionneur qu'il faut choisir pour une meilleure performance. Il en ressort qu'un actionneur positionné à 25% de la corde et incliné de 30% répond parfaitement à cet objectif. Des gains de portance jusqu'à 50% sont possibles.

II.4 CONCLUSION

Dans ce chapitre nous avons présenté un aperçu historique sur les profils aérodynamiques, ainsi quelques travaux simulés sur les profils aérodynamiques et les résultats obtenus pour chaque travail.