Liste des figures

Figure I.1	Exemple de problèmes d'interactions fluide-structure en fonction de la nature de	
	l'écoulement (fluide stagnant ou s'écoulant) et de la force de l'interaction	4
Figure I.2	Mécanisme de couplage fluide-structure.	5
Figure I.3	Exemple de méthodes de résolution d'un problème d'interaction fluide-structure	
	en fonction de la nature de l'écoulement (fluide stagnant ou s'écoulant) et de la	
	force de l'interaction	6
Figure I.4	Schématisation de l'algorithme de couplage temporel explicite synchrone	9
Figure I.5	Schématisation de l'algorithme de couplage temporel explicite asynchrone ou	
	décalé	10
Figure I.6	Schématisation de l'algorithme de couplage temporel explicite synchrone avec	
	sous-cyclage (j itérations du fluide par pas de temps)	10
Figure I.7	Schématisation de l'algorithme de couplage temporel implicite	11
Figure I.8	Exemple de projection entre deux maillages	12
Figure I.9	Exemple de projection avec une méthode buckets	13
Figure I.10	Méthode de préservation du profil	13
Figure I.11	Méthode de conservation globale	14
Figure I.12	Méthode d'échanges du type General Grid Interface (GGI)	15
Figure I.13	Méthode torsional spring avec raideurs linéaires.	19
Figure I.14	Méthode ball-vertex (les raideurs entre les nœuds j et k et leur face opposée ne	
	sont pas représentées)	19
Figure I.15	Principe de fonctionnement et d'alimentation d'une butée hydrostatique	22
FigureI.16	Schéma d'alimentation à pression constante: cas réel Principe de fonctionnement	
	d'un palier hydrostatique à 4 butées hydrostatiques	23
Figure I.17	Configurations de paliers hydrostatiques à 4 butées hydrostatiques	25
Figure I.18	Palier hydrostatique géométrie et nomenclature	25
Figure I.19	Butée hydrostatique	26
Figure I.20	Les conditions aux limites du film lubrifiant	27
Figure II.1	Les dimensions de la butée hydrostatique	32
Figure II.2	Vue perspective d'une butée plane infiniment longue	37
Figure II.3:	L'organigramme général du code de calcule ANSYS-CFX	41

Figure II.4	Le maillage de la géométrie.	42
Figure II.5	Le domaine de calcule et les conditions aux limites	43
Figure II.6	La variation de la pression dans la butée hydrostatique pour l'étude statique	44
Figure II.7	Graphe de la variation de la pression dans le film mince.	45
Figure II.8	La position du gain mobile en fonction de temps.	46
Figure II.9	Conteur de la pression dans la butée hydrostatique pour le cas de l'étude par le	
	corps rigide	46
Figure II.10	Le graphe de la distribution de la pression dans le film mince	47
Figure II.11	Comparaison entre les résultats analytiques et numériques	47
Figure III.1	Maillage de la butée profonde : 601588 nœuds, 576948 éléments, qualité :	
	inclinaison Max: 0.50222, et inclinaison Min: 3.474e-005	51
Figure III.2	Même maillage, agrandissement de la zone du film mince	51
Figure III.3	Même maillage, agrandissement de la zone de la résistance hydraulique	52
Figure III.4	Les conditions aux limites	52
Figure III.5	Bonne convergence du maillage dense	53
Figure III.6	Bonne convergence du maillage moyen	53
Figure III.7	Mauvaise convergence du maillage grossier	54
Figure III.8	La configuration sous ANSYS-Workbench	54
Figure III.9	Convergence de la force pour le modèle à 13204 nœuds après 100 itérations	55
Figure III.10	Convergence de la force pour le modèle à 13204 nœuds après environ 2500 itérations	56
Figure III.11	Géométrie de l'alvéole de longueur finie	56
Figure III.12	Maillage de l'alvéole de longueur finie	57
Figure III.13	Configuration de l'étude sur ANSYS Workbench	58
Figure III.14	Stabilité du grain mobile après quelques oscillations. A gauche la position du	
	grain mobile, à droite la force générée par le fluide sur le grain mobile	58
Figure IV.1	Variation du rapport de pression β_0 en fonction de h (solution analytique)	60
Figure IV.2	Comparaison entre les résultats analytiques et numériques de la pression dans le	
	film mince	61
Figure IV.3	Distribution de la pression dans un plan central parallèle à la longueur infinie	
	(premier maillage)	62
Figure IV.4	Distribution dans la direction de la largeur, le palier central correspond à l'alvéole.	62
Figure IV.5	Convergence du calcul de la force des trois configurations de maillage	63

Figure IV.6	Convergence du calcul de la force du problème couplé statique de palier	
	infiniment long après 100 itérations	64
Figure IV.7	Convergence de la force après environ 2500 itérations	65
Figure IV.8	Convergence du calcul de la force du problème couplé statique du palier à	
	dimensions finie après 12 229 itérations	66
Figure IV.9	Stabilité du grain mobile après quelques oscillations. A gauche la position du	
	grain mobile, à droite la force générée par le fluide sur le grain mobile	67
	Liste des Tableaux	
Tableau I.1	Exemples de résultats obtenus avec les deux méthodes	14
Tableau II.1	Les paramètres de calcule	39
Tableau III.1	Les caractéristiques physiques du fluide et de la structure de l'étude analytique	
	(Chapitre II)	50
Tableau III.2	Les configurations de densité du maillage adoptées pour l'étude du modèle	
	couplé d'alvéole finie	57
Tableau IV.1	Les différentes configurations de maillage pour le modèle statique découplé	63
Tableau IV.2	T 1:00/ / C /: 1 :11 12// 1 //: 1/ / 1	
	Les différentes configurations de maillage pour l'étude statique couplé et leurs	
	temps de calculs	64
Tableau IV.3		64