INTRODUCTION

La demande croissante d'eau dans les zones rurales et sites isolés a fait qu'un intérêt grandissant est porté sur l'utilisation des générateurs photovoltaïques comme source d'énergie aux groupes moteur-pompes. En effet la réalisation de systèmes de pompage autonomes, fiables et à bon rendement constitue une solution pratique et économique au problème du manque d'eau dans les régions désertiques. Notre projet est un système de pompage autonome isolé non connecté au réseau électrique, c'est-à-dire, le courant électrique est créé par le système photovoltaïque autonome (Panneaux photovoltaïques) d'une pompe immergée d'un puit vers un réservoir, puis cette eau sera distribuée soit à l'irrigation, ou soit à l'alimentation domestique, ou soit pour alimenter les animaux domestiques, d'où une modélisation et simulation par un logiciel PVsyst Conçu au dimensionnement des structures alimentées par des systèmes photovoltaïques que se soient habitations, pompage et toute structure bâtie surtout dans des régions isolées.

III.1 Présentation du projet :

Figure III.1 : Schéma du principe de pompage au fil du soleil

Le dimensionnement du système de pompage photovoltaïque au fil du soleil concerne essentiellement le calcul de la puissance crête du générateur photovoltaïque, le choix de la pompe et le choix du contrôleur répondants au service requis dans les conditions de référence.

Figure III.2 : Description détaillée des différentes hauteurs.

III.2 Pertes de charge :

Chutes de pression produites par le frottement de l'eau sur les parois des conduites. Ces pertes sont fonction de la longueur des conduites (D), de leur diamètre (dc) et du débit de la pompe (Q). Elles s'expriment en mètres de colonnes d'eau (mCE). Le diamètre des conduites est calculé afin que ces pertes de charge correspondent au plus à 10 % de la hauteur manométrique (HMT)

Niveau statique

Le niveau statique (Ns) d'un puits ou d'un forage est la distance du sol à la surface de l'eau avant pompage.

Niveau dynamique

Le niveau dynamique (Nd) d'un puits ou d'un forage est la distance du sol à la surface de l'eau pour un pompage à un débit donné. Pour le calcul de la HMT, le niveau dynamique est calculé pour un débit moyen. On considère que notre système travaille sans perte de charges (Pertes de charge négligeable), donc notre hauteur manométrique totale sera :

$$HMT = Nd + Ht$$
(III.1)

Avec : Nd : Niveau dynamique de la nappe d'eau (35m)

Hr : Hauteur géométrique du sol au plan du haut du réservoir (06m).

III.3 Logiciel PVSYST [31]

Le logiciel PVsyst permet de :

- ✓ Pré-dimensionnement
- ✓ Estimation rapide de la production pour une première étude de vos installations
- ✓ Conception de projet

 \checkmark Etude détaillée, dimensionnement et simulation horaire, résultats dans un rapport complet imprimable.

- ✓ Données météo (importation de diverses sources, génération synthétique,...).
- ✓ Base de données de composante (module PV, onduleur, batteries, pompes, etc.)
- ✓ outils didactiques, (géométrie solaire, optimisation de l'orientation, comportement électrique du champs PV avec ombrage).
- ✓ analyse de données réelles mesurées (avancé).

On lance le logiciel PVSYST, l'interface suivante s'affiche :

G PVsyst V6.87 - EVALUATION - Logiciel pour Systèmes Photovoltaïques – 🗖 🗙						
Gibiers Préférences Lang	ue Licence Aide					
Choisissez une section	Description	Système				
Pré-dimensionnement	Etude et analyse détaillés d'un projet. - Calcul de la production à partir de simulations détaillées en valeurs boraires.	Couplé au réseau				
Conception du projet	 Différentes variantes peuvent être simulées et comparées, Tracking, masques lointains, et outil 3D pour les ombrages d'objets proches 	Isolé avec batteries				
Bases de données	- Analyse détaillée des pertes du système, - Evaluation économique, selon composants réels.	Pompage				
Outils		Réseau CC				
C Sortir						

III.3.1 Données de localisation du site

Figure III.4 : Emplacement géographique de la wilaya de Tiaret.

