Liste des figures

Chapitre I

Figure I.1: Essai de liquéfaction statique	15
Figure I.2: Courbe de résistance à la liquéfaction pour différents sables	16
Figure I.3: Effet de la densité relative sur la résistance à la liquéfaction	17
Figure I.4: Influence de la densité relative sur la réponse non drainée du sable	17
Figure I.5: Influence de la densité relative sur le potentiel de liquéfaction du sable d'Oued F	Rass18
Figure I.6: Influence de la teneur des fines sur le comportement non drainé d'un mélang	e Sable-
limon	19
Figure I.7 : Effet de la teneur en fines sur la résistance à la liquéfaction (Dr = 50%)	19
Figure I.8: Fuseau granulométrique des sables liquéfiables	20
Figure I.9: Influence de l'indice de plasticité sur la résistance à la liquéfaction	21
Figure I.10: Influence de l'indice de plasticité sur la résistance à la liquéfaction	21
Figure I.11: Influence de la surconsolidation sur la liquéfaction d'un sable argileux	22
Figure I.12: Réponse drainée du sable propre d'Oued Chlef (Confinement =100kPa, e = 0.6	94)23
Figure I.13: Réponse drainée mélange à 40% fines (Confinement =100kPa, e = 0.605)	23
Figure I.14: Influence de la contrainte de confinement sur le potentiel de liquéfaction des sa	bles24
Figure I.15: Effet des fines et du confinement sur la résistance à la liquéfaction	24
Figure I.16: Influence de la saturation sur la résistance au cisaillement cyclique	
Figure I.17: Influence du coefficient de Skempton B (Degré de saturation) sur la ré	sistance
cyclique	26
Figure I.18: Influence du précisaillement initial sur la résistance à la liquéfaction	27
Figure I.19 : Influence du mode de préparation sur le potentiel de liquéfaction d'un sable	28
Figure I.20: Influence de la méthode de déposition sur le déviateur maximal	
Figure I.21: Influence de la méthode de déposition sur le déviateur au pic	29
Figure I.22: Influence de la méthode de déposition des échantillons sur la résistance résidue	lle30
Figure I.23: Influence du rapport Ko sur la résistance à la liquéfaction des sols	31

Chapitre II

Figure II.1: Limites et domaine de validité des techniques d'amélioration des sols	33
Figure II.2: Atelier de compactage dynamique et impacts de la masse (Document Keller)	34
Figure II.3: Etapes du vibrocompactage des sables et graviers (Document Keller)	35

Figure II.4: Installation des drains
Figure II.5: Eléctro-osmose
Figure II.6: Traitement par congélation à Nice d'une zone sous chaussée traversée en tunnel et à
Vienne sous bâtiment pour tunnel de métro
Figure II.8: Chantier de traitement du sol au ciment
Figure II.7: Variation de la résistance à la compression en fonction du pourcentage en ciment à
différentes durées de cure
Figure II.9: Chantier de traitement d'un sol à la chaux40
Figure II.10: Evolution des R _c de boues de clapage: Mélange de ciment et de Fumées de silice
(CSF)41
Figure II.11: Evolution de R _c de boues de clapage selon différents dosages en fumées de silice: 0,
5, 10 et 20%
Figure II.12: Variation du gonflement en fonction du temps ($f = 0.25\%$)43
Figure II.13: Les types de polypropylène44
Figure II.14: Principe de la méthode46
Figure II.15: Différentes dispositions du renforcement horizontal dans le matelas de transfert de
charge47

Chapitre III

Figure III.1: Courbes contrainte-déplacement pour un sol renforcé par des fibres à partir des essais
de cisaillement direct ($l/d = 100$)
Figure III.2: Variation de la contrainte de cisaillement avec déplacement horizontal pour limon
sableux renforcé et non renforcé obtenu à partir de tests de CU à une contrainte normale de: a.
50kPa, b. 100kPa, c. 200 kPa
Figure III.3: Valeurs de CBR pour sol renforcées à différentes teneurs en fibres53
Figure III.4: Effet de la teneur en fibres sur la résistance à la compression non confiné54
Figure III.5: Courbe des réponses des effets principaux de résistance en compression non confinée
(7 Jours)
Figure III.6: Courbe des réponses des effets principaux de résistance en compression non confinée
(14 jours)
Figure III.7: Courbe des réponses des effets principaux de résistance en compression non confinée
(28 jours)
Figure III.8: Variation de la limite de liquidité et de plasticité en fonction du pourcentage de
ciment

