Liste des figures

Chapitre I:

Figure I.1: Exemples de désordres causés par le phénomène de liquéfaction
Figure I.2: Essais de compression drainée sur un mélange sable-argileux (Arab 2008)18
Figure I.3: Courbes de contrainte-déformation (a), Courbes pression d'eau-déformation (b)19
Figure I.4: Courbes de contrainte-déformation (a), Courbes pression d'eau-déformation (b)19
Figure I.5: Contrainte-déformation (a), Pression de l'eau-déformation (b)19
Figure I.6: Effet de la teneur en fine (Bayat et al. 2014)
Figure I.7: Influence de l'indice de plasticité sur la résistance à la liquéfaction20
Figure I.8: Influence de l'indice de plasticité sur la résistance à la liquéfaction (Puri
1984) 21
Figure I.9: Contrainte de cisaillement en fonction de la contrainte normale pour le mélange sable-
argile
Figure I.10: Influence de la teneur en argile sur l'angle de frottement et la cohésion (Dafalla
2013)
Figure I.11: Influence de la teneur en fines sur la réponse drainée du mélange sable-limon23
Figure I.12: Influence de la teneur en fines sur la réponse drainée du mélange sable-limon ($\sigma'_3 =$
100kPa, D _r = 12%) (Belkhatir et al. 2010) 24
Figure I.13: Influence de la teneur en fines sur la réponse drainée du mélange sable-limon ($\sigma'_3 =$
100 kPa, $D_r = 50\%$) (Belkhatir et al. 2010) 24
Figure I.14: Influence de la teneur en fines sur la réponse drainée des mélanges sable-limon ($\sigma'_3 =$
100 kPa, $D_r = 90\%$) (Belkhatir et al. 2010) 24
Figure I.15: Influence de la teneur des fines sur la réponse non drainée d'un mélange sable-limon
$(\sigma'_3 = 100 \text{kPa}) (\text{Arab } 2008).$
Figure I.16: Influence de la teneur des fines sur la réponse non drainée d'un mélange sable-limon
$(\sigma'_3 = 50 \text{kPa})$ (Arab 2008) 26
Figure I.17: Influence de la teneur des fines sur la réponse non drainée d'un mélange sable-limon
$(\sigma'_3 = 20 \text{kPa}) \text{ (Arab 2008)}27$
Figure I.18: Influence de la teneur en fines sur le comportement non drainé des mélanges sable
limon ($\sigma'_3 = 100$ kPa, D _r = 12%) (Belkhatir et al 2010) 28
Figure I.19: Influence de la teneur en fines sur le comportement non drainé des mélanges sable-
limon ($\sigma'_3 = 100$ kPa, D _r = 50%) (Belkhatir et al 2010) 28

Chapitre II:

Figure II.1: Diagramme schématique des valeurs limites de la teneur en fines (Lade, 2012)34
Figure II.2: Comportement de transition type des sols granuleux de similaire au sable au similaire à
l'argile (Boulanger et Idriss, 2006)35
Figure II.3: Vue d'ensemble du rôle des fines à la susceptibilité de liquéfaction des sols
Figure II.4: Classification de tissu de grain dans les sols de la matrice de sable (Thevanayagam et
Martin, 2002)
Figure II.5: Susceptibilité à la liquéfaction en fonction de la plasticité des fines (Guo et Prakash,
2000) 39
Figure II.6: Variation de l'indice des vides durant la consolidation en fonction de la teneur en fines
(Pitman et Roberston 1994)
Figure II.7: Variation de l'indice des vides en fonction de la teneur en fines (Lade et yamamuro,
1998) 43
Figure II.8: Variation de l'indice des vides minimal et maximal pour les sables de Nevada 50/80 et
80/200 en fonction de la teneur en fines. (Lade te Yamamuro, 1998)44
Figure II.9: Résistance à la liquéfaction en fonction de la teneur en fines préparé à indice des vides
du squelette constant des sables de Monterrey (a) et Yatesville (b) (Polito et Martin, 2001)45
Figure II.10: Variation de la résistance à la liquéfaction avec l'indice des vides du squelette pour le
sable de Monterrey (a) et de Yatesville (b) (Polito et martin, 2001)46
Figure II.11: Comportement non drainé de deux sables de Nevada 50/200 avec 20% de teneur en
fines montrant le revirement extrême de liquéfaction statique à la liquéfaction temporaire
(Yamamuro et Covert, 2001)
Figure II.12: Influence de l'indice de plasticité sur la résistance à la liquéfaction (Sandoval 1989;

Prakash et Snadoval, 1992)4	7
Figure II.13: Influence de l'indice de plasticité sur la résistance à la liquéfaction (Puri 1984)4	8
Figure II.14: Variation de la résistance à la liquéfaction en fonction de l'indice de plastici	té
(Tianqiang et Prakash, 1999)4	8

Chapitre III:

Figure II.1: Photo du sable d'Oued Chlef	50
Figure III.2: Echantillon du kaolin utilisé	50
Figure III.3: Exemple d'un mélange sable-kaolin	51
Figure III.4: Matériel utilisé dans l'analyse granulométrique	
Figure III.5: Série des tamis utilisés dans l'analyse granulométrique	
Figure III.6: Courbe granulométrique sable propre d'Oued Chlef	54
Figure III.7: Courbe granulométrique du kaolin	56
Figure III.8: Courbes granulométriques du mélange sable de Chlef-kaolin	57
Figure III.9: Appareil de Casagrande et outil à rainure	59
Figure III.10: Système d'évaluation du diamètre du rouleau de sol	60
Figure III.11: Mise en place de l'échantillon dans la coupelle	60
Figure III.11: Schéma d'une rainure	61
Figure III.12: Essai au pycnomètre	63
Figure III.13: Une balance électronique	63
Figure III.15: Variation de l'indice des vides maximal et minimal en fonction de	e la teneur en
Kaolin	65
Figure III.16: Variation de l'indice des vides en fonction de la teneur en Kaolin	66
Figure III.17: Variation de la densité sèche en fonction de la teneur en Kaolin	66
Figure III.18: Variation de la densité sèche maximale et minimale en fonction de	e la teneur en
Kaolin	67
Figure III.19: Boîte de cisaillement carrée de Casagrande	68
Figure III.20: Schéma de disposition	68
Figure III.21: Plan de la contrainte normale et tangentielle	69
Figure III.22: Détermination de C et φ	69
-	

Chapitre IV:

Figure IV.1: Résultats des essais de cisaillement direct sur le sable propre ($F_c = 0\%$)	71
Figure IV.2: Résultats des essais de cisaillement direct du mélange sable-kaolin ($F_c = 5\%$)	72