Figure I.1 : (A) Structure du graphite (B) Photo de graphite
Figure I.2 : (A) Structure du diamant (B) Photo de diamant
Figure I.3 : Fullerène C604
Figure I.4 : Du C60 au C80 : les atomes ajoutes au C60 pour obtenir le C70 et le C80 Sont représentés en rouge
Figure : I.5 : un nanotube de carbone monofeuillet et multifeuillet5
Figure I.6 : Nanotube de carbone (SWNT)5
Figure I.7 : Le monofeuillet peut être modélisé par l'enroulement nanotube
Figure I.8 : Propriétés électroniques des nanotubes de carbones monocouches en fonction9
Figure I.9 : production de nanotubes de carbone par la méthode de l'arc électrique10
Figure I.10 : Réacteur de synthèse laser continu (CO2) de l'ONERA11
Figure I.11 : Schéma d'un réacteur CVD pour la croissance des (NTC)12
Figure I.12 : Schéma du Production de nanotubes par méthode HiPCo13
Figure I.13 : Influence du type de cycle sur la courbure de la surface16
Figure I.14 : : Image MET des extrémités de deux nanotubes multicouches. On a indiqué quelques-uns des cycles non hexagonaux : (P) indique un pentagone et (H) un heptagone17
Figure I.15 : : Introduction d'une paire pentagone-heptagone provoquant une variation de diamètre et de chiralité : a- de (11,0) a (12,0) ; b- de (9,0) a (12,0)17
Figure I.17 : Image (MET) d'un échantillon de nanotubes (collerette brute produite par arc électrique). On peut distinguer, en plus des (SWNTs), des particules de catalyseur et deux formes de carbon amorphe
Figure I.16: Défauts pentagonaux et heptagonaux se traduisant par des jonctions
Figure II.1 : schéma d'un polymère linéaire
Figure II.2. Exemple du polypropylène (propène), (CHCH3-CH2)22.

Liste des figures

Figure II. 3 : Formation d'une résine époxy réticulée à partir de polymère époxy et d'un catalyseur
Figure II.4. :(a) le caoutchouc naturel, un polymère de l'isoprène, (b) pont (S-S) entre chaînes assurant la cohésion de l'ensemble en l'absence de liaisons faibles, dans le caoutchouc vulcanisé
Figure .II.5. Illustration (a) zones amorphes et cristallisées dans un polymère linéaire. (b) alignement des macromolécules par étirage
Figure II.6. Principe de fabrication d'une fibre de carbone par étirage d'une pelote de polymère linéaire25
Figure. II.7 : Évolutions schématiques du volume massique V_m et du module de Young E d'un polymère en fonction de la température26
Figure II.8 : Evolution schématique du module de Young E d'un polymère on fonction de la température, pour divers taux de réticulation27
Figure II.9 : Géométrie des éprouvettes de traction selon la norme NF EN ISO 52729
Figure II.10 : courbes des contrainte en fonction de déformation
Figure II.11 : machine d'essai de choc pendulaire (mouton-pondule) (d'après norme ASTM D 256)
Figure II.12 : montage d'essai de flexion trois points
Figure II.13 : Exemples de courbes caractéristiques force-flèche avec différents types de défaillance
Figure III.1: Illustration schématique de la préparation de Nano composites nylon-6/Argile par polymérisation in-situ
Figure III.2 : Analyse temporelle en diffraction de rayons X de l'intercalation d'un PS dans une argile
Figure III.3 : polymères linéaires47
Figure III.4: Homopolymère ramifié (a) et copolymère ramifié (b)47
Figure III.5 : polymère réticulé avec ponts di-sulfure reliant deux chaînes
Figure III.6 : Représentation schématique d'un polymère semi-cristallisé

Figure III.7: L'influence de la dispersion des (CNTs) par ultrasons	52
FigureIII.8: Schéma du circuit d'un fluide dispersé par tricylindre (Source : IPAT, TUBraunschweig, Allemagne)	.53
Figure VI : Flambement	.55
Figure IV.2 : Les modes et les points d'inflexion d'une barre comprimée	.56
Figure IV.3 : le modèle du milieu élastique : Modèle de Winkler	.56
Figure IV.4 : Comportement linéaire et non linéaire du milieu élastique	.56
Figure IV.5 : l'effet du mode du flambement sur la variation du p en fonction de L/d	66
Figure IV. 6 :l'effet du milieu élastique sur la variation du p en fonction de k ₂	66