Figure I.1 Organigramme des techniques de froid solaire	05
Figure I.2 : Système de réfrigération par sorption	06
Figure I.3 : Capteur solaire a tubes sous vide	07
Figure I.4 : Coupe transversale de capteurs solaire a tubes sous vide	07
Figure I.5 : schéma d'un capteur solaire vitré	08
Figure I.6 : Capteur solaire non vitré	08
Figure I.7: Schéma de fonctionnement du cycle absorption simple effet	11
Figure I.8 : les composantes d'une machine frigorifique à absorption	12
Figure I.9 illustration d'un système de réfrigération par absorption à simple effet	13
Figure I.10 : Transformateur de chaleur à absorption	14
Figure I.11 : Cycle frigorifique à absorption à double effet opérant à trois niveaux pression haute, modérée et basse	de 15
Figure I.12 : Cycle frigorifique à absorption à double effet opérant à deux niveaux	
de pression	15
Figure I.13 : Cycle frigorifique à absorption à triple effet opérant à quatre niveaux	
de pression	16
Figure I.14 : Pompe à chaleur à absorption à opérations alternatives	18
Figure I.15 : Répartition en pourcentage des recettes par type d'échangeur sur le ma total de l'échangeur en Europe (données 1998)	rché 20
Figure I.16 : Schéma d'un échangeur à tubes et calandre	22
Figure I.17 : schéma représente un échangeur à plaques	23
Figure I.18 : Exemple d'un Echangeur de chaleur coaxiale	23
Figure I.19 : Schéma d'un échangeur coaxiale	23
Figure I.20 : Schéma d'un échangeur de chaleur à ailettes	24

Figure II.1 Schéma de diagramme de cycle à absorption solaire à simple effet	27
Figure II.2 Diagramme d'Oldham LiBr-H2O P (X)	29
Figure II.3 Diagramme de Merkel	30
Figure II.4 : capteur utilisé pour le système étudié	31
Figure III.1 : Représente le besoin frigorifique pour une journée	39
Figure III.2 : représente le besoin frigorifique et chauffage dans une année	40
Figure III.3 : Schéma de la machine a absorption de 4.5 kW	42
Figure III.4 : Variation de la puissance de capteur solaire en fonction de la surface captation	e de 43
Figure III.5 : Schéma de la machine à absorption avec échangeur	44
Figure III.6 : Algorithme de calcule le COP du système sous Matlab	45
Figure III.7 : Effet de température Tg sur le COP de système	46
Figure III.8 : variation du COP en fonction de T_g avec $T_{cd} = T_{ab} = 30^{\circ}C$ et $T_e = 2^{\circ}C$	47
Figure III.9 Effet de température Tc sur le COP de système avec Tg en haut température	48
Figure III.10 variation du COP de en fonction de Ta avec Tg en haut température	49
Figure III.11 variation du COP de en fonction de Ta avec Tg=65°C	50
Figure III.12 variation du COP de en fonction de Te avec Tg en haut température	51
Figure III.13variation du (COP) pour les différentes efficacités de l'échangeur de chaleur	53
Figure III.14 : Algorithme de calcule le FR du système sous Matlab	54
Figure III.15 Variation du taux de circulation (FR) en fonction de (Tg)	56
Figure III.16 Variation du taux de circulation (FR) en fonction de (Tc)	57
Figure III.17 Variation du (η) en fonction de (Eff)	58
Figure III.18 La comparaison du COP en fonction de Tg par rapport COP de Romero et al	60