Chapitre 5

Analyse du comportement statique des poutres en matériaux à gradients de propriétés

V.1 Introduction :

Les matériaux à gradient de propriétés (FGM) sont des matériaux constitués de deux ou plusieurs ingrédients de matières dont les fractions de volume relatif et la microstructure sont conçues pour avoir un processus continu de variation spatiale. Des progrès marquants dans la fabrication et des techniques de traitement au cours de la dernière décennie ont permis de produire des FGM en utilisant des procédés qui permettent une grande latitude dans l'adaptation de la microstructure et la composition des matériaux [Kassas 2010].

Dans ce chapitre on fait l'analyse des contraintes et de flèche par les théories classiques, Timoshenko et les théories d'ordre élevé sous l'effet de différents paramètres qu'influent au comportement des poutres en matériaux à gradients de propriétés.

- Afin de savoir le modèle le plus performant on fait une comparaison des résultats obtenus par les théories hyperbolique, sinusoïdale, trigonométrique.

V.2. Analyse statique des poutres en matériaux à gradients de propriété :

Model	Theory	Functions
СТ	Classical Theory	$\psi(z) = 0$
ASTB	Analytical Solution for Timoshenko Beams	$\psi(z) = z$
SSDBT	New Trigonometric Shear Deformation Theory	$\psi(z) = \frac{h}{\pi} \sin\left(\pi \frac{z}{h}\right)$
ESDT	Exponential Shear Deformation Theory	$\psi(z) = z e^{-2(\frac{z}{h})^2}$
NHPSDT	New Hyperbolic Shear Deformation Theory	$\psi(z) = \left[1 + \frac{3\pi}{2}\operatorname{sec} h^2(\frac{1}{2})\right] - \frac{3\pi}{2}h tanh(\frac{z}{h})$
TSDT	REDDY	$\psi(z) = z(1 - \frac{4}{3}\frac{z^2}{h^2})$

V.3 La flexion des poutres en matériaux a gradients de propriétés Poutre:

On examine la flèche au centre d'une poutre homogène et isotrope (K=0), avec la variation de rapport h/l et la fixation de module de Young de matériaux utilisées Em=Ec=1.

Tableau	5.2 :	Center	de	flexion	des	poutres	homogènes	et isotrope	(k=0,	Em=Ec=E=1)
---------	--------------	--------	----	---------	-----	---------	-----------	-------------	-------	-----------	---

	THEORIES							
h/l	СТ	ASTB	SSDBT	ESDT	TSDT	NHPSDT		
0.01	-112.1045	-112.1308	-112.1360	-112.1144	-112.1361	-112.1361		
0.05	-112.1045	-112.7631	-112.8936	-1123531	-112.8947	-112.8941		
0.1	-112.1045	-114.7388	-115.2598	-113.0976	-115.2646	-115.2622		

V.4 Analyse et comparaison des résultats des contraintes :

-on analyse la distribution des contraintes normales et tangentielles sur la hauteur de la poutre

Dans un matériau homogène et isotrope (k=0) et on utilise le module de Young Em=Ec=1 Avec la variation de rapport h/l. Les calcules des contraintes normales sont fait au milieu de la poutre σ_x (l/2, z)

Et les contraintes tangentielles sont fait aux extrémités aux sont max $\tau_{xz}(0, -z)$

Les résultats obtenus sont affiché dans le tableau suivant :

Tableau 5.3: Analyse et Comparaison de distribution des contraintes normales ettangentielles (Em=Ec=E=1; k=0)

