Liste des figures

	Chapitre I : Généralités sur la décharge couronne	
Figure I.1 :	Représentation schématique des quatre états de la matière	3
Figure I.2 :	Domaines d'application des plasmas	4
Figure I.3 :	Différentes configurations de Décharges à Barrières Diélectriques	7
Figure I.4 :	Représentation schématique de la décharge couronne positive	9
Figure I.5 :	Représentation schématique de la décharge couronne négative	9
Figure I.6 :	Configuration d'électrodes pour la génération de décharges couronnes	14
Figure I.7 :	Processus de multiplication électronique initié par un électron germe	15
Figure I.8 :	Décharge de Townsend à courant continu	15
Figure I.9 :	Courant de décharge en fonction de la distance inter électrodes	16
Figure I.10 :	Courbe de Paschen pour différents gaz	19
Figure I.11 :	Mécanisme de type streamer avalanche primaire : création d'une charge	20
	d'espace	
Figure I.12 :	Avalanches secondaires crées par photo-ionisation dans le cas d'un	21
	streamer positif	
Figure I.13 :	Avalanches secondaires crées par photo-ionisation dans le cas d'un	21
	streamer négatif	
Figure I.14 :	Création du streamer et développement jusqu'à la transition à	22
	l'arc	
Figure I.15 :	Caractéristique courant/tension des décharges à pression	23
	atmosphériques	
Figure I.16 :	Utilisation de la décharge couronne pour le paratonnerre	25
Figure I.17 :	Utilisation de la décharge couronne dans le filtre électrostatique	25
Figure I.18 :	Représentation schématique des principales étapes de la destruction des	26
	oxydes toxiques par décharge couronne	

Figure I.19 :	Générateur d'ozone fil/cylindre avec barrières diélectriques	27
Figure I.20 :	Principales étapes intervenant dans le fonctionnement d'un filtre	28
	électrostatique	
	Chapitre II : Modèle mathématique	
Figure II.1 :	Boltzmann-Poisson	33
Figure II.2 :	Schéma bloc d'un modèle hybride	38
	Chapitre III : Résultats de simulation et interprétations	
Figure III.1 :	Géométrie utilisée	42
Figure III.2 :	La variation des densités électronique et ioniques	45
Figure III.3 :	Distribution spatiale de la densité électronique dans l'espace inter-	46
	électrodes à l'instant t=2.63 e ⁻⁵ s	
Figure III.4 :	Variation du potentiel électrique le long de la distance inter-électrodes	47
Figure III.5 :	Variation de la température électronique le long de la distance inter-	48
	électrodes	
Figure III.6 :	Variation du flux d'émission secondaire en fonction du temps	49
Figure III.7 :	Variation du potentiel électrique en fonction du temps	50
Figure III.8 :	Variation de la densité du courant électronique en fonction du temps	51