III.1. Introduction

Dans ce chapitre nous présentons les résultats de simulation de notre problème en deux dimensions à l'aide du code de calcul commercial « FLUENT».

III .2 Validation de code FLUENT

La première étape consiste à valider notre simulation numérique comparant avec les travaux de Sharif et *al.* [66].

La figure III.1 (ci-dessous) présente une comparaison des lignes de courant entre nos résultats et les résultats obtenu par Sharif et *al*. [66], pour un nombre de Grachof $Gr = 10^4$ et de surface A=1, nous avons trouvé une bonne concordance.

Résultats de Sharif et al. [66]

Nos résultats

Lignes des isothermes

Figure III.1 : Comparaison des lignes des isothermes et des courants.

III.3 Domaine d'étude et conditions aux limites

Pour le domaine d'étude on à choisir la géométrie de notre étude comme la figure III.1 avec leur surface égale à 1 m² et des conditions aux limites simplement pour voir l'influence de flux de chaleur imposé dans une cavité sur le phénomène de convection naturelle dans régime laminaire.

Figure III.2 : La géométrie de notre étude.

- > A la paroi gauche et à droit on impose une température constante T = 1000 K.
- les parois supérieures et inférieures sont adiabatiques.
- Une partie de la paroi inférieure [0.4-0.6] est chauffée par un flux constant égal à q = 220 w/m².

III.3.1 Les propriétés de l'air est donnée dans le tableau III.1

Propriétés	$\lambda \left[W \ /m-k ight]$	Cp [J/Kg K]	μ [Kg/ms]	ß [1/K]	ρ [Kg/m ³]	g [m/s²]
L'air	0.0242	1.00643e04	1.7894e-05	0.00001	1.225	-6 .94e-05

III.4 Etapes de simulation

Pour étudier ce problème on va utiliser les étapes suivantes :

Etape 1: Maillage

Pour commencer la simulation il faut importer le fichier (*.msh) généré sous Gambit.

1. Lecture du maillage	Ś			
File Read	→Case.			
2. Verification de la m	naillage			
Grid Check]			
3. Affichage de mailla	ige			
Display → Grid				
	💶 Grid Display			×
	Options	Edge Type	Surfaces	
	🗆 Nodes	• All	bas default-interior	
	I I Edges □ Faces	C Feature	droite	
	Partitions		flu× gauche	
	Shrink Factor F	eature Angle	haut	
	0	20		
	Surface Name	Pattern	Surface Types	EE
		Match	axis clip-curf	Â
			exhaust-fan	
			fan	
			Outline Inter	ior
		<u>.</u>		

Etape 2 : Des modèles

1. Conservez les paramètres du solveur par défaut.

Solver	X
Solver	Formulation
 Pressure Based Density Based 	 Implicit Explicit
Space	Time
 2D Axisymmetric Axisymmetric Swirl 3D Velocity Formulation Absolute Relative 	 Generation Generation Consteady
Gradient Option	Porous Formulation
 Green-Gauss Cell Ba Green-Gauss Node E Least Squares Cell E 	ased © Superficial Velocity Based © Physical Velocity Based
ОК	Cancel Help

2. Ajouter l'effet de la pesanteur sur le modèle.

Operating Conditions	ĺ
Pressure Operating Pressure (pascal) 191325 Reference Pressure Location X (m) 9 Y (m) 9	Gravity ✓ Gravity Gravitational Acceleration × (m/s2) 0 Y (m/s2) -6.94e-05 Boussinesq Parameters Operating Temperature (k) 1000 Variable-Density Parameters
	☐ Specified Operating Density

Etape 3: Matériaux

1. Définir les propriétés du matériau.

Define Materials

Name	Material Type	Order Materials By
air	fluid -	Name
Chemical Formula	Fluent Fluid Materials	Chemical Formula
	air 🗸	Fluent Database
	Mixture	User-Defined Database.
	none 👻	
Properties	,	
Density (kg/m3)	boussinesq 🗾 Edit	
	1.225	
Cp (j/kg-k)	constant 💌 Edit	
	1006.43	
Thermal Conductivity (w/m-k)	constant 👻 Edit	
	0.0242	
Viscosity (kg/m-s)	constant 👻 Edit	
	1.7894e-05	•

Etape 4 : Conditions aux limites

Define]	Bourdary conditions	
	Boundary Condit	ions
	Zone	Туре
	bas default-interiou droite fluid flux gauche haut	inlet-vent intake-fan interface mass-flow-inlet outflow outlet-vent pressure-far-field
		pressure-inlet pressure-outlet symmetry velocity-inlet wall
		3
	Set Copy	Close Help

1. Définir les conditions aux limites pour le mur de gauche (mur-4).

🖸 Wall				
Zone Name				
1+TUX				
Adjacent Cell 2	Zone			
fluid				
Momentum	Thermal	Radiation Species DPM	Multiphase UDS	
Thermal Con	ditions			
• Heat Flux	×	Heat Flux (v	w/m2) 220	constant 👻
C Tempera	ture		Wall Thickness	s (m) 👩
C Convecti	on			
C Mixed	n	Heat Generation Rate (v	w/m3j 0	constant 🗾
Material Nan aluminum	ne	▼ Edit		
		OK	ncel Help	

