Liste des figures

Figure 1.1: Déformation réversible et irréversible
Figure 1.2: Courbe intrinsèque de Caquot
Figure 1.3: Droite intrinsèque de Caquot
Figure 1.4: Droite de Coulomb regroupe les points de rupture
Figure 1.5: Composants d'un appareil triaxial
Figure 1.6: Composants de la boite de cisaillement21
Figure 1.7: Phénomène de dilatance $\tau = \sigma' \tan \phi$
Figure 1.8: Courbe intrinsèque du squelette du sol à long terme « essai CD »
Figure 1.9: Courbe intrinsèque du squelette du sol à court terme «essai UU»
Figure 1.10: Effet de la densité relative sur la résistance à la liquéfaction (Tatsuoka et al.
1986)
Figure 1.11: Influence de la densité relative sur la réponse non drainée du sable (Della et al.
2011)25
Figure 1.12: Influence de la densité relative sur le potentiel de liquéfaction du sable de Rass: (a)
Courbe de potentiel de liquéfaction, (b) Résistance à la liquéfaction (Arab et al.
2010)
Figure 1.13: Influence de la teneur des fines sur le comportement non drainé d'un mélange sable-
limon (Arab, 2009)
Figure 1.14: Effet de la teneur en fines sur la résistance à la liquéfaction, $D_r = 50\%$ (Amini et Sama
1999)
Figure 1.15: Fuseau granulométrique des sables liquéfiables (Alain Pecker, 1984)28
Figure 1.16: Influence de la contrainte de confinement sur le potentiel de liquéfaction des sables
(Vaid et Sivathayalan, 1995)
Figure1.17: Effet des fines et du confinement sur la résistance à la liquéfaction (Bouckovalas et al.
2002)
Figure 1. 18: Influence de la saturation sur la résistance au cisaillement cyclique (Martin et al.
1978)
Figure 1.19: Influence du coefficient de Skempton B (Degré de saturation)sur la résistance cyclique
(Arab et al. 2012)

Figure 1.20: Influence du mode de préparation sur le potentiel de liquéfaction d'un sable (Mulli	is
et al. 1977)	52
Figure1.21: Influence de la méthode de déposition sur le déviateur maximal (Della et a	ıl.
2009)	33
Figure 1.22: Influence de la méthode de déposition sur le déviateur au pic (Della et a	al.
2009)	33
Figure 1.23: Influence de la méthode de déposition des échantillons sur la résistance résiduelle. (a)
Pluviation à sec, (b) Placement humide (Della et al. 2010)	4

Figure 2.1: Diagramme schématique des valeurs limites de la teneur en fines (Lade, 2012)37
Figure 2.2: Comportement de transition type des sols granuleux de similaire au sable ou similaire à
l'argile (Boulanger et Idriss, 2006)
Figure 2.3: Vue d'ensemble du rôle des fines à la susceptibilité de liquéfaction des sols
Figure 2.4: Classification de tissu de grain dans les sols de la matrice de sable (Thevanayagam et
Martin, 2002)
Figure 2.5: Susceptibilité à la liquéfaction en fonction de la plasticité des fines (Guo et Prakash,
2000)
Figure 2.6: Variation de l'indice des vides durant la consolidation en fonction de la teneur en fines
(Pitman et Roberston 1994)45
Figure 2.7: Variation de l'indice des vides en fonction de la teneur en fines (Lade et yamamuro,
1998)
Figure 2.8: Variation de l'indice des vides minimal et maximal pour les sables de Nevada 50/80 et
80/200 en fonction de la teneur en fines. (Lade te Yamamuro, 1998)47
Figure 2.9: Résistance à la liquéfaction en fonction de la teneur en fines préparé à indice des vides
du squelette constant des sables de Monterrey (a) Yatesville (b) (Polito et Martin,
2001)
Figure 2.10: Variation de la résistance à la liquéfaction avec l'indice des vides du squelette pour le
sable de Monterrey (a) et de Yatesville (b) (Polito et martin, 2001)49
Figure 2.11: Comportement non drainé de deux sables de Nevada 50/200 avec 20% de teneur en
fines montrant le revirement extrême de liquéfaction statique à la liquéfaction temporaire
(Yamamuro et Covert 2001)
Figure 2.12: Influence de l'indice de plasticité sur la résistance à la liquéfaction (Sandoval 1989;