h/l	Z	$\sigma_x(l/2, z)$					$ au_{xz}(0, -z)$				
		SSDBT	ESDT	TSDT	NHPSDT	ASTB	SSDBT	ESDT	TSDT	NHPSD	ASTB
										Т	
	0.005	61.5137	61.0776	61.4919	61.5076	61.2617	-49.2704	-49.2704	-47.7415	-48.8438	-31.8309
	0.004	49.2110	48.8924	49.1935	49.2061	49.0093	-49.2726	-49.2726	-47.7432	-48.8458	-31.8309
	0.003	36.9082	36.7071	36.8951	36.9046	36.7570	-49.2743	-49.2743	-47.7446	-48.8474	-31.8309
0.01	0.002	24.6055	24.5217	24.5967	24.6030	24.5046	-49.2755	-49.2755	-47.7455	-48.8486	-31.8309
	0.001	12.3027	12.3361	12.2983	12.3015	12.2523	-49.2762	-49.2762	-47.7461	-48.8493	-31.8309
	0.000	0	0	0	0	0	-49.2765	-49.2765	-47.7463	-48.8495	-31.8309
	0.05	6.9511	6.1657	6.9291	6.9453	6.6785	-4.8649	-4.8669	-4.7253	-4.8260	-3.1830
	0.04	5.5617	4.9607	5.5448	5.5570	5.3414	-4.8867	-4.8867	-4.7424	-4.8465	-3.1830
	0.03	4.1718	3.7566	4.1587	4.1682	4.0061	-4.9037	-4.9037	-4.7558	-4.8625	-3.1830
0.10	0.02	2.7814	2.5535	2.7727	2.7790	2.6707	-4.9159	-4.9159	-4.7654	-4.8739	-3.1830
	0.01	1.3907	1.3514	1.3864	1.3895	1.3353	-4.9232	-4.9232	-4.7711	-4.8807	-3.1830
	0.00	0	0	0	0	0	-4.9256	-4.9256	-4.7730	-4.8830	-3.1830

dans l'analyse ci-dessus on varie le volume fractionnel k et on examine la flèche et les
Contrainte normale et tangentielles Pour 1/h=10 les résultats sont affiché dans le tableau suivant :

K	Theory	W	σ_{x}	τ_{xz}
	СТ	-0.2950	60.7927	0
	ASTB	-0.3019	66.7685	-2.2507
0	SSDBT	-0.3033	67.0521	-4.9256
0	ESDT	-0.3032	66.8927	-5.0784
ceramique	TSDT	-0.3033	66.9834	-3.3750
	NHPSDT	-0.3033	67.0059	-4.8830
	СТ	-0.5918	149.9727	0
	ASTB	-0.6035	160.0653	-2.2507
1	SSDBT	-0.6058	160.5443	-4.9256
	ESDT	-0.6058	160.2810	-5.0784
	TSDT	-0.6059	160.4282	-3.3750
	NHPSDT	-0.6059	160.4663	-4.8830
	СТ	-0.7584	202.8928	0
2	ASTB	-0.7736	215.9937	-1.9153
	SSDBT	-0.7778	217.5888	-4.5321
	ESDT	-0.7778	217.3238	-4.6918
	TSDT	-0.7778	217.4804	-3.0922
	NHPSDT	-0.7778	217.5182	-4.4874
	СТ	-0.8333	225.8662	0
	ASTB	-0.8512	241.2616	-1.6594
3	SSDBT	-0.8575	244.2848	-4.5321
	ESDT	-0.8576	244.1074	-4.3833
	TSDT	-0.8574	244.2281	-2.8629
	NHPSDT	-0.8574	244.2527	-4.1682
	СТ	-0.8969	240.8891	0
	ASTB	-0.9185	259.5534	-1.4741
5	SSDBT	-0.9283	264.8792	-4.0357
	ESDT	-0.9285	264.8106	-4.2120
	TSDT	-0.9281	264.8792	-2.7302
	NHPSDT	-0.9283	264.8839	-3.9860
	СТ	-0.9846	251.4519	0
	ASTB	-1.0115	274.5807	-1.6116
10	SSDBT	-1.0235	281.237	-4.3988
	ESDT	-1.0223	280.8883	-4.5670
	TSDT	-1.0232	281.1222	-2.9905
	NHPSDT	-1.0225	280.7728	-4.4237

Tableau 5.4: L'effet de volume fractionnel à la flexion et les contrainte normal et tangentielle (L/h=10).