Figure III.9: Variation de l'indice de plasticité en fonction du pourcentage de ciment56
Figure III.10: Effet du ciment sur les caractéristiques de cisaillement
a. Variation de l'angle de frottement interne, b. Variation de cohésion
Figure III.11: Variation de la cohésion non drainée eu fonction de la période de cure
Figure III.12: Relation entre les paramètres de résistance au cisaillement et la teneur en fibres58
Figure III.13: Evolution de la résistance à la compression en fonction du dosage de ciment pour les
différents périodes de cure
Figure III.14: Effets de la chaux sur les limites de consistance60
Figure III.15: Variation de la contrainte de cisaillement avec la contrainte normale du sol gris pour
différentes périodes de cure La variation des paramètres de cisaillement de sols traités est
représentée sur la figure (3.16)
Figure III.16: Variation des paramètres de cisaillement du sol gris avec la durée de cure62
Figure III.17: Variation de la résistance à la compression en fonction de la durée de cure et le
pourcentage en chaux additionné
Figure III.18 : Variation des limites d'Atterberg pour les mélanges à t = 064
Figure III.19: Variation des caractéristiques de cisaillement65
Figure III.20: Variation des paramètres de résistance au cisaillement

Chapitre IV

Figure IV.1: Sable naturel d'Oued Chlef	.67
Figure IV.2: Microphotographie du sable de Chlef	.68
Figure IV.3: Matériel utilisé dans l'analyse granulométrique	69
Figure IV.4: Série des tamis utilisés dans l'analyse granulométrique	.69
Figure IV.5: Courbe granulométrique du sable naturel d'Oued Chlef	71
Figure IV.6: Essai au pycnomètre	73
Figure IV.7: Vue des poudrettes en caoutchouc	76
Figure IV.7: Courbe granulométrique de la poudrette	76
Figure IV.8: Boîte de cisaillement utilisée	77

Chapitre V

Figure V.1: Comportement du sable de Chlef non renforcé à l'état lâche	80
Figure V.2: Comportement du sable de Chlef renforcé par 0.5% de poudrettes à l'état lâche	81
Figure V.3: Comportement du sable de Chlef renforcé par 1% de poudrettes à l'état lâche	82
Figure V.4: Comportement du sable de Chlef renforcé par 1.5% de poudrettes à l'état lâche	82

Figure V.5: Comportement du sable de Chlef renforcé par 2% de poudrettes à l'état lâche
Figure V.6: Comportement du sable de Chlef non renforcé à l'état dense
Figure V.7: Comportement du sable de Chlef renforcé par 0.5% de poudrettes à l'état dense84
Figure V.8: Comportement du sable de Chlef renforcé par 1% de poudrettes à l'état dense85
Figure V.9: Comportement du sable de Chlef renforcé par 1.5% de poudrettes à l'état dense86
Figure V.10: Comportement du sable de Chlef renforcé par 2% de poudrettes à l'état dense86
Figure V.11: Variation de la contrainte tangentielle maximale (τ_{max}) en fonction du pourcentage des
poudrettes des échantillons lâches ($D_r = 10\%$) ($\sigma_n = 100$, 200 et 300
kPa)
Figure V.12 : Variation de la contrainte tangentielle maximale (τ_{max}) en fonction du pourcentage des
poudrettes des échantillons denses ($D_r = 80\%$) ($\sigma_n = 100$, 200 et 300 kPa)88
Figure V.13: Variation de la contrainte tangentielle maximale (τ_{max}) en fonction de la densité
initiale et du pourcentage des poudrettes ($\sigma_n = 100$, 200 et 300 kPa)
Figure V.14: Effet des poudrettes sur la résistance au cisaillement du sol lâche ($D_r = 10\%$)90
Figure V.15: Effet des poudrettes sur la résistance au cisaillement du sol dense (D_r =
80%)91
Figure V.16: Effet du pourcentage des ajouts: Droites de Coulomb de type ($\tau = \sigma_n tg\phi + C$) pour
des échantillons lâches
Figure V.17: Effet du pourcentage des ajouts: Droites de Coulomb de type ($\tau = \sigma_n tg\phi + C$) pour
des échantillons
denses
Figure V.18: Evolution de la cohésion C du sol avec le pourcentage de poudrettes93
Figure V.19: Evolution de l'angle de frottement interne ϕ du sol avec le pourcentage de
poudrette