Prakash et Snadoval, 1992)	.50
Figure 2.13: Influence de l'indice de plasticité sur la résistance à la liquéfaction (Puri 1984)	.51
Figure 2.14: Variation de la résistance à la liquéfaction en fonction de l'indice de plastic	cité
(Tianqiang et Prakash, 1999)	51

Chapitre 3

Figure 3.1: Compactage de surface; matériels utilisés 52	2
Figure 3.2: Chantier d'un compactage dynamique profond (Compactage dynamique à très Haut	e
énergie (4000 t.m) aéroport de Nice (1978)52	3
Figure 3.3: Vibrocompactage (Journée du 14 nombre 2012: Procédés d'amélioration et d	le
renforcement de sols sous actions sismiques)54	4
Figure 3.4: Colonnes ballastés (Journée du 14 nombre 2012 : Procédés d'amélioration et d	e
renforcement de sols sous actions sismiques5	5
Figure 3.5: Influence du renforcement sur la résistance à la liquéfaction (Vercueil et Cordary 1997	')
	6
Figure 3.6: Influence d'épaisseurs de couches de sable sur le déviateur (σ_{3c} = 110 kPa	a,
renforcement avec du géotextile tissé, Vercueil et al. 1997)57	7
Figure 3.7: Influence de la teneur de fibres sur la résistance à la liquéfaction (Unnikrishnan et a	1.
2002)	3
Figure 3.8: Evolution de la résistance du sable renforcé par des déférentes formes de polyeste	er
(Madhavi et al. 2006)	3
Figure 3.9: Amélioration par congélation (Sotraisol fondations)	9
Figure 3.10: Technique de jet-Groutitng (Journée du 14 nombre 2012: Procédés d'amélioration e	et
de renforcement de sols sous actions sismiques)60)
Figure 3.11: Inclusion rigide et inclusion souple (Journée du 14 nombre 2012: Procédé	s
d'amélioration et de renforcement de sols sous actions sismiques	1
Figure 3.12: Traitement à la chaux (Projet Lhoist-Chan1er Pilote)	3
Figure 3.13: Chantier de traitement du sol au ciment 64	4

Figure 4.1: Photo du sable propre d'Oued Chlef	67
Figure 4.2: Limon de Chlef	
Figure 4.3: Limon de Sidi Amer	68

Figure 4.4: Matériel utilisé dans l'analyse granulométrique
Figure 4.5: Série des tamis utilisés dans l'analyse granulométrique
Figure 4.6: Courbe granulométrique du sable de Chlef71
Figure 4.7: Essai au pycnomètre
Figure 4.8: Courbes granulométriques du limon de Chlef et de Sidi Amer74
Figure.4.9: Courbe granulométrique de sable Chlef et limon de Chlef74
Figure.4.10: Courbe granulométrique de sable Chlef et limon de Sidi Ameur75
Figure.4.11: Variation de l'indice des vides maximal et minimal en fonction de la teneur en fines:
(a) Sable-limon de Chlef, (b) Sable-limon de Sidi Ameur
Figure.4.12: Variation des diamètres des grains en fonction de la teneur en fines: (a) Sable-limon
de Chlef, (b) Sable-limon de Sidi Ameur
Figure.4.13: Variation de la densité sèche en fonction de la teneur en fines. (a) Sable-limon de
Chlef, (b) Sable-limon de Sidi Ameur77
Figure.4.14: Variation de la densité des grains solides en fonction de la teneur en fines77
Figure.4.15: Variation de la densité sèche maximale et minimale en fonction de la teneur en
fines.(a) Sable-limon de Chlef, (b) Sable-limon de Sidi Ameur78
Figure 4.16: Photo de la boite de cisaillement de direct du laboratoire de L.T.P.O
(Tiaret)
Figure 4.17: Schéma de disposition

