LISTE DES FIGURES ET DES TABLEAUX

LISTE DES FIGURES

Figure	1.2	Déformabilité –Ductilité –Facteur de Ductilité (Bertero (1988) ;Kassoul	
		(2015))	6
Figure	1.3	Ductilité et fragilité (Gioncuet Mazzolani (2002) ; Sebai(2012))	7
Figure	1.4	Comportement « ductile et fragile » (Sebai (2012))	8
Figure	1.5	Relation entre les différents types de ductilité (Amr et	
		Luigi (2008) ;Sebai (2012))	13
Figure	1.6	Classes de ductilité des éléments (Gioncu et Mazzolani	
		(2002) ;Mazzolani et Piluso (1993))	14
Figure	2.1	Diagrammes moment-courbure (M- ϕ) de Pecce et Fabbrocino (1999)	23
Figure	2.2	Diagrammes moment-courbure (M- ϕ) de Debernardi et Taliano(2002)	26
Figure	3.1	Confinement du béton	30
Figure	3.2	Pression latérale (Paultre et Légéron (2008))	31
Figure	3.3	Comparaison entre le comportement d'un béton confiné et non confiné	
		(Paultre (2011))	32
Figure	3.4	Modèles contrainte-déformation de Kent et Park 1971 et Kent et Park	
		Modifié	33
Figure	3.5	Modèle contrainte-déformation de Sheikh et Uzumeri (1982)	35
Figure	3.6	Modèle contrainte-déformation de Mander et al. (1988)	37
Figure	3.7	Modèle contrainte-déformation de Cusson et Paultre 1995	38
Figure	3.8	Modèle contrainte-déformation de Attard et Setunge 1996	40
Figure	3.9	Modèle contrainte-déformation de l'Eurocode 2(EN 1992, 2004)	43
Figure	4.1	Déformation d'une poutre fléchie en béton armé (Park et Paulay, 1975)	47
Figure	4.2	Diagramme moment – courbure pour les poutres en béton armé	
		(idéalisation bilinéaire et trilinéaires du diagramme) (M- ϕ)	
		(Park et Paulay, 1975)	48
Figure	4.3	Section confinée.	49
Figure	4.4	Comportement d'une section fléchie à l'état élastique	50
Figure	4.5	Comportement d'une section fléchie à l'état ultime	52
Figure	4.6	Diagramme "contrainte – déformation" des aciers du béton armé d'après	
		l'Eurocode 2(EN 1992, 2004)	54

Figure	4.7	Résultats de la méthode proposée	56
Figure	5.1	Détails de la poutre étudiée.	58
Figure	5.2	Effet de la résistance du béton sur la ductilité locale	61
Figure	5.3	Effet de la résistance du béton sur la ductilité locale (Lee 2013b)	62
Figure	5.4	Effet de la limite élastique des armatures longitudinales	63
Figure	5.5	Effet de la limite élastique des armatures longitudinales d'autres	
		Chercheurs	64
Figure	5.6	Effet du taux d'armatures tendues	65
Figure	5.7	Effet du taux d'armatures tendues d'autres chercheurs	66
Figure	5.8	Effet du taux d'armatures comprimées	67
Figure	5.9	Effet de la limite élastique des armatures transversales	70
Figure	5.10	Effet du diamètre des armatures transversales	72
Figure	5.11	Effet de l'espacement des armatures transversales	74
Figure	5.12	Zone confinée sous l'effet de l'espacement des armatures	
		transversales	75
Figure	5.13	Effet du nombre des armatures tendues	79
Figure	5.14	Effet du nombre des armatures comprimées	80
Figure	5.15	Zone confinée sous l'effet du nombre des armatures longitudinales	81
Figure	5.16	Effet de la disposition des armatures longitudinales	84
Figure	5.17	Zone confinée sous l'effet de la disposition des armatures	
		longitudinales	85
Figure	5.18	Effet de l'ajout des épingles et des étriers	87
Figure	5.19	Zone confinée sous l'effet de l'ajout des épingles et des étriers	88

LISTE DES TABLEAUX

1.1	Différents types de la ductilité (Park (1989) ; Gioncu (2000))	10
1.2	Paramètres influençant la ductilité globale (Gioncu (2000))	11
1.3	Paramètres influençant la ductilité locale (Gioncu (2000))	12
2.1	Détail des poutres étudiées Pecce et Fabbrocino (1999)	23
2.2	Détail des poutres étudiées Lin et Lee (2001)	24
2.3	Détail des poutres étudiées Debernardi et Taliano (2002)	25
2.4	Détail des poutres étudiées Rashid et Mansur (2005)	27
2.5	Détail des poutres étudiéesSrikanth et al. (2007)	28
4.1	Comparaison entre la méthode proposée et les résultats expérimentaux.	55
5.1	Effet de la résistance du béton (f_{yk} = 400 MPa, $\rho = 1$ % et $\rho' / \rho = 0.5$)	61
5.2	Effet de la limite élastique des armatures longitudinales ($f_{ck} = 40$ et 90	
	MPa, $\rho = 1$ % et $\rho' / \rho = 0.5$).	63
5.3	Effet du taux d'armatures tendues ($f_{ck} = 40, 90 \text{ MPa}, f_{yk} = 400 \text{ MPa}$	
	et $\rho'/\rho = 0.5$).	65
5.4	Résultats des essais (Pam et al. 2001a et Mohammad et al. 2013)	66
5.5	Effet du taux d'armatures comprimées ($f_{ck} = 40$ et 90 MPa, $f_{yk} = 400$	
	MPa et $\rho = 1\%$).	67
5.6	Résultats des essais (Maghsoudi et Bengar2006et Maghsoudi et	
	Sharifi 2009)	68
5.7	Effet de la limite élastique des armatures transversales ($f_{ck} = 40$ et	
	90MPa, f_{yk} = 400 MPa, $\rho = 1$ % et $\rho' / \rho = 0.5$)	69
5.8	Effet du diamètre des cadres ($f_{ck} = 40$ et 90 MPa, $f_{yk} = 400$ MPa,	
	$\rho=1$ % et $\rho^{\prime}/\rho=0.5).$	71
5.9	Effet de l'espacement (f_{ck} = 40 et 90 MPa, f_{yk} = 400 MPa, $\rho = 1$ %	
	et $\rho'/\rho = 0.5$).	73
5.10	Effet de nombre des armatures (f_{ck} = 40 MPa, f_{yk} = 400 MPa, ρ = 1 %	
	et $\rho'/\rho = 0.5$).	77
5.11	Effet de nombre des armatures (f_{ck} = 90 MPa, f_{yk} = 400 MPa, ρ = 1 %	
	et $\rho' / \rho = 0.5$)	78
5.12	Effet de la disposition des armatures ($f_{ck} = 40 \text{ MPa}, f_{yk} = 400 \text{ MPa},$	
	ρ =1 % et ρ'/ρ = 0.5).	82
	1.1 1.2 1.3 2.1 2.2 2.3 2.4 2.5 4.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12	 Différents types de la ductilité (Park (1989) ; Gioncu (2000))

Tableau	5.13	Effet de la disposition des armatures (f_{ck} = 90 MPa, f_{yk} =400 MPa,	
		ρ =1 % et ρ^{\prime}/ρ = 0.5).	83
Tableau	5.14	Effet de l'ajout des épingles et des étriers ($f_{ck} = 40$ et 90 MPa,	
		$f_{yk} = 400 \text{ MPa}, \rho = 1 \% \text{ et } \rho'/\rho = 0.5). \qquad \dots $	86