Etape 5: Solution pour le modèle Rosse land

1. Définissez les paramètres qui contrôlent la solution.

Solver	├	Controls	→ Solution
	-		•

Solution Controls		×
Equations	EE	Under-Relaxation Factors
Flow Energy		Pressure 0.3
		Density 1
		Body Forces 1
		Momentum 0.7
Pressure-Velocity Coupling		Discretization
SIMPLE	•	Pressure PRESTO!
		Momentum Second Order Upwind 👻
		Energy Second Order Upwind 🗸
OK	D	Default Cancel Help

2. Initialisation du champ d'écoulement.

Solution Initialization
Compute From Reference Frame all-zones Relative to Cell Zone
C Absolute
Initial Values
Gauge Pressure (pascal) 👔 📩
X Velocity (m/s) g
Y Velocity (m/s) g
Temperature (k) 1000
Init Reset Apply Close Help

3. Activer le tracé des résidus lors du calcul.

💽 Residual Mor	nitors	_	x
Options	Storage		Plotting
✓ Print✓ Plot	Iterations 1000		Window 🔋 🔺
	Normalization		Iterations 1000 🛨
	🗆 Normal	ize 🗹 Scale	Axes Curves
	Convergence Crit	erion	
	absolute	-	
Residual	Check Monitor Converg	Absolute ence Criteria	<u>^</u>
continuity	v	0.001	
x-velocity		0.001	
y-velocity	v	0.001	
energy	V V	1e-06	
			v
OK Plot Renorm Cancel Help			

4. Enregistrez le fichier de cas

5. Démarrez le calcul en demandant 1000 itérations.

Solver I	terate
	🖸 Iterate 🗾
	Iteration
	Number of Iterations 1000
	Reporting Interval 1
	UDF Profile Update Interval 1
	Iterate Apply Close Help

6. Enregistrez le fichier de données.

Etape 6 : Post-traitement pour le modèle Rosseland

1. vecteurs de vitesse d'affichage.

Display Vector	s	
Vectors	x	
Options	Vectors of	
🗖 Node Values	Velocity 👻	
🗹 Global Range	Color by	
✓ Auto Range ✓ Clip to Range	Velocity 👻	
✓ Auto Scale □ Draw Grid	Velocity Magnitude	
	Min (m/s) Max (m/s)	
Style arrow	3.294978e-09 4.027336e-06	
Scale 1	Surfaces 📃 🖃	
Skip 👩 🔺	bas default interior	
	droite	
Vector Options	flux	
Custom Vectors	gauche haut	
Surface Name Pattern	Surface Types 📃 📃	
	axis	
Match	clip-surf exhaust-fan fan	
Display Compute Close Help		

2. Afficher les contours de la fonction de courant.

Display Contours				
Contours	_	x		
Options	Contours of			
🗆 Filled	Velocity	-		
✓ Node Values ✓ Global Range	Stream Function	•		
Auto Range	Min (kg/s) 0	Ma× (kg/s) 0.0002063474		
Draw Profiles	Surfaces	, <u>=</u> =		
Levels Setup	bas default-interior droite	Ô		
Surface Name Pattern	gauche	-		
	Surface Types	EE		
Match	axis clip-surf exhaust-fan fan			
Display Compute Close Help				

3. Afficher les contours remplis de température.

Display Contours				
Contours	_	-	×	
Options	Contours of			
🗆 Filled	Temperature		-	
I I Node Values I I Global Range	Static Temperate	ıre	-	
🗹 Auto Range	Min (k)	Ma× (k)		
Clip to Range	1000	1002.612		
Draw Grid	Surfaces		<u>=</u> =	
Levels Setup 20 🔶 1 🚔	bas default-interior droite flux		Î	
Surface Name Patter	gauche		-	
	Surface Types		II.	
Match	axis clip-surf exhaust-fan fan		* -	
Display Compute Close Help				

4. Créer une iso-surface à y = 0: 5, la ligne horizontale à travers le centre de la boîte.

→ Iso- Surface Surface

Iso-Surface		x
Surface of Constant Grid Y-Coordinate	From Surface droite flux gauche	
Min (m) Max (m) 0 1	haut ====================================	
Iso-Values (m) Ø.5	From Zones fluid	
New Surface Name		
Create Compute	Manage Close Help	

5. Créer un tracé XY de y vitesse sur le iso-surface.

Plot XY Plot			
Solution XY Plot			— ×
Options	Plot Direction	Y Axis Function	
Node Values	×	Temperature	•
Position on X Axis	Y 1	Static Temperature	•
Write to File	Z	X Axis Function	
C Order Points		Direction Vector	-
File Data 📃 =		Surfaces	==
		bas	^
		default-interior droit	
		flux	=
	Load File	gouche	
	Load The	x=0.5	-
	Free Data	r	
Plot Axes Curves Close Help			

III.5 Résultats et discussions

III.5.1 Maillage du domaine

Dans notre étude En a pris 3 type de maillage 50x50, 80x80 et 120x120.Les tableaux suivant résument les nombres des cellules, des faces et des nœuds. Pour les trois types de maillages.