Figure 5.1: Comportement du sable de Chlef non renforcé à l'état lâche: (a) Variation de la
contrainte tangentielle en fonction du déplacement horizontal; (b) Variation de la contrainte
tangentielle maximale en fonction de la contrainte normale
Figure 5.2: Comportement du sable de Chlef renforcé par 5% de fines à l'état lâche: (a) Variation
de la contrainte tangentielle en fonction du déplacement horizontal; (b) Variation de la contrainte
tangentielle maximale en fonction de contrainte normale
Figure 5.3: Comportement du sable de Chlef renforcé par 10% de fines à l'état lâche: (a) Variation
de la contrainte tangentielle en fonction du déplacement horizontal; (b) Variation de la contrainte
tangentielle maximale en fonction de la contrainte normale
Figure 5.4: Comportement du sable de Chlef renforcé par 15% de fines à l'état lâche: (a) Variation
de la contrainte tangentielle en fonction du déplacement horizontal; (b) Variation de la contrainte
tangentielle maximale en fonction de la contrainte normale

Figure 5.5: Comportement du sable de Chlef renforcé par 20% de fines à l'état lâche: (a) Variation
de la contrainte tangentielle en fonction du déplacement horizontal; (b) Variation de la contrainte
tangentielle maximale en fonction de la contrainte normale
Figure 5.6: Comportement du sable de Chlef non renforcé à l'état dense: (a) Variation de la
contrainte tangentielle en fonction du déplacement horizontal; (b) Variation de la contrainte
tangentielle maximale en fonction de la contrainte normale
Figure 5.7: Comportement du sable de Chlef renforcé par 5% de fines à l'état dense: (a) Variation
de la contrainte tangentielle en fonction du déplacement horizontal; (b) Variation de la contrainte
tangentielle maximale en fonction de la contrainte normale90
Figure 5.8: Comportement du sable de Chlef renforcé par 10% de fines à l'état dense: (a) Variation
de la contrainte tangentielle en fonction du déplacement horizontal; (b) Variation de la contrainte
tangentielle maximale en fonction de la contrainte normale90
Figure 5.9: Comportement du sable de Chlef renforcé par 15% de fines à l'état dense: (a) Variation
de la contrainte tangentielle en fonction du déplacement horizontal; (b) Variation de la contrainte
tangentielle maximale en fonction de la contrainte normale90
Figure 5.10: Comportement du sable de Chlef renforcé par 20% de fines à l'état dense: (a)
Variation de la contrainte tangentielle en fonction du déplacement horizontal; (b) Variation de la
contrainte tangentielle maximale en fonction de la contrainte normale
Figure 5.11: Comportement du sable de Chlef non renforcé à l'état lâche: (a) Variation de la
contrainte tangentielle en fonction du déplacement horizontal; (b) Variation de la contrainte
tangentielle maximale en fonction de la contrainte normale92
Figure 5.12: Comportement du sable de Chlef renforcé par 5% de fines à l'état lâche: (a) Variation
de la contrainte tangentielle en fonction du déplacement horizontal; (b) Variation de la contrainte
tangentielle maximale en fonction de la contrainte normale
Figure 5.13: Comportement du sable de Chlef renforcé par 10% de fines à l'état lâche: (a)
Variation de la contrainte tangentielle en fonction du déplacement horizontal; (b) Variation de la
contrainte tangentielle maximale en fonction de la contrainte normale
Figure 5.14: Comportement du sable de Chlef renforcé par 15% de fines à l'état lâche: (a)
Variation de la contrainte tangentielle en fonction du déplacement horizontal; (b) Variation de la
contrainte tangentielle maximale en fonction de la contrainte normale
Figure 5.15: Comportement du sable de Chlef renforcé par 20% de fines à l'état lâche: (a)
Variation de la contrainte tangentielle en fonction du déplacement horizontal; (b) Variation de la
contrainte tangentielle maximale en fonction de la contrainte normale

