Chapitre IV Résultats et discussions

Chapitre IV Résultats et discussions

IV.1. Introduction

près le développement analytique détaillé dans le troisième chapitre, la dernière partie à pour objectif de présenter les résultats numériques de l'analyse du comportement statique des plaques en matériaux composites avancés type E-FGM en utilisant un modèle analytique qui se base sur les hypothèses de la théorie de déformation en cisaillement trigonométrique quasi 3-D à cinq variables. Le modèle proposé est jugée appropriée, simple et efficace pour traiter les problèmes de la flexion des plaques E-FGM ; en effet, le nombre de variables impliqués dans cette théorie est moins que les autres modèles de déformation en cisaillement où ce nombre est souvent très important. La théorie actuelle satisfaite les conditions d'équilibre sur les faces supérieure et inférieure des plaques étudiées sans l'aide de facteurs de correction de cisaillement, et donne une description trigonométrique des contraintes de cisaillement à travers l'épaisseur.

On suppose que les propriétés des différentes plaques étudiées varient sans interruption dans la direction de l'épaisseur selon une forme exponentielle en fonction de la fraction volumique des constituants. Dans cette section, les déplacements transversaux, les contraintes axiales et de cisaillement transversal dans les plaques en matériaux composite avancés type E-FGM, simplement appuyées sont discutés et comparés aux solutions disponibles dans la littérature pour vérifier la précision de la présente théorie raffinée quasi-3D.

IV.2. Propriétés matérielles des plaques E-FGM

A travers cette étude, la plaque E-FGM est fabriquée par un mélange de deux matériaux différents, de métal (Al) (surface inférieure) et de céramique (ZrO₂) (surface supérieure) gradués de manière exponentielle dans la direction de l'épaisseur d'une plaque rectangulaire simplement appuyée et soumise à une charge répartie sinusoïdale. Les propriétés du matériau utilisées pour calculer les résultats numériques sont :

$$E_{b} = 70 \ GPa \ , E_{t} = 200 \ GPa \ , v = 0.3$$
 (IV.1)

Le déplacement transversal et les contraintes sont définis sous une forme adimensionnelle pour présenter les résultats numériques :

$$\overline{w}\left(\frac{a}{2},\frac{b}{2},z\right) = \frac{10\ h^{3}E_{b}}{qa^{4}}w, \ \overline{\sigma}_{x}\left(\frac{a}{2},\frac{b}{2},z\right) = \frac{h^{2}}{qa^{2}}\sigma_{x}, \ \overline{\sigma}_{y}\left(\frac{a}{2},\frac{b}{2},z\right) = \frac{h^{2}}{qa^{2}}\sigma_{y},$$

$$\overline{\tau}_{xy}\left(0,0,z\right) = \frac{h^{2}}{qa^{2}}\tau_{xy}, \ \overline{\tau}_{xz}\left(0,\frac{b}{2},z\right) = \frac{h}{qa}\tau_{xz}, \ \overline{\tau}_{yz}\left(\frac{a}{2},0,z\right) = \frac{h}{qa}\tau_{yz}$$
(IV.2)

IV.3. Résultats de l'analyse de flexion des plaques E-FGM

Dans le présent travail, les résultats obtenus en utilisant la présente théorie de déformation en cisaillement trigonométrique quasi 3-D pour l'analyse statique des plaques E-FGM simplement appuyées sont présentés et comparés à la solution exacte de la théorie d'élasticité 3D [10], la théorie bien connue de déformation en cisaillement trigonométrique de la plaque (TPT), qui inclut la fonction sinusoïdale développée à l'origine par Levy [91], confirmée et améliorée par Stein [92], largement utilisée par Touratier [60] et récemment adaptée aux plaques FGM ainsi que les plaques avec des propriétés matérielles graduées de manière exponentielle (E-FGM) de Zenkour [10,93], et également les résultats de la théorie de déformation en cisaillement d'ordre élevé (HSDT) fournis par Zenkour [10] et la nouvelle théorie HSDT à six variables récemment développée par Mantari et al. [87], qui ont été adaptés avec succès aux FGM par Mantari *et al.* [23] dans le cas ou la déformation normale transversale est négligeable. (Sans inclure l'effet d'étirement).

Dans ce qui suit, les résultats numériques sont présentés sous forme des tableaux et des figures pour différents rapports géométriques (b/a) et différentes valeurs du paramètre matériel(p). Le coefficient de Poisson est supposé être un constantv = 0.3. La figure I.12 (chapitre I) montre la variation de la fraction volumiqueV(z) suivant une fonction exponentielle le long de l'épaisseur d'une plaque E-FGM pour différentes valeurs du paramètre (p).

Les tableaux IV.1 et IV. 2 présentent les résultats de déplacement transversal maximal adimensionnel (\overline{w}) obtenu à (a/2, b/2, 0) pour les plaques très épaisses (a / h = 2) et épaisses (a / h = 4), respectivement. Les résultats sont en excellent accord avec les résultats fournis par Zenkour [10] basés sur la théorie TPT quasi-3D avec une variation trigonométrique des composantes du champ de déplacement.