Taille du maillage	50x50
Nombre de cellules	2500
Nombre de faces	5100
Nombre de nœuds	2610

Tableau.III.2 : Propriété de maillage 50x50

Taille du maillage	80x80
Nombre de cellules	6400
Nombre de faces	12660
Nombre de nœuds	6561

Tableau.III.3 : Propriété de maillage 80x80

Taille du maillage	120x120
Nombre de cellules	14400
Nombre de faces	29040
Nombre de nœuds	14641

Tableau III.4 : Propriété de maillage 120x120

La géométrie et le maillage ont été réalisés à l'aide du logiciel (GAMBIT).

La configuration numérique étudiée est discrétisé en domaines de calcul suivant un maillage structurés.

Les trois types de maillages de notre étude sont présentés à la Figure III.3

Présentations des maillages	Type de Maillages
	Première maillage 50x50
	Deuxième maillage 80x80
	Troisième maillage 120x120

Figure III.3 : Présentation des maillages (50x50, 80x80et120x120).

Chapitre III

III.5.2 Critère de convergence

La courbe de résidus trace en fonction du nombre d'itérations durant la phase de simulation. Le critère de convergence par défaut est de 10⁻³ cette valeur est généralement insuffisante pour assurer une bonne convergence.

Dans notre cas, la valeur de critère de convergence 10^{-6} est valide toujours pour les trois maillages (50x50, 80x80 et120x120).

On remarque que les résultats des trois études sont les même pour ce là on à choisir une seul type de maillage qu'est 120x120.

La courbe d'itération de maillages (120x120) représente à la figure III.4 dans la suivant :

Figure III.4: Les courbes de résidus.

III.5.3 Contour de température

Après les résultats des lignes des isothermes (annexe) on remarque que les trois configurations de maillage (50x50, 80x80 et 120x120) presque sont les même, la température est élevée de mur supérieur au mur inferieur à cause de l'influence de flux imposé qui égal 220 w/m^2 .

Figure III.5 : Contour de température pour maillage 120x120

III.5.4 Contours de vitesse

La figure ci-dessous illustre la variation des lignes de courant (annexe) pour les trois types de maillages (50x50, 80x80 et 120x120), on remarque que on a pas une variation importante les figures sont les mêmes, on observe aussi que la vitesse situé dans la moitié a gauche de la cavité est plus élevée que l'autre moitié, l'existence de deux zones de circulation a cause de flux .

iontours of Stream Function (kg/s)		Jun 02, 2018 FLVENT 6.3 (2d. dp. pbns. lam)
1.S2e-D6		
2.64e-06		
3.96в-06		
6.276-08		
8.698-08		
7.8L=-08		
9.23e-06		
1.05e-05		
1 10=-05		
1.128-02		
1.500-05		
1.710-05		
1.660-06		
1.86e-06		
2.11e-05	ALC: NO PERSONNAL AND A DESCRIPTION OF A DESCRIPANTE OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A	
2.248-05		
2.37e-05		
2.610-06		
2.048-00		

Figure III.6 : Contour de vitesse à 120x120

III.5.5 Le profil de température

La figure III.7 représente le profil de température statique dans le milieu de la cavité x=0.5 pour le maillage (120x120), on observe qu'on a une diminution de température de 2650 K jusqu' à 1100 K, cette diminution dû à la présence de la source de flux imposé sur le milieu de la paroi inférieur.

Figure III.7 : Profile de température (120x120)

III.5.6 Le profil de vitesse

La figure III.8 représente le profil de vitesse dans le milieu de la cavité x=0.5 de maillage (120x120), on remarque que la vitesse est augmentée à la valeur presque $9x10^{-5}$ m/s à la position 0.4 m après elle diminue jusqu'à la valeur nul.

Figure III.8 : Profile de vitesse (120x120)

III.5.7 Les effets de maillage

Les figures (III.9, III.10) représentent une comparaison entre les profils de température et de vitesse dans le milieu de la cavité x=0.5 de trois études pour étudier les effets de maillage en trouvent le résultat suivant :

Figure III.9 : Comparaisons des profils de température pour les trois études.

Figure III.10 : Comparaisons des profils de vitesse pour les trois études.

D'après la comparaissions on peut dire, il y'a un peu variations lors que le maillage augmente ; la température est élevée et l'inverse pour la vitesse diminuer ont obtenu que le type de maillage ne peut pas effectuée sur notre étude.

III.6 Conclusion

En utilisant le logiciel de calcul « FLUENT », pour obtenir les résultats de notre étude, on peut déterminer les champs thermique et dynamique, les profils de vitesse et de température, ainsi que les variations du nombre de maillage et le critère de convergence, aussi l'élément chauffée qui considère comme un flux imposé pour les mêmes conditions.