III.3.2.Données météorologiques du site

Après avoir localisé le site, on clique sur le bouton « importer » pour importer les données météorologiques du site dans PVSYST, ces données mensuelles représentent l'irradiation, la température, vitesse du vent, humidité ...etc.

ite	Tiaret (Alg	eria)					
ource des do	nr Meteonorm 7.	2 (1996-2010), 5	Sat=100%				
	Irradiation globale horizontale	Irradiation diffuse horizontale	Fempérature	Vitesse du vent	Linke Turbidity	Relative Humidity	
	kWh/m².ms	kWh/m².ms	°C	m/s	[-]	%	
Janvier	86.9	30.0	5.5	4.20	2.593	76.4	
Février	100.1	36.8	7.0	4.09	2.740	73.6	Junices requises
Mars	155.6	46.5	10.2	4.29	3.087	69.0	Température ext. Movenne
Avril	177.1	60.5	12.2	4.30	3.216	66.4	
Mai	212.0	66.2	17.6	3.90	3.684	56.2	Irradiation diffuse horizontal
Juin	239.5	61.7	23.6	3.60	3.630	42.0	Vitesse du vent
Juillet	253.3	50.8	27.6	3.59	4.518	35.8	
Août	231.6	42.7	26.5	3.50	3.887	40.1	
Septembre	168.2	49.4	20.9	3.29	3.518	56.0	,,
Octobre	138.5	31.5	17.0	3.80	3.087	62.8	Unités d'irradiation
Novembre	95.1	33.5	9.9	4.59	2.740	74.1	○ kWh/m².jr
Décembre	74.8	28.2	7.0	4.60	2.740	79.7	€ kWh/m².ms
Année 🥐	1932.7	537.9	15.4	4.0	3.287	61.0	C MJ/m².ms
	Coller	Coller	Coller	Coller			C W/m ²
Irradiation	globale horizo	ontale variabil	ité d'une année	sur l'autre 2	.7%		C Indice de clarté Kt

Figure III.5 : Caractéristiques climatiques du site de Tiaret

III.3. Coordonnées Géographiques :

La connaissance du Coordonnées Géographique est nécessaire pour connaitre Latitude, Longitude et l'Altitude de cette position de la wilaya de Tiaret.

		Please import the monthly meteo data (from Meteonorm, Nasa, or manually)
Lieu		
Nom du site	Tiaret Obtenir depuis les coordonnées	
Pays	Algeria 💌 Région Afrique 💌 🛄	 □Tmportation météo
Coordonn Latitude Longitude Altitude	Decimal Deg. min. sec. 35.3710 [9] 35 [22] 15 (+ = Nord, - = Hemisph. Sud) 1.3170 [9] 1 [19] 1 (+ = Est, - = Ouest de Greenwich) 1049 M au-dessus du niv. de la mer Detenir depuis le nom Detenir depuis le nom	Meteonorm 7.2 NASA-SSE PVGIS TMY NREL / NSRDB TMY KINPOrter
Fus. horaire	1.0 Correspondant à une différence moyenne	E/S tableaux (Excel)
	Temps Légal - Temps Solaire = 0h 55m	Exporter la ligne

Figure III.6 : Coordonnées géographiques du site de Tiaret

III.4 Trajectoire du soleil

La connaissance du mouvement apparent du soleil pour un point donné de la sur face terrestre est nécessaire pour toute application solaire. La position du soleil est définie par deux angles : sa hauteur HS (angle entre le soleil et le plan horizontal du lieu) et son Azimut AZ (angle avec la direction du Sud, compté négativement vers l'Est).

Type de champ Pla	an incliné fixe	•	
Paramètres du champ Inclinaison plan 20.0	Inclin. 20°	Azimut 0°	
Azimut 0.0		Ouest Sud	E
	Meteo incidente h	iver	
Optimisation par rapport à	Facteur de Transpo	sition 1.07	
🔿 Irradiation annuelle 🏾 🧾	Perte par rapport à	l'optimum -7.0%	
C Eté (Avr-Sept)	Global sur plan capt	eurs 2073 kWh/m ²	

Figure III.8 : Orientation et inclinaison du système PV

On a choisi une orientation de 20 ° des panneaux photovoltaïques car c'est une orientation généralement la plus utilisée et a apportée de bons résultats.