Table IV.1: Déplacement transversal adimensionnel pour différentes

plaques E-FGM simplement appuyées sous une charge sinusoïdale. a / h = 2

b/a	Théories	C			1	ט		
D/ U	Theories	e z	0.1	0.3	0.5	0.7	1.0	1.5
6	3-D [10]	≠0	1.63774	1.48846	1.35184	1.22688	1.05929	0.82606
	Présente	≠0	1.62939	1.47309	1.33066	1.20101	1.02823	0.79056
	Mantari et al. [87]	≠0	1.63654	1.47953	1.33644	1.20618	1.03325	0.79387
	Mantari et al. [23]	= 0	1.73465	1.56884	1.41822	1.28145	1.10032	0.84996
	TPT Zenkour [10]	≠0	1.62939	1.47309	1.33066	1.20101	1.02823	0.79056
	HPT Zenkour [10]	= 0	1.54777	1.39964	1.26493	1.14249	0.97956	0.75560
5	3-D [10]	≠0	1.60646	1.46007	1.32607	1.20349	1.03907	0.81024
	Présente	≠0	1.59825	1.44493	1.30522	1.17804	1.00856	0.77540
	Mantari et al. [87]	≠0	1.60532	1.45130	1.31094	1.18315	1.01352	0.77867
	Mantari et al. [23]	= 0	1.70246	1.53972	1.39188	1.25762	1.07981	0.83401
	TPT Zenkour [10]	≠0	1.59825	1.44493	1.30522	1.17804	1.00856	0.77540
	HPT Zenkour [10]	= 0	1.51991	1.37444	1.24214	1.12188	0.96184	0.74184
4	3-D [10]	≠0	1.55146	1.41013	1.28074	1.16235	1.00352	0.78241
	Présente	≠0	1.54348	1.39541	1.26048	1.13764	0.97395	0.74874
	Mantari et al. [87]	≠0	1.55042	1.40166	1.26610	1.14267	0.97884	0.75195
	Mantari et al. [23]	= 0	1.64584	1.48849	1.34553	1.21569	1.04374	0.80596
	TPT Zenkour [10]	≠0	1.54348	1.39541	1.26048	1.13764	0.97395	0.74874
	HPT Zenkour [10]	= 0	1.47089	1.33009	1.20201	1.08559	0.93065	0.71762
3	3-D [10]	≠0	1.44295	1.31160	1.19129	1.08117	0.93337	0.72750
	Présente	≠0	1.43542	1.29771	1.17221	1.05975	0.90567	0.69615
	Mantari et al. [87]	≠0	1.44210	1.30373	1.17761	1.06279	0.91041	0.69925
	Mantari et al. [23]	= 0	1.53405	1.38735	1.25402	1.13291	0.97254	0.7506
	TPT Zenkour [10]	≠0	1.43542	1.29771	1.17221	1.05795	0.90567	0.69615
	HPT Zenkour [10]	= 0	1.37394	1.24238	1.12269	1.01386	0.86898	0.66977
2	3-D [10]	≠0	1.19445	1.08593	0.98640	0.89520	0.77266	0.60174
	Présente	≠0	1.18798	1.07399	0.97009	0.87548	0.74936	0.57578
	Mantari et al. [87]	≠0	1.19408	1.07949	0.97503	0.87990	0.75377	0.57862
	Mantari et al. [23]	= 0	1.27760	1.15533	1.04413	0.94307	0.80929	0.62377
	TPT Zenkour [10]	≠0	1.18798	1.07399	0.97009	0.87548	0.74936	0.57578
	HPT Zenkour [10]	= 0	1.15080	1.04052	0.94012	0.84878	0.72712	0.55975
1	3-D [10]	≠0	0.57693	0.52473	0.47664	0.43240	0.37269	0.28904
	Présente	≠0	0.57308	0.51806	0.46788	0.42216	0.36117	0.27712
	Mantari et al. [87]	≠0	0.57789	0.52240	0.47179	0.42567	0.36485	0.27939
	Mantari et al. [23]	= 0	0.63625	0.57517	0.51948	0.46874	0.40178	0.30791
	TPT Zenkour [10]	≠0	0.57308	0.51806	0.46788	0.42216	0.36117	0.27712
	HPT Zenkour [10]	= 0	0.58586	0.52955	0.47814	0.43127	0.36871	0.28246

Cependant, on peut observer également que les résultats actuels sont légèrement différents par rapport à la solution 3D dans tous les cas, voir les tableaux IV.1 et IV.2. La théorie HSDT proposée par Mantari et al. [23] dans lequel l'effet d'étirement n'a pas été inclus, surestime les valeurs de déplacement transversal de la plaque. Par conséquent, il est très important d'inclure la déformation transversale suivant l'épaisseur des plaques pour assurer la précision et la continuité. Le déplacement transversal maximale (\overline{w}) diminue à mesure que(p) augmente, et également avec la diminution du rapport géométrique (b/a).

Table IV.2: Déplacement transversal adimensionnel $\overline{w}(a/2, b/2, 0)$ pour différentes plaques E-FGM simplement appuyées sous une charge sinusoïdale. a/h = 4