Figure 5.16: Comportement du sable de Chlef non renforcé à l'état dense (0% de fines): (a)
Variation de la contrainte tangentielle en fonction du déplacement horizontal; (b) Variation de la
contrainte tangentielle maximale en fonction de la contrainte normale
Figure 5.17: Comportement du sable de Chlef renforcé par 5% de fines à l'état dense: (a) Variation
de la contrainte tangentielle en fonction du déplacement horizontal; (b) Variation de la contrainte
tangentielle maximale en fonction de la contrainte normale97
Figure 5.18: Comportement du sable de Chlef renforcé par 10% de fines à l'état dense: (a)
Variation de la contrainte tangentielle en fonction du déplacement horizontal; (b) Variation de la
contrainte tangentielle maximale en fonction de la contrainte normale
Figure 5.19: Comportement du sable de Chlef renforcé par 15% de fines à l'état dense: (a)
Variation de la contrainte tangentielle en fonction du déplacement horizontal; (b) Variation de la
contrainte tangentielle maximale en fonction de la contrainte normale
Figure 5.20: Comportement du sable de Chlef renforcé par 20% de fines à l'état dense: (a)
Variation de la contrainte tangentielle en fonction du déplacement horizontal; (b) Variation de la
contrainte tangentielle maximale en fonction de la contrainte normale
Figure 5.21: Effet du pourcentage de fines de Chlef sur le comportement des échantillons lâches:
(a) $\sigma_n = 100 \text{ kPa}$, (b) $\sigma_n = 200 \text{ kPa}$, (c) $\sigma_n = 300 \text{ kPa}$
Figure 5.22: Effet du pourcentage de fines de Sidi Ameur sur le comportement échantillons lâches:
(a). $\sigma_n = 100 \text{kPa}$; (b). $\sigma_n = 200 \text{kPa}$; (c). $\sigma_n = 300 \text{kPa}$
Figure 5.23: Effet du pourcentage des fines de Chlef sur comportement des échantillons denses: (a)
$\sigma_n = 100 \text{kPa};$ (b) $\sigma_n = 200 \text{kPa};$ (c) $\sigma_n = 300 \text{kPa}.$ 102
Figure 5.24: Effet du pourcentage de fines de Sidi Ameur sur comportement des échantillons
denses: (a) $\sigma_n = 100$ kPa; (b) $\sigma_n = 200$ kPa; (c) $\sigma_n = 300$ kPa103
Figure 5.25: Effet du pourcentage des fines de Chlef: Droites de Coulomb de type: ($\tau = \sigma_n . tg\phi + C$)
pour des échantillons lâches104
Figure 5.26: Effet du pourcentage des fines de Chlef: Droites de Coulomb de type: ($\tau = \sigma_n tg\phi + C$)
pour des échantillons denses
Figure 5.27: Effet du pourcentage des fines de Sidi Ameur: Droites de Coulomb de type: (τ =
$\sigma_n tg\phi + C$) pour des échantillons lâches
Figure 5.28: Effet du pourcentage des fines de Sidi Ameur: Droites de Coulomb de type: (τ =
$\sigma_n tg\phi + C$) pour des échantillons denses
Figure 5.29: Variation de la résistance maximale en fonction du pourcentage des fines de Chlef: (a)
Etat lâche ($D_r = 15\%$), (b) Etat dense ($D_r = 85\%$)

Figure 5.30: Variation de la résistance maximale en fonction du pourcentage des fines de Sidi
Ameur: (a) Etat lâche ($D_r = 15\%$), (b) Etat dense ($D_r = 85\%$)106
Figure 5.31: Evolution des caractéristiques mécanique des mélanges sable-limon de Chlef:
(a) Variation de l'angle de frottement ¢; (b) Variation de la cohésion C107
Figure 5.32: Evolution des caractéristiques mécanique des mélanges sable-limon de Sidi Ameur:
(a) Variation de l'angle de frottement ϕ ; (b) Variation de la cohésion C107
Figure 5.33: Effet du pourcentage des fines de Sidi Ameur: Droites de Coulomb de type ($\tau = \sigma_n$.tg ϕ
+ C) pour des échantillons denses
Figure 5.34: Effet du pourcentage des fines de Sidi Ameur: Droites de Coulomb de type ($\tau = \sigma_n$.tg ϕ
+ C) pour des échantillons denses
Figure 5.35: Comparaison entre les deux fines (limon de Chlef et Sidi Ameur) à l'état lâche
Figure 5.36: Comparaison entre les deux fines (limon de Chlef et Sidi Ameur) à l'état
lâche