Comment Nouveau B	esoins de l'utilisateur		
Pumping Hydraulic Circuit	Water needs and Head definitions		
Water needs • Yearly average • Seasonnaly value • Monthly values ?	Whole Year needs : 10.0 m³/jour	Water units Flow m ³ /h Pressure mCE Yearly summary Water needs average 10.0 m ³ /jc Yearly water needs 3650 m ³	bur
Well static depth • Yearly constant • Seasonnal values • Monthly values ?	Whole Year: 30.0 mCE	Yearly Head average 36.0 mCE Hydraulic energy 358 kWh PV needs (very roughly) 1209 kWh	

Figure III.9 : Besoin journalier en eau et profondeur statique correspondante.

Notre projet est pomper un volume moyen de 10m³ par jour, selon nos besoins, donc soit 3650m³ par an, soit une énergie hydraulique de 358 KWh.

III.5 Schéma de l'installation PV

La figure (III.10) représente le schéma de l'installation PV autonome prise en compte dans la simulation.

Figure III. 10 : Schéma simplifié d'une installation PV autonome.

Figure III.11 : Besoins en eau et différents paramètres du projet.

Pour notre système de pompage sur site isolé de la wilaya de Tiaret, on a conçu à mettre en place d'un puit alimenté par une pompe immergée qui refoule de l'eau directement vers un château d'eau placé directement au voisinage du puit pour pouvoir minimiser la puissance nécessaire en alimentation, le tableau ci-dessous présente les différentes données du projet de pompage voulu.

Hauteur statique	30.00 m
Hauteur dynamique	35.00 m
Profondeur de pompage	37.00 m
Diamètre du puit	02.00 m
Besoin journalier	10.00 m^3
diamètre du réservoir	02.50 m
Hauteur d'alimentation	06.00 m
Réservoir de stockage	20.00 m^3

Tableau III.1 : Les différentes données de la simulation (projet de pompage).