h/a	Théories	٤			1)		
	2 5 6403	U _Z	0.1	0.3	0.5	0.7	1.0	1.5
6	3-D [10]	≠ 0	1.17140	1.06218	0.96331	0.8/3/8	0.75501	0.59193
	Présente	<i>≠</i> 0	1.16681	1.05509	0.95345	0.86107	0.73821	0.56969
	Mantari et al. [87]	≠ 0	1.17033	1.05825	0.95628	0.86359	0.74032	0.57128
	Mantari et al. [23]	=0	1.19202	1.07885	0.97667	0.88437	0.76228	0.59545
	TPT Zenkour [10]	≠0	1.16681	1.05509	0.95345	0.86107	0.73821	0.56969
	HPT Zenkour [10]	= 0	1.00649	0.91087	0.82448	0.74640	0.64306	0.50178
5	3-D [10]	≠0	1.14589	1.03906	0.94236	0.85478	0.73859	0.57904
	Présente	≠ 0	1.14140	1.03210	0.93268	0.84231	0.72212	0.55726
	Mantari et al. [87]	≠0	1.14484	1.03520	0.93545	0.84478	0.72419	0.55882
	Mantari et al. [23]	= 0	1.16628	1.05555	0.95557	0.86525	0.74578	0.58253
	TPT Zenkour [10]	≠0	1.14140	1.03210	0.93268	0.84231	0.72212	0.55726
	HPT Zenkour [10]	= 0	0.98508	0.89150	0.80694	0.73050	0.62935	0.49105
4	3-D [10]	≠0	1.10115	0.99852	0.90560	0.82145	0.70979	0.55643
	Présente	≠0	1.09682	0.99180	0.89625	0.80941	0.69392	0.53546
	Mantari et al. [87]	≠0	1.10013	0.99477	0.89891	0.81178	0.69589	0.53696
	Mantari et al. [23]	= 0	1.12113	1.01469	0.91856	0.83172	0.71685	0.55987
	TPT Zenkour [10]	≠0	1.09682	0.99180	0.89625	0.80941	0.69390	0.53546
	HPT Zenkour [10]	= 0	0.94753	0.85750	0.77615	0.70262	0.60529	0.47222
3	3-D [10]	≠0	1.01338	0.91899	0.83350	0.75606	0.65329	0.51209
	Présente	≠0	1.00938	0.91272	0.82479	0.74486	0.63854	0.49270
	Mantari et al. [87]	≠0	1.01243	0.91546	0.82724	0.74704	0.64037	0.49408
	Mantari et al. [23]	= 0	1.03254	0.93450	0.84594	0.76593	0.66008	0.51541
	TPT Zenkour [10]	≠0	1.00938	0.91272	0.82479	0.74486	0.63854	0.49270
	HPT Zenkour [10]	= 0	0.87379	0.79076	0.71571	0.64787	0.55806	0.43525
2	3-D [10]	≠0	0.81529	0.73946	0.67075	0.60846	0.52574	0.41200
	Présente	≠ 0	0.81202	0.73425	0.66350	0.59917	0.51361	0.39620
	Mantari et al. [87]	≠0	0.81448	0.73647	0.66547	0.60093	0.51508	0.39732
	Mantari et al. [23]	= 0	0.83246	0.75338	0.68192	0.61734	0.53188	0.41503
	TPT Zenkour [10]	≠0	0.81202	0.73425	0.66350	0.59917	0.51361	0.39620
	HPT Zenkour [10]	= 0	0.70700	0.63979	0.57901	0.52405	0.45126	0.35169
1	3-D [10]	≠0	0.34900	0.31677	0.28747	0.26083	0.22534	0.18054
	Présente	≠0	0.34749	0.31419	0.28388	0.25631	0.21961	0.16922
	Mantari et al. [87]	≠0	0.34860	0.31519	0.28477	0.25710	0.22028	0.16972
	Mantari et al. [23]	= 0	0.36017	0.32589	0.29485	0.26676	0.22952	0.17854
	TPT Zenkour [10]	≠0	0.34749	0.31419	0.28388	0.25631	0.21961	0.16922
	HPT Zenkour [10]	= 0	0.31111	0.28146	0.25461	0.23027	0.19800	0.15377

La figure IV.1 montre la variation du déplacement transversal maximal $\overline{w}(a/2, b/2, z)$ pour différentes plaques E-FGM épaisses sous condition de chargement sinusoïdale, $b/a = \{1, 2, 3, 4\}$, pour le paramètre matériel p = 0.5 et un rapport d'élancement a/h = 4. L'étude comparative montre à nouveau que les résultats obtenue par le présent modèle à cinq variables est en excellent accord avec ceux qui sont générés par la théorie TPT quasi-3D de Zenkour [12] et par la théorie quasi-3D de Mantari *et al.* [87], basés sur la cinématique d'ordre élevé à six variables avec une fonction de déformation en cisaillement trigonométrique (avec effet d'étirement, $\varepsilon_z \neq 0$). De plus, on observe clairement que la variation du déplacement transversal augmente d'une manière considérable avec l'augmentation du rapport géométrique de la plaque E-FGM. Les lecteurs peuvent également consulter les résultats obtenus par Mantari *et al.* [23] et les comparer avec le présent modèle HSDT quasi-3D. La conclusion que l'on peut tirer de cette analyse comparative est que l'effet d'étirement permet d'obtenir de meilleurs résultats de déplacement transversal et de contraintes de cisaillement transversal.

Figure IV.1: Variation du déplacement transversal adimensionnel $\overline{w}(a/2, b/2, z)$ à travers l'épaisseur des plaques E-FGM simplement appuyées sous une charge sinusoïdale.

(a / h = 4, p = 5).

Zenkour [12] n'a pas fourni de résultats pour les autres rapports d'élancement (a/h), autres que 2 et 4. Par conséquent, il était nécessaire, à des fins de comparaison, de mettre en œuvre un autre code numérique prenant en compte la présente théorie de déformation en cisaillement trigonométrique quasi-3D. Les résultats des déplacements transversaux pour les plaques E-FGM moyennement épaisses (rapport d'élancement a/h=10), pour différentes valeurs du paramètre matériel (p) et le rapport géométrique (b/a) sont présentés dans le tableau IV.3 et comparées avec les autres théories fournis par Mantari *et al.* [23, 87]. Il est évident que la petite différence entre les résultats obtenus par la présente théorie quasi-3D et la théorie de déformation en cisaillement 2D est due à la négligence de l'effet d'étirement de l'épaisseur.

Table IV.3: Déplacement transversal adimensionnel $\overline{w}(a / 2, b / 2, 0)$ pour différentes

