Liste des figures

Figure I.1	Configuration de contrôle du volume de l'alvéole	5
Figure I.2	Comparaison entre les résultats expérimentaux et analytiques	6
Figure I.3	Paliers à roulements	7
Figure I.4	Paliers secs	7
Figure I.5	Paliers poreux (a) le champ de pression, (b) exemple de Paliers poreux	8
Figure I.6	Paliers magnétiques	8
Figure I.7	Paliers hydrodynamiques	9
Figure I.8	Butées hydrodynamiques (a) Butée double effet, (b) Butée simple effet	10
Figure I.9	Palier hydrostatique à quatre patins	11
Figure I.10	Alimentation d'une butée hydrostatique à débit constant	11
Figure I.11	Alimentation d'une butée hydrostatique à pression constante	12
Figure I.12	Principe d'une butée hydrostatique	13
Figure I.13	Opération de fonctionnement d'un palier de butée hydrostatique	14
Figure I.14	Principe de la Programmation en langages mixtes pour la communication avec Ansys	18
Figure II.1	Schématisation d'un palier hydrostatique à quatre patins	21
Figure II.2	Les dimensions de modèle géométrique (a) A = 3B (b) A = 6B	22
Figure II.3	Dimensions de modèle géométrique (a) deux alvéoles (b) une alvéole (c) quatre alvéoles	23
Figure II.4	Type d'élément utilisé	24
Figure II.5	Maillage du modèle étudié (une alvéole)	26
Figure II.6	Conditions aux limites	27
Figure II.7	Stratégie de la résolution en CFX	30
Figure II.8	La stratégie développée pour le calcul des caractéristiques de la butée hydrostatique	31
Figure II.9	Débit sortant de l'alvéole pour une butée hydrostatique à un alvéole	33
Figure II.10	Débit sortant de l'alvéole pour une butée hydrostatique à deux alvéoles	33
Figure II.11	Débit sortant de l'alvéole pour une butée hydrostatique à quatre alvéoles	34
Figure II.12	Système d'axe	36

Figure II.13	Domaine de calcule	39
Figure III.1	La stratégie de la simulation par programmation en langage mixte	43
Figure III.2	L'organigramme de calcul de l'influence du rapport de pression sur le champ de pression dans le grain mobile et les outres caractéristiques de la butée hydrostatique à simple effet, à l'aide de l'ANSYS CFX	44
Figure III.3	L'organigramme de calcul du coefficient de raideur K _p par l'Ansys CFX	45
Figure III.4	L'organigramme de calculs numériques et analytiques des caractéristiques de la butée hydrostatique à simple effet	46
Figure III.5	Profil de pression dans une butée hydrostatique finie pour ρ = 879.5 [Kg/m ³] μ = 0.05534 [Pa. s], Ps = 1 [Bar] et pour différentes valeurs de <i>h</i> (a) β = 0.05, (b) β = 0.5, (c) β = 0.9	47
Figure III.6	Profil de pression pour les différentes valeurs de β	48
Figure III.7	Profil de pression dans une butée hydrostatique finie pour $\rho = 879.5$ [Kg/m ³] $\beta = 0.05$, Ps = 1 [Bar] et pour différentes valeurs de μ (a) $\mu = 0.07534$ [Pa.s], (b) $\mu = 0.06534$ [Pa.s], (c) $\mu = 0.05534$ [Pa.s]	49
Figure III.8	Profil de pression pour les différentes valeurs de µ	49
Figure III.9	Profil de pression dans une butée hydrostatique finie pour $\beta = 0.05, \mu = 0.07534$ [Pa.s], Ps = 1 [Bar] et pour différentes valeurs de $\rho(\mathbf{a}) \rho = 879.5$ [Kg/m ³], (b) $\rho = 979.5$ [Kg/m ³], (c) $\rho = 1097.5$ [Kg/m ³]	50
Figure III.10	Profil de pression pour les différentes valeurs de p	50
Figure III.11	Profil de pression dans une butée hydrostatique finie pour $\rho = 879.5 \text{ [Kg/m}^3\text{]}$ $\mu = 0.07534 \text{ [Pa.s]} \beta = 0.05$ et pour différentes valeurs de Ps ((a) Ps = 1 [Bar], (b) Ps = 2 [Bar], (c) Ps = 3 [Bar])	51
Figure III.12	Profil de pression pour les différentes valeurs de Ps	51
Figure III.13	La charge statique en fonction du rapport de pression β	52
Figure III.14	La pression dans l'alvéole en fonction du rapport de pression β	53
Figure III.15	Le débit sortant de l'alvéole en fonction du rapport de pression β	53
Figure III.16	Coefficient de raideur en fonction du rapport de pression β	54
Figure III.17	Influence du nombre des alvéoles sur la répartition du champ de pression	55
Figure III.18	Influence du nombre des alvéoles ainsi que le rapport de pression β sur le débit sortant de l'alvéole	56
Figure III.19	Influence du nombre des alvéoles ainsi que le rapport de pression β sur à gauche : la pression dans l'alvéole, à droite : la charge statique	56
Figure III.20	Influence des proportions de l'alvéole sur la répartition du champ de pression	57
Figure III.21	Influence des proportions de l'alvéole ainsi que le rapport de pression β sur la pression	58
Figure III.22	Influence des proportions de l'alvéole ainsi que le rapport de pression β sur la charge statique	58

Figure III.23	Influence des proportions de l'alvéole et le rapport de pression β sur le débit	58
---------------	---	----

Liste des tableaux

Tableau II.1	Qualité d'élément en fonction de F _d	25
Tableau II.2	Statistiques de maillage pour (un alvéole, deux alvéoles, quatre alvéoles)	25
Tableau II.3	Statistiques de maillage pour (A=3B, A=6B)	25
Tableau II.4	Différentes valeurs des paramètres étudiées	27