		e vanante de sinidia					
re-sizing suggestions							
Average daily needs : Head min. 36.0 mCE Head max 39.2 mCE Volume 10.0 m³/jt Hydraulic power 205 W (t	Requ our very approximative)	ested autonomy 4. Accepted missing 5.	0 <u>+</u> day(s) 0 <u>+</u> % <u>?</u>		Suggested tank volu Suggested Pump pov Suggested PV power	me 4 wer 45 57	0 m³ 6 W 6 Wp (nom.)
ump definition SubArray De	esign						
System information Chosen pump Submersib Technology Centrifug Max. power 370 W	yle QF 2A-9 e multi-étag∉ Head Flow Rate	HeadRange	Presizing O No Sizin ? Re	size	Enter planned power or available area	• 0.7 • 4	kWp, m²
Select the PV module							
Tous les modules 📃 💌							
Yingli Solar 👻	290 Wp 30V Si-po	ly YL290P-35b	Until 20:	.4	Manufacturer 2014	-	Den 🚯
Approx. needed modules	2 Sizing volta	ges: Vmpp (60°C) Voc (-10°C)	30.5 V 49.9 V				
? ▼ Universal controller	Control mode	Onduleur MPPT-AC		- ?			
Tous les fabricants	1000 W Onduleur	MPPT-AC Uni	iversal MPPT - AC Inv	erter	Generic device	Ad 👻	👌 Open
Tous les fabricants	1000 W Onduleur The oper propertie	MPPT-AC United the system.	iversal MPPT - AC Inv he generic default co	erter ntroller will a	Generic device utomatically be adjust	Ad 💌	Dopen g to the
Tous les fabricants	1000 W Onduleur The oper propertie	MPPT-AC Uni ating parameters of t s of the system.	iversal MPPT - AC Inv	erter ntroller will a	Generic device utomatically be adjust	Ad 🔫 🔤	Dpen g to the
Tous les fabricants PV Array design Number of modules and Mod. in serie 1 2 1 2 1 2 1 2 1 1	d strings should be :	MPPT-AC Un ating parameters of t is of the system. Operating conc Vmpp (60°C) Vmpp (20°C) Voc (-10°C)	iversal MPPT - AC Inv he generic default co ditions : 31 V 37 V 50 V	erter ntroller will a	Generic device utomatically be adjust	Ad 💌	Dpen g to the
Tous les fabricants PV Array design Number of modules and Mod. in serie 1 1 Nb. strings 2 3 Overload loss N/A Pnom ratio N/A Nb modules 2 2 3 2 3 3 4 4 4 5 5 5 5 7 5 7 7 7 7 8 7 <li7< li=""> 7 7 <li8< <="" td=""><td>1000 W Onduleur The oper propertie d strings should be :</td><td>MPPT-AC Un ating parameters of t is of the system. Operating conv Vmpp (60°C) Vmpp (20°C) Voc (-10°C) Plane irradianc Impp Isc</td><td>iversal MPPT - AC Inv he generic default co ditions : 31 V 37 V 50 V e 1000 W/m² 16.3 A 17.4 A</td><td>erter ntroller will a Max. opera à 1000</td><td>Generic device utomatically be adjust adjust display="block; solid block; solid</td><td>Ad</td><td>Dopen g to the</td></li8<></li7<>	1000 W Onduleur The oper propertie d strings should be :	MPPT-AC Un ating parameters of t is of the system. Operating conv Vmpp (60°C) Vmpp (20°C) Voc (-10°C) Plane irradianc Impp Isc	iversal MPPT - AC Inv he generic default co ditions : 31 V 37 V 50 V e 1000 W/m ² 16.3 A 17.4 A	erter ntroller will a Max. opera à 1000	Generic device utomatically be adjust adjust display="block; solid block; solid	Ad	Dopen g to the

Figure III.12 : Choix modules et des onduleurs de notre système de pompage.

p rumping system demittion, variance in	uvene vanance de sindiación	
Pre-sizing suggestions		
Average daily needs : Head min. 36.0 mCE Head max 39.2 mCE Volume 10.0 m³/jour Hydraulic power 205 W (very approximativ	Requested autonomy 4.0 \div day(s) Accepted missing 5.0 \div % ? e)	Suggested tank volume 40 m³ Suggested Pump power 456 W Suggested PV power 576 Wp (nom.)
Pump definition SubArray Design		
Tous les fabricants		
370 W 24-48 m Well, AC, Centri	fuqe multi-étages Submersible OF 2A-9 Shakti	Open
1 → □ Pumps in serie ? 1 → I Pumps in parallel	Pump characteristics Pump technology Centrifuge multi-étages Motor Moteur AC triphasé Maximal power 370 W Voltage 400 Max. Current) V 9 A
	Head Min / Nom / Max 24 38 48 mid Corresp FlowRate 2.4 1.8 1.0 mid Corresp Power 374 373 304 W Efficiency 42.0 50.0 43.0 %	ЭЕ !/h
-Units for this project		
Flow rate m ³ /h	You can type here any values, not necessarily related to your	
Head mCE Power kW	Flow rate 1.4 m³/h Head 38.9 mCE	
Energy kWh 💌	Power 0.148 kW	

Figure III.13 : Choix de la pompe avec ses caractéristiques adaptable au système en étude.