h/a	Théories	C				Р			
D/u	Theories	\boldsymbol{e}_{z}	0.1	0.3	0.5	0.7	1.0	1.5	2.0
6	Présente	≠0	1.0321	0.9333	0.8436	0.7621	0.6538	0.5054	0.3901
	Mantari et al. [87]	≠0	1.0354	0.9363	0.8462	0.7644	0.6558	0.5069	0.3913
	Mantari et al. [23]	= 0	1.0388	0.9405	0.8520	0.7723	0.6670	0.5236	0.4115
	TPT Mantari et al. [87]	≠0	1.0321	0.9333	0.8436	0.7621	0.6538	0.5054	0.3901
5	Présente	≠0	1.0083	0.9118	0.8241	0.7445	0.6387	0.4938	0.3810
	Mantari et al. [87]	≠0	1.0115	0.9147	0.8267	0.7468	0.6406	0.4952	0.3823
	Mantari et al. [23]	= 0	1.0149	0.9189	0.8324	0.7545	0.6516	0.5115	0.4020
	TPT Mantari et al. [87]	≠0	1.0083	0.9118	0.8241	0.7445	0.6387	0.4938	0.3810
4	Présente	≠0	0.9665	0.8741	0.7900	0.7137	0.6123	0.4733	0.3653
	Mantari et al. [87]	≠0	0.9696	0.8768	0.7925	0.7159	0.6141	0.4747	0.3664
	Mantari et al. [23]	= 0	0.9730	0.8809	0.7980	0.7233	0.6247	0.4903	0.3854
	TPT Mantari et al. [87]	≠0	0.9665	0.8741	0.7900	0.7137	0.6123	0.4733	0.3653
3	Présente	≠ 0	0.8849	0.8002	0.7233	0.6534	0.5605	0.4333	0.3344
	Mantari et al. [87]	≠0	0.8877	0.8027	0.7255	0.6554	0.5622	0.4346	0.3355
	Mantari et al. [23]	= 0	0.8909	0.8066	0.7307	0.6622	0.5720	0.4489	0.3528
	TPT Mantari et al. [87]	≠0	0.8849	0.8002	0.7233	0.6534	0.5605	0.4333	0.3344
2	Présente	≠ 0	0.7015	0.6344	0.5734	0.5180	0.4444	0.3435	0.2651
	Mantari et al. [87]	≠0	0.7037	0.6364	0.5752	0.5196	0.4457	0.3445	0.2659
	Mantari et al. [23]	= 0	0.7066	0.6397	0.5795	0.5252	0.4536	0.3560	0.2797
	TPT Mantari et al. [87]	≠0	0.7015	0.6344	0.5734	0.5180	0.4444	0.3435	0.2651
1	Présente	≠0	0.2790	0.2523	0.2280	0.2060	0.1767	0.1366	0.1053
	Mantari et al. [87]	≠0	0.2799	0.2531	0.2287	0.2066	0.1772	0.1370	0.1057
	Mantari et al. [23]	= 0	0.2816	0.2550	0.2309	0.2093	0.1807	0.1417	0.1112
	TPT Mantari et al. [87]	≠0	0.2790	0.2523	0.2280	0.2060	0.1767	0.1366	0.1053

plaques E-FGM simplement appuyées sous une charge sinusoïdale. a / h = 10

h/a	Théories	c			1	D		
D/U	Theories	\mathcal{E}_{Z}	0.1	0.3	0.5	0.7	1.0 0.37456 0.39547 0.37374 0.29804 0.39547 0.42573 0.37821 0.39884 0.37755 0.30236 0.39884 0.42764 0.38394 0.30968 0.40446 0.39534 0.40446 0.43072 0.39534 0.41432 0.39537 0.32297 0.41432 0.43572 0.41417 0.43003 0.41483 0.34690 0.43003 0.44102 0.40675 0.40851	1.5
6	3-D [12]	≠0	0.29429	0.31008	0.32699	0.34508	0.37456	0.43051
	Présente	≠ 0	0.29119	0.31184	0.33385	0.35731	0.39547	0.46786
	Mantari et al. [87]	≠0	0.27628	0.29544	0.31592	0.33780	0.37374	0.44163
	Mantari et al. [23]	= 0	0.21871	0.23447	0.25122	0.26900	0.29804	0.34981
	TPT Zenkour [10]	≠0	0.29119	0.31184	0.33385	0.35731	0.39547	0.46786
	HPT Zenkour [10]	= 0	0.31192	0.33462	0.35873	0.38433	0.42573	0.50345
5	3-D [10]	≠0	0.29674	0.31277	0.32993	0.34829	0.37821	0.43500
	Présente	≠0	0.29353	0.31439	0.33662	0.36032	0.39884	0.47187
	Mantari et al. [87]	≠0	0.27892	0.29833	0.31905	0.34119	0.37755	0.44614
	Mantari et al. [23]	= 0	0.22185	0.23784	0.25484	0.27288	0.30236	0.35485
	TPT Zenkour [10]	≠0	0.29353	0.31439	0.33662	0.36032	0.39884	0.47187
	HPT Zenkour [10]	= 0	0.31327	0.33607	0.36030	0.38604	0.42764	0.50573
4	3-D [10]	≠0	0.30084	0.31727	0.33486	0.35368	0.38435	0.44257
	Présente	≠0	0.29743	0.31864	0.34124	0.36533	0.40446	0.47857
	Mantari et al. [87]	≠0	0.28335	0.30317	0.32431	0.34690	0.38394	0.45373
	Mantari et al. [23]	= 0	0.22715	0.24354	0.26096	0.27945	0.30968	0.36337
	TPT Zenkour [10]	≠0	0.29743	0.31864	0.34124	0.36533	0.40446	0.47857
	HPT Zenkour [10]	= 0	0.31543	0.33842	0.36285	0.38878	0.43072	0.50943
3	3-D [10]	≠0	0.30808	0.32525	0.34362	0.36329	0.39534	0.45619
	Présente	≠ 0	0.30421	0.32606	0.34933	0.37410	0.41432	0.49035
	Mantari et al. [87]	≠0	0.29122	0.31177	0.33369	0.35707	0.39537	0.46732
	Mantari et al. [23]	= 0	0.23675	0.25387	0.27206	0.29138	0.32297	0.37881
	TPT Zenkour [10]	≠0	0.30421	0.32606	0.34933	0.37410	0.41432	0.49035
	HPT Zenkour [10]	= 0	0.31890	0.34220	0.36695	0.39323	0.43572	0.51545
2	3-D [10]	≠0	0.31998	0.33849	0.35833	0.37956	0.41417	0.47989
	Présente	≠ 0	0.31463	0.33758	0.36200	0.38796	0.43003	0.50925
	Mantari et al. [87]	≠0	0.30422	0.32613	0.34945	0.37427	0.41483	0.49052
	Mantari et al. [23]	= 0	0.25385	0.27231	0.29193	0.31276	0.34690	0.40636
	TPT Zenkour [10]	≠0	0.31463	0.33758	0.36200	0.38796	0.43003	0.50925
	HPT Zenkour [10]	= 0	0.32223	0.34592	0.37109	0.39782	0.44102	0.52203
1	3-D [10]	≠0	0.31032	0.32923	0.34953	0.37127	0.40675	0.47405
	Présente	≠0	0.29554	0.31811	0.34208	0.36750	0.40851	0.48508
	Mantari et al. [87]	≠0	0.29244	0.31468	0.33826	0.36325	0.40405	0.47848
	Mantari et al. [23]	= 0	0.25215	0.27100	0.29102	0.31227	0.34773	0.40347
	TPT Zenkour [10]	≠0	0.29554	0.31811	0.34208	0.36750	0.40851	0.48508
	HPT Zenkour [10]	= 0	0.28882	0.31072	0.33398	0.35866	0.39852	0.47305

