Liste de figure

chapitre 01	
Figure 1.1 : Exemple d'une Cellule photovoltaïque	17
Figure 1.2 : Mécanisme de conversion lumière-courant par une cellule PV	17
Figure 1.3 : Représentations schématiques du gap direct (a) et du gap indirect (b)	19
Figure 1.4 : Structure et diagramme de bande d'énergie d'une cellule solaire	20
Figure 1.5 : Spectre solaire et la réponse des matériaux CIGS	21
Figure 1.6 : Circuit électrique équivalent d'une cellule solaire	22
Figure 1.7 : Courbe caractéristique I = f (V) d'une cellule	24
Figure 1.8 : Association série des cellules solaires	26
Figure 1.9 : Association parallèle des cellules solaires	26
Figure 1.10: Processus de fabrication des systèmes photovoltaïques	27
Figure 1.11 : Évolution en laboratoire du rendement des cellules photovoltaïques	28
Chapitre 02	
Figure2.1Diagramme de bande d'énergie d'une hétérojonction isotype(a) avant contac	et
(b) après Contact	31
Figure 2.2 : Diagramme de bande d'énergie d'une hétérojonction anisotype (a) avant	contact,
(b) après contact	32
Figure 2.3 : Diagrammes schématiques montrant les différents types d'hétérojonction	33
Figure 2.4 : Jonction PN	33
Figure 2.5 : Evolution de la différence (Nd – Na). a) abrupte et b) graduelle	34
Figure 2.6 : Structure standard d'une cellule à base de CIGS	37
Figure 2.7 : Comparaison des mailles élémentaires des structures cristallines du Si,	
CdTe et CIGS. Structure chalcopyrite d'après	39
Figure 2.8 :a) Diagramme de phase ternaire du système Cu-In-Se à température a	mbiante
b) Diagramme pseudo-binaire des composés intermédiaires Cu2Se et In2Se3. « Ch. »	signifie
chalcopyrite, « Sp. » signifie sphalérite	40
Figure 2.9 : Diagramme de bande d'énergie d'une structure	
ZnO/CdS/CIGS	42
Figure 2.10 : Principaux types de gradients de bande interdite rencontrés dans les cou	iches de
CIGS	43

Chapitre 03

Figure 3.1 : Fenêtre du logiciel SCAPS pour la définition des paramètres d'une cellule46
Figure 3. 2 : Exemple de simulation d'une cellule CIGS dans SCAPS
Figure 3. 3 : Structure de la cellule CIGS à gap graduée
Figure 3. 4 : a) Caractéristique I(V)
b) Rendement quantique
Figure 3.5 : a) Diagramme de bande d'énergie ; b) Densité de courant
Figure 3.6 : Les profiles du gap d'énergie en fonction la position x de la couche P-CIGS:
a) linéaire ; b) Parabolique; c) Exponentiel ; d) Uniforme53
Figure 3.7 : Le profil de la composition Y en fonction de l'énergie du gap ; a)
gradué linéaire ; b) Uniforme ; c) gradué parabolique. d) gradué exponentiel ;56
Figure 3.8 : a) Caractéristique I(V) de la cellule CIGS pour déférents gap gradué ; b)
quantité de charge dans la cellule CIGS pour déférents gap57
Figure 3.9 : Effet du dopage : a) Evolution du courant de court-circuit ; b) le rendement
quantique
Figure 3.11 : Caractéristique (Jsc) de la cellule CIGS pour déférents longer d'onde61
Figure 3.12 : le rendement énergétique de la cellule CIGS pour déférents longer d'onde61
Figure 3.13 : a) Caractéristique I(V) de la cellule CIGS pour déférents température64
b) Quantité de charge dans la cellule CIGS pour déférents température