Projet: Hmaid 1.PRJ		Statement in the second statement		
Projet Site Variante				
Désignation du projet				
Nom fichier	Hmaid 1.PRJ	Nom du projet pompe immergé	ée	्र 🕈 💾 🗙 🛛 😧
Fichier site	Tiaret_MN72mod.SIT	Meteonorm 7.2 (1996-2010), Sat=10	00% (Mi Algeria	Q 🛨 📂
Fichier Météo	Tiaret_MN72_SYN.MET	Meteonorm 7.2 (1996-2010), Sat=10	00% Synthétique 0 km 🔻	📂 😧
	(ve	Simulation effectuée rsion 6.87, date 06/06/20)		🔅 Base données météo
				Paramètres du projet
-Variante du Système ((version de calcul)			
NR do Varianto	VC0 Nouvelle variante de simulation			H + + 0
Nº de variante	VC0 : Nouvelle variance de sindiadori			
Paramètres d'entrée		Simulation	Résultats principaux	
Paramètres principaux	Optionnel		Type de système Sy	ystème de pompage PV
Orientation	Horizon	Lancer la simulation	Eau pompée	3388 m³/year
Besoins d'eau	Ombrages proches		Besoins d'eau	3650 m³/year
			Eau manquante Energie à la pompe	7.2 % 791 kWh
Système		Simulation avancée	Energie spécifique	0.23 kWh/m³
Pertes détaillées		Rapport	Efficacité système	74.5 %
	Eval, économique	Résultats détaillés	Fichier Météo utilisé ;	pour cette variante:
📳 Ensemble du système				Sortir

C'est la configuration finale de l'interface PVsyst, à partir de laquelle, on lance notre simulation, l'apparition des différentes étapes mentionnées en vert, signifie que vous pouvez

lancer votre simulation sans contraintes, et si votre système ou une des étapes n'est pas conforme ça parait en couleur rouge et vous ne pouvez pas lancer votre simulation.

III.6 Rapport de simulation (En Annexe)

Après la simulation par le PVSYST 6.87 de la consommation de notre système de pompage au fil du soleil, on obtient un rapport des résultats (voir la figure (III.15) date 07/06/2020 mentionnée en haut de cette fenêtre.

PVSYST V6.87			0	7/06/20	Page 1/5
Sustàma da		amàtros de	simulation do	basa	
Systeme de	pompage PV. Pai	ametres de	sinulation de	Dase	
Projet : pom	pe immergée				
Site géographique	Tiaret		Pays	Algérie	
Situation	Latitude	35.37° N	Longitude	1.32° E	
Temps défini comme	Temps légal	Fus. horaire TL	J+1 Altitude	1049 m	
Données météo:	Tiaret	Meteonorm 7.2	2 (1996-2010), Sat=10	00% - Syn	thétique
Variante de simulation : N	ouvelle variante de si	mulation			
	Date de la simulation	07/06/20 à 04h	43		
Paramètres de simulation					
Daramàtras sustàma da nome	Tupe de sustème	Duite vore rée	anyoir		
Caractér du puits	Prof du niveau statique	30 m Bai	sse de niveau snéc	0.00 m/	m ^a /h
(Diamètre 200 cm)	Prof. de la pompe	37 m Pro	f. maxi de pompage	35 m	
Réservoir	Volume	20.0 mª	Diamètre	2.5 m	
Alimentation par le haut	Altitude d'injection	6.0 m H	auteur (niveau plein)	4.1 m	
Circuit hydraulique	Longueur de tuyaux	50 m	Tuyaux PE20	Dint = 2	2 mm
Besoins d'eau	Constant sur l'année:	10.00 m³/jour			
Pompe	Modèle	Submersible	QF 2A-9		
	Fabricant	Shakti			
Technologie de la pompe	Centrifuge multi-étages	Pompe immerg	jee (puits) Moteur	Moteur /	AC triphase
Conditions de fonctionnement	pr	ession min.	pression nom. pr	48 0 n	nax.
Débit maximum corresponda	nt	2.40	1.80	1.00 n	nº/h
Puissance requise		374	373	304 V	v
Orientation plan capteurs	Inclinaison	20°	Azimut	0°	
Caractéristiques du champ de	capteurs				
Module PV	Si-poly Modèle	YL290P-35b			
Base de données PVsyst origin	Fabricant	Yingli Solar		1.0	
Nombre de modules PV	En série	1 modules	En parallèle	2 chaîne	s
Nombre total de modules PV	Nore modules	2	Puissance unitaire	290 Wc	(EOPO)
Caractéristiques de fonct, du char	nominale (STC)	32 V	Aux cond. de fonct.	521 WC	(50 C)
Surface totale	Surface modules	3.9 m ²	Surface cellule	3.5 m ²	

Figure III.15 : Rapport de la simulation et résultats correspondants.