Table IV.4: Contraintes normales axiales adimensionnelles $\overline{\sigma}_{y}(a/2, b/2, h/2)$ pour différentes plaques E-FGM simplement appuyées sous une charge sinusoïdale. a/h = 2

Les résultats de la contrainte normale axiale (dans le plan) $\overline{\sigma}_{y}(a/2,b/2,h/2)$ pour les plaques E-FGM carrées et rectangulaires $a/h=\{2,4\}$, sont présentés dans les tableaux IV.4 et IV.5, respectivement. De même, les résultats sont comparés avec la solution d'élasticité 3D et diverses théories HSDT générés par les autres chercheurs. Il est observé que les résultats

obtenus sont encore plus proches dans de nombreux cas, c'est-dire pour les différentes rapports géométriques, ce qui confirme à nouveau l'efficacité et la précision du modèle trigonométrique quasi-3D HSDT proposé. Néanmoins, les valeurs des contraintes normales $(\overline{\sigma_y})$ augmentent avec l'augmentation du paramètre (p) et la diminution du rapport (b/a).

Table IV.5: Contraintes normales axiales adimensionnelles $\overline{\sigma}_{y}(a/2, b/2, h/2)$ pour

différentes plaques E-FGM simplement appuyées sous une charge sinusoïdale. a / h = 4

h/a	Théories				1	Р					
D/a	Theories	\mathcal{E}_{z}	0.1	0.3	0.5	0.7	1.0	1.5			
6	3-D [10]	≠0	0.21814	0.23211	0.24699	0.26284	0.28857	0.33725			
	Présente	≠0	0.23686	0.25204	0.26830	0.28574	0.31441	0.36990			
	Mantari et al. [87]	≠0	0.21265	0.22547	0.23934	0.2544	0.27953	0.32937			
	Mantari et al. [23]	= 0	0.20097	0.21493	0.22976	0.24553	0.27105	0.31917			
	TPT Zenkour [10]	≠0	0.23686	0.25204	0.26830	0.28574	0.31441	0.36990			
	HPT Zenkour [10]	= 0	0.28170	0.30133	0.32219	0.34435	0.38024	0.44786			
5	3-D [10]	≠0	0.22060	0.23476	0.24984	0.26591	0.29199	0.34133			
	Présente	≠0	0.23912	0.25450	0.27097	0.28863	0.31764	0.37371			
	Mantari et al. [87]	≠0	0.21524	0.2283	0.24241	0.25772	0.28323	0.33373			
	Mantari et al. [23]	= 0	0.20366	0.21781	0.23285	0.24883	0.27470	0.32346			
	TPT Zenkour [12]	≠0	0.23912	0.25450	0.27097	0.28863	0.31764	0.37371			
	HPT Zenkour [10]	= 0	0.28261	0.30231	0.32323	0.34547	0.38148	0.44934			
4	3-D [10]	≠0	0.22470	0.23918	0.25460	0.27103	0.29770	0.34816			
	Présente	≠0	0.24286	0.25858	0.27539	0.29342	0.32299	0.38004			
	Mantari et al. [87]	≠0	0.21957	0.23302	0.24754	0.26327	0.28943	0.34105			
	Mantari et al. [23]	= 0	0.20818	0.22264	0.23802	0.25435	0.28081	0.33066			
	TPT Zenkour [10]	≠0	0.24286	0.25858	0.27539	0.29342	0.32299	0.38004			
	HPT Zenkour [10]	= 0	0.28399	0.30379	0.32483	0.34719	0.38338	0.45159			
3	3-D [10]	≠0	0.23188	0.24692	0.26295	0.28002	0.30775	0.36021			
	Présente	≠0	0.24931	0.26563	0.28307	0.30174	0.33230	0.39106			
	Mantari et al. [87]	≠0	0.22721	0.24137	0.25663	0.27312	0.30044	0.35404			
	Mantari et al. [23]	= 0	0.21619	0.23122	0.24720	0.26417	0.29166	0.34346			
	TPT Zenkour [10]	≠0	0.24931	0.26563	0.28307	0.30174	0.33230	0.39106			
	HPT Zenkour [10]	= 0	0.28588	0.30583	0.32702	0.34954	0.38601	0.45471			
2	3-D [10]	≠0	0.24314	0.25913	0.27618	0.29434	0.32385	0.37968			
	Présente	≠0	0.25878	0.27609	0.29456	0.31428	0.34644	0.40788			
	Mantari et al. [87]	≠0	0.23953	0.25497	0.27154	0.28936	0.3187	0.37562			
	Mantari et al. [23]	= 0	0.22943	0.24542	0.26240	0.28045	0.30967	0.36473			
	TPT Zenkour [10]	≠0	0.25878	0.27609	0.29456	0.31428	0.34644	0.40788			
	HPT Zenkour [10]	= 0	0.28539	0.30534	0.32655	0.34908	0.38556	0.45428			
1	3-D [10]	≠0	0.22472	0.23995	0.25621	0.27356	0.30177	0.35885			
	Présente	≠0	0.23457	0.25783	0.26842	0.28698	0.31706	0.37386			
	Mantari et al. [87]	≠0	0.22372	0.23907	0.25544	0.27291	0.30137	0.35555			
	Mantari et al. [23]	= 0	0.21636	0.23157	0.24774	0.26492	0.29273	0.34508			
	TPT Zenkour [10]	≠0	0.23457	0.25098	0.26842	0.28698	0.31706	0.37386			
	HPT Zenkour [10]	= 0	0.24080	0.25783	0.27593	0.29515	0.32627	0.38482			