Le tableau V.5 : présente une comparaison des résultats dans les différentes modèles (hyperbolique, sinusoïdale, Reddy)

Tableau V.5: Comparaison des résultats de déplacement normal et de contraintes (normale ettangentielles) k=0.

l/h	Theory	W (mm)	$\sigma_{\rm x}$	$ au_{xz}$
	NHPSD1	-0.3468	13.2324	-1.9492
	SSDBT	-0.3467	13.2526	-1.9659
4	Reddy	-0.3468	13.2222	-1.9058
	NHPSD1	-0.3033	67.0059	-4.8830
10	SSDBT	-0.3033	67.7591	-4.9256
	Reddy	-0.3033	66.9834	-3.3750
		0.0050	252 0001	0.5400
	NHPSDI	-0.2970	253.8881	-9.7689
20	SSDBT	-0.2970	253.9787	-9.8543
	Reddy	-0.2970	253.8445	-9.5484
	NHPSD1	-0.2950	6126.0102	-48.8495
100	SSDBT	-0.2970	6126.4599	-49.2765
	Reddy	-0.2950	6125.7976	-47.7463

2-comparaison des résultats :

1-la flèche : le tableau suivant présente la variation de la flèche en fonction de k pour différentes valeurs de l/h (4, 10,20)

l/h=4,l/h=10,l/h=20 (REDDY)

Les tableaux suivants présentant la variation de la flèche en fonction de l/h pour différentes valeurs de K

FigureV.4: la variation de la flèche en fonction de l/h pour diffirentes valeurs de k (SSDBT)

Les deux tableaux suivants présentent la variation de la flèche en fonction d'Em/Ec par l'utilisation De deux modèles (SSDBT, NHPSDT).

La distribution de la contrainte normale :

La distribution des contraintes normales en fonctions de z/h pour (l/h=5,l/h=10) par l'utilisation des différentes modèles.

FigureV.8:La variation de la contrainte normale en fonction de z/h pour (l/h=5;l/h=10) REDDY

FigureV.9:La variation de la contrainte normale en fonction de z/h pour (l/h=5,l/h=10) NHSDT k=2

La distribution des contraintes normales en fonctions de z/h pour différentes valeurs de k par l'utilisation des différentes modèles.

FigureV.10:La distribution de la contrainte normale en fonction de z/h pour diffirente valeurs de k (reddy)

Figure V.11:La variation de la contrainte normale en fonction de Z/h pour diffirentes valeurs de k (NHSDT)

Figure V.12:La variation de la contrainte normale en fonction de Z/h pour diffirentes valeurs de k (SSDBT)

Les contraintes tangentielles :

La distribution des contraintes tangentielle en fonctions de z/h pour (l/h=5,l/h=10) par l'utilisation des différentes modèles.

FigureV.13:La distribution de la contrainte tangentielle en fonction de z/h (l/h=5,l/h=10) REDDY

FigureV.14:la variation de la contrainte tangentielle en fonction de z/h pour (l/h=5,l/h=10) NHPSDT k=2

de z/h pour (l/h=5,l/h=10) SSDBT k=2

La distribution des contraintes tangentielle en fonctions de z/h pour différentes valeurs de k par l'utilisation des différentes modèles.

Figure V.16:La distribution de la contrainte tnangentielle en fonction de Z/h pour diffirentes valeurs de k (REDDY)

Figure V.17:La variation de la contrainte tnangentielle en fonction de Z/h pour diffirentes valeurs de k (SSDBT)

FigureV.18:La distribution de la contrainte tnangentielle en fonction de Z/h pour diffirentes valeurs de k (NHSDT)

Conclusion:

Afin de décrire le comportement mécanique des poutres en matériaux a gradients de propriétés FGM. Ces poutres sont soumises à la flexion. Notre objectif majeur est d'établir une comparaison entre leur comportement sous l'effet de cisaillement transverse par l'utilisation de différentes modèles II est donc nécessaire, de mettre en évidence des facteurs et des paramètres contribuant à la variation des déformations et des contraintes. Avant de procéder donc à cette étude comparative du comportement d'une poutre FGM travaillant à la flexion.

• la flèche :

- lorsque le module de Young de matériau la flèche sera plus grande.

quand on augment le rapport h/l la poutre doit être mince et la flèche diminue car on a :
W=P_{outre} +C_{isaillement} (C_{isaillement} augmente dans le cas d'une poutre épaisse)
Le modèle le plus performant pour l'évaluation d'une flèche (REDDY)

• La contrainte normale et tangentielle:

-les conditions aux limites sont vérifiées dans tous les modèles dans le cas homogène. Le cas inverse on trouve une déviation de la courbe vers la partie la plus rigide au la contrainte normale n'est pas nulle au centre de la poutre et la tangentielle n'est pas max

-le modèle le plus performant pour les évaluer le modèle de l'équation sinusoïdale SSDBT.