III.7 Modules photovoltaïques

III.7.1 Branchement de PPV pour notre système de pompage.

D'après le rapport de la simulation et d'après les résultats, on a conclu que notre modélisation par le logiciel PVsys a abouti à :

Deux (02) modules en parallèle de puissance globale du champ nominale de 580Wc aux conditions de fonctionnement de 521 Wc à la température de 50°C, d'une surface totale des modules de 3.9m², soit surface cellule de 3.5m².

Ces panneaux photovoltaïques avec Silicium poly cristallin de modèle (YL290P-35b).

Les modules sont un assemblage de photopile (ou cellule) montée en parallèle, afin d'obtenir la tension désirée (12V, 24V...).la cellule photovoltaïque est l'élément de base dans la conversion du rayonnement. Plusieurs cellules sont associées dans un module qui est la plus petite surface de capacité transformable, montrable et démontrable sur un site. Les modules sont regroupés en panneaux, qui sont à leur tour associés pour obtenir des champs photovoltaïques selon les besoins. Les cellules photovoltaïques sont réalisées principalement par le silicium cristallin, qui est utilisé sous forme monocristalline ou multi-cristalline en plaquette ou en ruban ou encore en couches semi-minces sur substrat selon les technologies récentes.

Données de base Dimensions et T	echnologie Paramètres modèle	Données additionnelles Commercial Graphiques
Description Yingli Solar, YL2 Module Longueur 1970 mm Largeur 990 mm Épaisseur 50.0 mm Poids 26.80 kg Surf. module 1.950 m ² La définition des dimensions du mo la définition des dimensions du mo	90P-35b Cellules En série 72 En parallèle 1 Surface cellule 243.3 cm ² Nbre cellules total 72 Surface cellules 1.752 m ² dule est obligatoire, utilisée pour ve, elle permet de définir	Tension champ max. Tension maximale absolue du champ en toutes conditions (soit Voc aux températures les plus basses). Tension maximum IEC 1000 V Tension maximum IEC 1000 V Tension maximum UL (US) 600 V Diode by-pass de protection Nb. of sub-modules 3 ,/module (i.e. functional by-pass diodes/ Partition sous-modules: © En longueur © Twin half cells © En largeur © Shingled cells © Shingled cells
Technologie et spécificités Cadre: Alu frame Structure: Low iron temp. glass Connexions: MC4 or AMP H4 (1	, 4mm P67)	 Module tuile CPV: module à concentration Module bifacial

Figure III.16 : Dimensions et caractéristiques des PV.

On a utilisé des PV de 1970mm de longueur soit 1.97m, de 990mm de largeur (0.9m) et de 50mm d'épaisseur, avec un poids de 26.80kg, soit la surface du module unitaire est de $1.950m^2$.

10 Temp. cellules = 45 °C Irrad. incidente = 1000 W/m² 261.6 W 8 Irrad. incidente = 800 W/m² 209.9 Ò Courset [A] Irrad. incidente = 600 W/m² 157.2 Ó Irrad, incidente = 400 W/m² 103.9 V Irrad, incidente = 200 W/m² 50.5 W 2 0 10 20 30 40 Tension [V]

Module PV: Generic, Poly 285 Wp 72 cells

Quand l'ensoleillement augmente, l'intensité du courant photovoltaïque croît, les courbes I–V (Intensité du courant en fonction de la tension) se décalent vers les valeurs croissantes permettant au module de produire une puissance électrique plus importante ; les points de puissance maximale sont marqués par un rond la figure, donc l'irradiation incidente influence sur le comportement du module.

Module PV: Generic, Poly 285 Wp 72 cells

Chapitre III

La figure montre que le courant augmente très rapidement lorsque la température s'élève et engendre une décroissance moins prononcée de la tension de circuit ouvert, ce qui fait une baisse relative de la puissance disponible, donc nous pouvons conclure que l'effet le plus important pour la conception des panneaux et des systèmes est la température.