h/a	Théories	C				Р			
D/U	Theories	o_{z}	0.1	0.3	0.5	0.7	1.0	1.5	2.0
6	Présente	≠0	0.6271	0.6707	0.7170	0.7661	0.8452	0.9935	1.1651
	Mantari et al. [87]	≠0	0.6014	0.6426	0.6864	0.7329	0.8084	0.9510	1.1177
	Mantari et al. [23]	= 0	0.6029	0.6443	0.6882	0.7350	0.8107	0.9536	1.1204
	TPT Mantari et al. [87]	≠0	0.6271	0.6707	0.7170	0.7661	0.8452	0.9935	1.1651
5	Présente	≠0	0.6149	0.6577	0.7031	07512	0.8287	0.9741	1.1424
	Mantari et al. [87]	≠0	0.5895	0.6299	0.6727	0.7184	0.7923	0.9321	1.0955
	Mantari et al. [23]	= 0	0.5910	0.6315	0.6746	0.7205	0.7947	0.9347	1.0982
	TPT Mantari et al. [87]	≠0	0.6149	0.6577	0.7031	0.7512	0.8287	0.9741	1.1424
4	Présente	≠0	0.5935	0.6348	0.6785	0.7249	0.7998	0.9401	1.1025
	Mantari et al. [87]	≠0	0.5686	0.6075	0.6488	0.6928	0.7641	0.8989	1.0566
	Mantari et al. [23]	= 0	0.5700	0.6092	0.6508	0.6950	0.7666	0.9016	1.0594
	TPT Mantari et al. [87]	≠0	0.5935	0.6348	0.6785	0.7249	0.7998	0.9401	1.1025
3	Présente	≠0	0.5514	0.5896	0.6302	0.6733	0.7427	0.8730	1.0240
	Mantari et al. [87]	≠0	0.5275	0.5635	0.6018	0.6425	0.7085	0.8335	0.9800
	Mantari et al. [23]	= 0	0.5288	0.5651	0.6037	0.6447	0.7112	0.8365	0.9828
	TPT Mantari et al. [87]	≠0	0.5514	0.5896	0.6302	0.6733	0.7427	0.8730	1.0240
2	Présente	≠0	0.4552	0.4867	0.5200	0.5554	0.6126	0.7201	0.8449
	Mantari et al. [87]	≠0	0.4340	0.4634	0.4947	0.5280	0.5822	0.6849	0.8056
	Mantari et al. [23]	= 0	0.4350	0.4649	0.4966	0.5303	0.5850	0.6881	0.8085
	TPT Mantari et al. [87]	≠0	0.4552	0.4867	0.5200	0.5554	0.6126	0.7201	0.8449
1	Présente	≠0	0.2196	0.2345	0.2503	0.2671	0.2944	0.3460	0.4065
	Mantari et al. [87]	≠0	0.2063	0.2199	0.2344	0.2499	0.2753	0.3240	0.3819
	Mantari et al. [23]	= 0	0.2062	0.2204	0.2355	0.2515	0.2774	0.3264	0.3835
	TPT Mantari et al. [87]	≠0	0.2196	0.2345	0.2503	0.2671	0.2944	0.3460	0.4065

Table IV.6: Contraintes normales axiales adimensionnelles $\overline{\sigma}_x (a/2, b/2, h/2)$ pour différentes plaques E-FGM simplement appuyées sous une charge sinusoïdale. a / h = 10

Les tableaux IV.6 et IV.7 présentent les résultats de calculs des contraintes normales dans le plan, $\overline{\sigma}_x$ et $\overline{\sigma}_y$ en (a/2, b/2, h/2), pour les plaques E-FGM moyennement épaisses soumises à une charge sinusoïdale avec un rapport d'élancement (a/h = 10), pour les différentes valeurs du paramètre matériel (p) et du rapport (b/a). L'examination des résultats obtenus montrent un bon accord par rapport aux autres théories HSDTs. Par conséquent, la théorie proposée (avec seulement cinq variables) donne des résultats comparables à ceux déterminés avec des théories d'ordre élevé quasi-3D [87] avec six variables. On peut démonter aussi l'influence du paramètre matériel (p) et du rapport géométrique (b/a) sur la variation des contraintes normales $\overline{\sigma_x}, \overline{\sigma_y}$, en effet d'après le tableau IV.6 on peut remarquer que $\overline{\sigma_x}$ augmente à la fois avec l'augmentation du paramètre (p) et l'augmentation du rapport (b/a). Cependant, elles augmentent à la fois avec l'augmentation du paramètre (p) et avec la diminution du rapport (b/a), voir le tableau IV.7.

Table IV.7: Contraintes normales axiales adimensionnelles $\overline{\sigma}_{y}(a/2, b/2, h/2)$ pour

différentes pla	aues E-FGM	simplement an	puvées sous une	charge sinusoïdale	a / h = 10
uniterentes pie	Iques L I Om	simplement up	puyces sous une	onui ge sinusoiduie	$\cdot u / n - 10$

