LISTE DES FIGURES

	Intitulé	Page
Figure I.1	Système des forces aérodynamiques s'exerçant sur un cylindre.	05
Figure I.2	Représentation schématique du processus de transition sur plaque	06
	plane à incidence nulle, Schlichting [44].	UU
Figure I.3	Écoulement rampant à Re = 0. Van Dyke [49]	07
Figure I.4	Ecoulement rampant, Re =1. Stojkovic et al. (2002) [45]	07
Figure I.5	Écoulement stationnaire décollé à Re = 26 (Van Dyke [49]), visualisation, S.Taneda.	08
Figure I.6	Ecoulement stationnaire périodique symétrique à $Re = 40$ [45].	08
Figure I.7	Allure de l'écoulement pour $48 < \text{Re} < 180$.	09
Figure I.8	Écoulement instationnaire bidimensionnel à Re = 105 (Van Dyke [49] , visualisation, S.Taneda).	09
	Champ de vorticité instantané, écoulement laminaire symétrique à Re	
Figure I.9	=100, montrant l'allée de Von-Kármán, Persillon & Braza (1998)	10
	[39]	
	Evolution du nombre de Strouhal en fonction du nombre de Reynolds	
Figure I.10	dans le sillage d'un cylindre circulaire selon plusieurs auteurs, (Allain	11
	(1999) [1]).	
Figure I 11	Visualisation des modes (a) A à $Re = 180$ et (b) B à $Re = 230$ dans le	12
Figure 1.11	sillage d'un cylindre circulaire, Williamson [51].	12
	Phénomène de dislocation des tourbillons de von Kármán en aval d'un	
	cylindre circulaire : (a) visualisation expérimentale à Re = 210	
Figure I.12	Williamson (1992)[51] et (b) iso-surfaces de vorticités longitudinale	12
	et transversale instantanées obtenues par simulation numérique directe	
	à Re = 220 Braza et al. (2001)[11].	
Figure II.1	Discrétisation d'un domaine en volumes élémentaires.	21
Figure II.2	Type de maillage utilisé par FLUENT	22
Figure II.3	L'interface de Gambit.	22
Figure II.4	Création de la géométrie et génération de maillage.	23
Figure II.5	Vérification de maillage et options d'affichage.	23
Figure II.6	les conditions aux limites	24
Figure II.7	interface du Fluent	28
Figure II.8	importation de la géométrie	28
Figure II.9	vérification du maillage	29
Figure II.10	lissage de maillage	29

Figure II.11	Vérification des dimensions et des unités.	30
Figure II.12	Affichage de la grille et conditions aux limites.	30
Figure II.13	Choix du solveur.	30
Figure II.14	Interface du modèle Laminaire.	31
Figure II.15	Interface de la liste des fluides	31
Figure II.16	Interface des caractéristiques du fluide utilisé (l'Air).	31
Figure II.17	Pression de référence	32
Figure II.18	La vitesse d'entrée (condition aux limites)	32
Figure II.19	Choix de résolution des équations	32
Figure II.20	Initialisation de calcul	33
Figure II.21	lancement du calcul et convergences des résidus	33
Figure II.22	Géométrie de la section de mesure cylindre lisse	34
Figure II.23	Maillage du domaine d'étude.	35
Figure II.24	maillage autour d'un cylindre lisse.	35
Figure II.25	Maillage autour du cylindre avec rainure en demi-cercle	35
Figure II.26	Maillage autour du cylindre avec rainure en forme de U	36
Figure II.27	Maillage autour du cylindre avec rainure en forme de V.	36
Figure II.28	évolution de la courbe de résidus (cas du cylindre lisse).	37
Figure III.1	Contour et vecteurs de vitesse (m/s) cas du cylindre lisse.	38
Figure III.2	Contour et vecteurs de vitesse (m/s) cas du cylindre avec rainure en	38
	forme de demi-cercle position $45^{\circ}/315^{\circ}$.	
Figure III.3	Contour et vecteurs de vitesse (m/s) cas du cylindre avec rainure en	39
	forme de demi-cercle position $90^{\circ}/270^{\circ}$.	
Figure III.4	Contour et vecteurs de vitesse (m/s) cas du cylindre avec rainure en	39
	forme de U position 45°/315°.	
Figure III.5	Contour et vecteurs de vitesse (m/s) cas du cylindre avec rainure en	39
	forme de U position 90°/270°.	
Figure III.6	Contour et vecteurs de vitesse (m/s) cas du cylindre avec rainure en	39
	forme de V position 45°/315°.	
Figure III.7	Contour et vecteurs de vitesse (m/s) cas du cylindre avec rainure en	40
	forme de V position 90°/270°.	
Figure III.8	Profile de vitesse dans la zone de sillage (x=0.6).	41
Figure III.9	Contour de pression statique cas du cylindre lisse.	42
Figure III.10	Contour de pression statique cas du cylindre avec rainure en forme de	42
	demi-cercle position 45°/315°.	
Figure III.11	Contour de pression statique cas du cylindre avec rainure en forme de demi-cercle position $90^{\circ}/270^{\circ}$	43
	denni cerere position 30 /2/0.	

Figure III.12	Contour de pression statique cas du cylindre avec rainure en forme de	43
	U position 45°/315°.	
Figure III.13	Contour de pression statique cas du cylindre avec rainure en forme de	43
	U position $90^{\circ}/270^{\circ}$.	
Figure III.14	Contour de pression statique cas du cylindre avec rainure en forme de	43
	V position 45°/315°.	
Figure III.15	Contour de pression statique cas du cylindre avec rainure en forme de	44
	V position 90°/270°.	
Figure III.16	Coefficient de pression le long du cylindre.	45
Figure III.17	Coefficient de pression dans zone de sillage (x=0.6).	47
Figure III.18	Ligne de courant autour du cylindre lisse.	47
Figure III.19	Ligne de courant autour du cylindre avec rainures en forme de demi-	48
	cercle.	
Figure III.20	Ligne de courant autour du cylindre avec rainures en forme de U.	48
Figure III.21	Ligne de courant autour du cylindre avec rainures en forme de V.	48