III.7.4 Comportement du module selon la résistance en série

Figure III.19 : Comportement du module selon la résistance en série

Les performances d'une cellule photovoltaïque sont d'autant plus dégradées que Rs est grande ou que Rsh est faible. La figure III.19 montre l'influence de la résistance série sur la caractéristique I–V. Cette influence se traduit par une diminution de la pente de la courbe I = f(V) dans la zone où le panneau fonctionne comme source de tension, à droite du point de puissance maximum (même sur la figure). La chute de tension correspondante est liée au courant généré par le panneau.

La résistance shunt est liée directement au processus de fabrication, et son influence ne se fait sentir que pour de très faibles valeurs du courant. La figure III.20 montre que cette influence se traduit par une augmentation de la pente de la courbe I–V du panneau dans la zone correspondante à un fonctionnement comme une source de courant. Ceci provient du fait qu'il faut soustraire du photo-courant, outre le courant direct de diode, un courant supplémentaire variant linéairement avec la tension développée.

PVSYST V6.87				07/06/20	Page 2/5		
Système d	le nomnage PV [.] Par	amètres de s	imulation d	étaillés			
Broiot : no	mpo immorgéo			claineo			
Projet : po	Neuvelle verlente de cl	mulation					
variance de simulation : Nouvelle variance de simulation							
Principaux paramètres système Type de système Puits vers réservoir Besoins du système pression de base 36.0 mCE Besoins d'eau 10.0 m³/jour Pompe Modèle / Fabricant Submersible QF 2A-9 / Shakti 10.0 m³/jour Champ PV Modèle / Fabricant YL290P-35b / Yingli Solar 580 Wc Configuration du système Stratégie de régulation Onduleur MPPT-AC 580 Wc							
Contrôle de fonctionnement	du système (A	ppareil générique,	param. ajustés se	elon le syst	tème)		
Convertisseur de puissance	Onduleur MPPT-AC						
Conditions de fonctionnement	Tension MPP minimale Tension MPP maximale Tension champ max. Courant d'entrée maximum	24 V p 41 V 52 V 19.3 A	uissance nomina Puissance se Efficacité ma Efficacité EUR	ule 370 uil 4 axi 97.0 8O 95.0	W W 9 %		
Remarques et Caractéristique	es techniques						
Generic regulator for pumping systems. For pumping systems with MPPT inverter. The parameters are pre-setted according to the system (pumps and Array), at the beginning of the simulation. Unlike exceptions, they are not modifiable by the user.							
Facteurs de perte du champ	PV						
Fact. de pertes thermiques	Uc (const)	20.0 W/m ² K	Uv (vent) 0.0 W/r	n²K / m/s		
Perte ohmique de câblage LID - "light Induced degradation Perte de qualité module Perte de "mismatch" modules Perte de "mismatch" strings Effet d'incidence, paramétrisati	Rés. globale champ " on ASHRAE IAM =	33 mOhm 1 - bo (1/cos i - 1)	Frac. perter Frac. perter Frac. perter Frac. perter Frac. perter Param. bo	s 1.5 % a s 1.3 % s -0.8 % s 1.0 % a s 0.10 % o 0.05	IUX STC		

III.8 Caractéristiques de la pompe immergée.

Figure III.21 : Différentes caractéristiques de la pompe et de l'onduleur de régulation La pression de base étant de 36.0mCE avec un besoin journalier en eau de 10m³/jour, notre pompe de marque Submersible QF 2A-9/Shaki.

Le convertisseur de puissance d'onduleur MPPT-AC avec une tension minimale de 24V, d'une puissance de 370W, d'une tension maximale de 41V ; la tension du champ maximale de 52V avec une efficacité maximale de 97%.