h/a	Théories	c	p						
D/u	Theories	G _Z	0.1	0.3	0.5	0.7	1.0	1.5	2.0
6	Présente	≠0	0.2223	0.2360	0.2507	0.2665	0.2926	0.3435	0.4054
	Mantari et al. [87]	≠0	0.1954	0.2065	0.2185	0.2317	0.2540	0.2988	0.3552
	Mantari et al. [23]	= 0	0.1960	0.2094	0.2237	0.2389	0.2635	0.3100	0.3642
	TPT Mantari et al. [87]	≠0	0.2223	0.2360	0.2507	0.2665	0.2926	0.3435	0.4054
5	Présente	≠0	0.2245	0.2385	0.2534	0.2694	0.2958	0.3473	0.4098
	Mantari et al. [87]	≠0	0.1980	0.2093	0.2216	0.2350	0.2577	0.3031	0.3602
	Mantari et al. [23]	= 0	0.1985	0.2122	0.2267	0.2421	0.2670	0.3140	0.3690
	TPT Mantari et al. [87]	≠0	0.2245	0.2385	0.2534	0.2694	0.2958	0.3473	0.4098
4	Présente	≠0	0.2283	0.2425	0.2578	0.2742	0.3012	0.3535	0.4170
	Mantari et al. [87]	≠0	0.2023	0.2140	0.2267	0.2406	0.2638	0.3104	0.3686
	Mantari et al. [23]	= 0	0.2028	0.2168	0.2316	0.2473	0.2728	0.3208	0.3770
	TPT Mantari et al. [87]	≠0	0.2283	0.2425	0.2578	0.2742	0.3012	0.3535	0.4170
3	Présente	≠0	0.2347	0.2495	0.2654	0.2825	0.3104	0.3645	0.4296
	Mantari et al. [87]	≠0	0.2099	0.2224	0.2358	0.2504	0.2748	0.3233	0.3835
	Mantari et al. [23]	= 0	0.2104	0.2248	0.2402	0.2565	0.2829	0.3328	0.3910
	TPT Mantari et al. [87]	≠0	0.2347	0.2495	0.2654	0.2825	0.3104	0.3645	0.4296
2	Présente	≠0	0.2441	0.2599	0.2768	0.2949	0.3244	0.3810	0.4486
	Mantari et al. [87]	≠0	0.2223	0.2360	0.2507	0.2666	0.2930	0.3447	0.4079
	Mantari et al. [23]	= 0	0.2225	0.2378	0.2541	0.2713	0.2993	0.3521	0.4137
	TPT Mantari et al. [87]	≠0	0.2441	0.2599	0.2768	0.2949	0.3244	0.3810	0.4486
1	Présente	≠0	0.2196	0.2345	0.2503	0.2671	0.2944	0.3460	0.4065
	Mantari et al. [87]	≠0	0.2063	0.2199	0.2344	0.2499	0.2753	0.3240	0.3819
	Mantari et al. [23]	= 0	0.2062	0.2204	0.2355	0.2515	0.2774	0.3264	0.3835
	TPT Mantari et al. [87]	≠0	0.2196	0.2345	0.2503	0.2671	0.2944	0.3460	0.4065

La figure IV.2 montre la distribution des contraintes normales dans le plan $\overline{\sigma}_x$ en (a/2, b/2, h/2) à travers l'épaisseur des plaques E-FGM épaisses pour les trois configurations $b/a = \{1, 2, 4\}$, ainsi pour le paramètre p = 0.5 et le rapport a/h = 4. En général, les résultats numériques de la présente théorie raffinée HSDT quasi-3D sont en excellent accord avec ceux rapportés par d'autres théories de déformation du cisaillement, (TPT de Zenkour [10] et HSDT quasi-3D de Mantari et al. [87]). Une conclusion similaire peut être déduite pour la distribution des autres contraintes normales dans le plan $\overline{\sigma}_y$, non illustrées dans le présent travail pour des raisons de simplicité et le même principe de calcul.

La figure IV.3 montre la distribution des contraintes de cisaillement dans le plan $\overline{\tau}_{xy}(0,0,z)$ à travers l'épaisseur des plaques E-FGM épaisses pour les différents valeurs du rapport géométrique $b/a = \{1, 2, 4\}$, pour p = 0.5 et a/h = 4. Les résultats des trois théories HSDT quasi-3D sont presque les mêmes, ce qui peut s'expliquer par le fait que La contrainte de cisaillement plane, $\overline{\tau}_{xy}(0,0,z)$ dépend uniquement des déplacements dans le plan u(x, y, z) et v(x, y, z), et ils sont bien modélisés par ces théories de déformation en cisaillement qui tient en considération l'effet d'étirement de l'épaisseur, même lorsqu'ils ont des fonctions de forme de déformation de cisaillement différentes. Des résultats identiques sont obtenus si le champ de déplacement est modélisé sans l'inclusion de l'effet d'étirement (voir Mantari *et al.* [23]).

Figure IV.2: Distribution des contraintes normales axiales adimensionnelles $\overline{\sigma}_x (a/2, b/2, z)$ à travers l'épaisseur des plaques E-FGM simplement appuyées sous une charge sinusoïdale. (a / h = 4, p = 5).

Figure IV.3: Distribution des contraintes de cisaillement dans le plan $\overline{\tau}_{xy}(0,0,z)$ à travers l'épaisseur des plaques E-FGM simplement appuyées sous une charge sinusoïdale.

(a / h = 4, p = 5).

Les figures IV.4 et IV.5 montrent la distribution des contraintes de cisaillement transversal $\overline{\tau}_{xz}(0, b/2, z)$ et $\overline{\tau}_{yz}(a/2, 0, z)$ à travers l'épaisseur des plaques E-FGM épaisses pour les différentes configurations $b/a = \{1, 2, 4\}$, le paramètre (p=0.5) et le rapport (a/h = 4), respectivement. Les résultats du présent modèle HSDT quasi-3D sont comparés aux solutions obtenus par la théorie de déformation en cisaillement trigonométrique d'ordre élevé TPT fournis par Zenkour [10] et la nouvelle théorie HSDT quasi-3D à six variables développée par Mantari *et al.* [87]. Un excellent accord est observé entre les différents résultats, en particulier entre la présente théorie et le modèle TPT quasi-3D fournis par Zenkour [10]. En effet, on fait rappel que la théorie proposée est basée sur l'approche quasi-3D avec seulement cinq variables inconnus. Cette comparaison prouve la précision de la théorie considérée et par conséquent elle peut être utilisée avec succès pour les analyses structurelles des plaques en matériaux composites avancés.

Figure IV.4: Distribution des contraintes de cisaillement transversal $\overline{\tau}_{xz}$ (0, *b* / 2, *z*) à travers l'épaisseur des plaques E-FGM simplement appuyées sous une charge sinusoïdale. (*a* / *h* = 4, *p* = 5).

0,5 0,4 B.B.B. 0,3 id Con 0,2 b/a 0,1 b/a=3 0,0 'n b/a tage and a start of the second start of the se , aaad -0,1 , ppd b/a=1 -0,2 -0,3 Mantari et al. [87] TPT Zenkour [10] -0,4 Présente -0.5 0,05 0,10 0,20 0,25 0,00 0,15

Figure IV.5: Distribution des contraintes de cisaillement transversal $\overline{\tau}_{yz}$ (*a* / 2,0,*z*) à travers l'épaisseur des plaques E-FGM simplement appuyées sous une charge sinusoïdale. (*a* / *h* = 4, *p* = 5).

Afin de prouver la validité de la théorie proposée à cinq variables, des autres comparaisons concernant la contrainte de cisaillement transversale $\overline{\tau}_{xz}$ (0, *b* / 2,0) pour les plaques E-FGM moyennement épaisses (*a/h*= 10) soumise à une charge sinusoïdale sont présentés dans le tableau IV.8. On peut conclure que les résultats présentent un excellent accord avec les autres théories pour les différentes formes géométriques. D'autre part ce tableau indique que la valeur de cette contrainte décroît à la fois avec l'augmentation du paramètre matériel (*p*) et avec la diminution du rapport (*b/a*). Les résultats fournis dans les tableaux IV.1 à IV.8 peuvent être utilisés comme résultats de référence dans les futurs travaux.

Table IV.8: Contraintes de cisaillement transversale adimensionnelles $\overline{\tau}_{xz}$ (0, *b* / 2, 0) pour différentes plaques E-FGM simplement appuyées sous une charge sinusoïdale. *a* / *h* = 10

b/a	Théories	c					р		
D/U	Theories	<i>G</i> _Z	0.1	0.3	0.5	0.7	1.0	1.5	2.0
6	Présente	≠0	0.4776	0.4769	0.4753	0.4730	0.4681	0.4564	0.4405
	Mantari et al. [87]	≠0	0.4634	0.4626	0.4610	0.4586	0.4536	0.4416	0.4253
	Mantari et al. [23]	= 0	0.4633	0.4625	0.4609	0.4585	0.4536	0.4415	0.4252
	TPT Mantari et al. [87]	≠0	0.4776	0.4769	0.4753	0.4730	0.4681	0.4564	0.4405
5	Présente	≠0	0.4720	0.4713	0.4697	0.4674	0.4626	0.4510	0.4353
	Mantari et al. [87]	≠0	0.4579	0.4571	0.4556	0.4532	0.4483	0.4364	0.4203
	Mantari et al. [23]	= 0	0.4579	0.4571	0.4555	0.4531	0.4482	0.4363	0.4202
	TPT Mantari et al. [87]	≠0	0.4720	0.4713	0.4697	0.4674	0.4626	0.4510	0.4353
4	Présente	≠ 0	0.4620	0.4613	0.4598	0.4575	0.4528	0.4415	0.4261
	Mantari et al. [87]	≠0	0.4482	0.4475	0.4459	0.4436	0.4388	0.4271	0.4114
	Mantari et al. [23]	= 0	0.4482	0.4474	0.4458	0.4435	0.4387	0.4271	0.4113
	TPT Mantari et al. [87]	≠0	0.4620	0.4613	0.4598	0.4575	0.4528	0.4415	0.4261
3	Présente	≠0	0.4418	0.4411	0.4396	0.4375	0.4330	0.4221	0.4074
	Mantari et al. [87]	≠0	0.4286	0.4279	0.4264	0.4242	0.4196	0.4084	0.3934
	Mantari et al. [23]	= 0	0.4285	0.4278	0.4263	0.4241	0.4195	0.4084	0.3933
	TPT Mantari et al. [87]	≠0	0.4418	0.4411	0.4396	0.4375	0.4330	0.4221	0.4074
2	Présente	≠ 0	0.3927	0.3721	0.3908	0.3889	0.3849	0.3752	0.3621
	Mantari et al. [87]	≠0	0.3810	0.3803	0.3790	0.3770	0.3730	0.3630	0.3497
	Mantari et al. [23]	= 0	0.3809	0.3803	0.3789	0.3770	0.3729	0.3630	0.3496
	TPT Mantari et al. [87]	≠0	0.3927	0.3921	0.3908	0.3889	0.3849	0.3752	0.3621
1	Présente	≠ 0	0.2454	0.2450	0.2442	0.2430	0.2405	0.2344	0.2263
	Mantari et al. [87]	≠0	0.2380	0.2376	0.2368	0.2356	0.2330	0.2268	0.2185
	Mantari et al. [23]	= 0	0.2380	0.2376	0.2368	0.2356	0.2330	0.2268	0.2184
	TPT Mantari et al. [87]	≠0	0.2454	0.2450	0.2442	0.2430	0.2405	0.2344	0.2263

IV.4. Conclusion

Dans ce chapitre, nous avons validé le présent modèle HSDT quasi-3D qui tient en considération l'effet d'étirement de l'épaisseur avec une variation trigonométrique des composantes du champ de déplacement employé, par la présentation des résultats numériques de la flexion des plaques en matériaux composites avancés (E-FGM), simplement appuyées et sous condition de chargement sinusoïdale. En conclusion on peut dire que la théorie proposée est non seulement précise, mais fournit également une approche élégante et facile à réaliser vue que le nombre de variables impliqué dans les équations de mouvement. Cette approche est très utile pour modéliser le comportement statique et dynamique des plaques en matériaux composites avancés (FGM), même pour les autres structures, tels que les poutres et les coques avec diverses conditions de chargement.