Figure III.22 : Productions normalisées (par kWp installé)

Cette montre la variation normalisée de l'installation en fonction des différents mois de l'année, On remarque bien que l'énergie effective à la pompe étant presque la même durant les différents mois de l'année d'ordre 3.74 KWh/KWp/j, pour les pertes du système (Convertisseur seuil) étant de 0.59 KWh/KWp/j, cette valeur est maximale dans la saison d'été et moins importante dans les mois d'hiver tels que, décembre, janvier et le mois de février.

Pour cette figure qui représente l'indice de performance et fraction solaire en fonction des différents mois de l'année, on constate que cet indice est très important pendant les moins de janvier, février , novembre et décembre, dans ces mois où la température est très basse , cette valeur étant environ 0.8, pour les autres mois , ce facteur de performance varie d'un mois à un autre et n'excède pas les 0.633.

	GlobEff	EArrMPP	E_PmpOp	ETkFull	H_Pump	WPumped	W_Used	W_Miss
	kWh/m ²	kWh	kWh	kWh	mCE	m³	m³	m ³
Janvier	118.1	64.8	58.92	0.00	38.17	250.0	249.8	60.1
Février	123.3	66.6	56.81	1.33	38.09	235.6	234.8	45.2
Mars	178.2	93.3	71.83	8.57	38.52	306.7	300.2	9.8
Avril	183.2	95.1	69.22	11.28	38.63	300.0	300.0	0.0
Mai	204.7	102.8	71.37	16.55	38.38	302.1	309.3	0.7
Juin	223.9	109.0	71.42	23.14	38.62	307.0	300.0	0.0
Juillet	241.4	114.3	70.78	27.06	38.88	310.2	310.0	0.0
Août	236.1	112.4	70.48	26.47	38.94	310.0	310.0	0.0
Septembre	184.9	91.9	69.87	10.94	38.50	299.8	300.0	0.0
Octobre	171.8	87.3	69.74	6.08	38.68	300.8	304.0	6.0
Novembre	126.0	68.0	60.47	1.88	38.09	254.0	268.1	31.9
Décembre	103.3	56.6	50.46	0.00	38.05	211.8	205.4	104.5
Année	2094.8	1062.0	791.35	133.31	38.47	3388.0	3391.7	258.3

Légendes: GlobEff EArrMPP E_PmpOp ETkFull

Global "effectif", corr. pour IAM et ombrages Energie champ, virtuelle au MPP Energie de fonctionnement pompe Energie inutilisée (réservoir plein) Pression totale moyenne à la pompe Eau pompée Eau consommée Eau manquante

Fableau III.2 : Bilans globales et résultats principa	aux.
---	------

H_Pump

W_Used

W_Miss

WPumped

Figure III.24 : Principaux résultats et paramètres de simulation.

Cette figure illustre les différents paramètres de notre projet de pompage tel que :

Nom du projet est une pompe immergée au niveau du site isolé de la wilaya de Tiaret, avec des modules PV de marqueYL290-35b d'une puissance nominale de 0.58KWp, et d'une pompe de marque Submersible QF 2A-9, d'une puissance nominale de 304 W, d'une pression moyenne du débit de 30mCE, avec un débit de 10m³/jour et le type d'onduleur est MPPT-AC.

Eau pompée est 3388 m³/an, l'énergie à la pompe est 791 KWh/an, soit l'énergie spécifique de 0.23 KWh/m³.

Besoin d'eau est 3650 m³ /an, soit l'énergie inutilisée de 133 KWh/an, d'où l'efficacité du système est 74.5%.

L'eau manquante est 7.2% et l'efficacité de la pompe est de 45.5%.

III.5 Conclusion

Dans ce chapitre nous avons vu avec certains détails toutes les étapes nécessaires au dimensionnement et à la modélisation de notre système de pompage photovoltaïque, à l'aide d Logiciel de modélisation de notre système et d'essayer d'optimiser le nombre et la qualité des panneaux photovoltaïque, des régulateurs, et des onduleurs en prenant compte des paramètres réels envisageables (le besoin en eau, la disposition du site sur le terrain, les contraintes en termes de puissance, les paramètres constructeur etc.) ce qui nous permet de simuler un fonctionnement dans des conditions réelles très précises (Température, ensoleillement, puissance.etc.