Figure	Titre	Page
Figure I.01	Elément de constitution d'une machine asynchrone à cage	3
Figure I.02	Vu stator d'une machine asynchrone	4
Figure I.03	Vu rotor d'une machine asynchrone	4
Figure I.04	Vue schématique en perspective du rotor (tôles magnétiques,	
	conductrices d'encoches (barres) et anneaux de court-circuit.	5
Figure I.05	Evolution des statistiques des pannes dans machine asynchrone à	
	cage, a) Thomson 1999, b) Bonnet 2008.	6
Figure I.06	Stator d'un moteur asynchrone complètement grillé	7
Figure I.07	Défaut de court-circuit entre phases	9
Figure I.08	Défaut d'ouverture d'une phase	10
Figure I.09	Différents défauts statoriques de la machine asynchrone	11
Figure I.10	Défauts de rupture des barres	12
Figure I.11	Défauts de rupture d'anneau de court-circuit	13
Figure I.12	Représentation de l'excentricité statique, dynamique et mixte	14
Figure I.13	Roulement à bille	14
Figure II.01	principe de fonctionnement de la machine asynchrone	18
Figure II.02	Représentation du schéma des enroulements de la machine	
	asynchrone triphasée dans l'espace électrique	19
Figure II.03	Représentation spatiale de la transformation triphasée- biphasée	22
Figure II.04	Schéma bloc de la machine asynchrone triphasée alimentée en	
	tension	26
Figure II.05	Schémas de simulation de MAS alimentée par réseau à l'état sain	27
Figure II.06	Résultats de simulation de MAS alimentée par réseau à l'état sain	
	avec l'application d'un couple de charge Cr=30N.m à t=0.5 s	28
Figure II.07	Schémas de simulation de MAS alimentée par le réseau avec un	
	défaut de court-circuit sur la phase 'a'	29
Figure II.08	Résultats de simulation de la MAS avec défauts de court-circuit	
	dans la phase a avec l'application d'un couple de charge	
	Cr=30N.m à t=0.5 s	30
Figure II.09	Modèle de simulation d'inversement de deux phases	
	d'alimentation	31
Figure II.10	Résultats de simulation durant une inversion de deux phases L2 et	

	L3 à t=0.25 s avec l'application d'un couple de charge Cr=30N.m	
	à t=0.5 s	32
Figure III.01	Principe fonction d'appartenance de T (vitesse)={NG,ZE,PP,PG}	35
Figure III.02	L'opérateur 'ET', réalisé par la formulation de minimum	36
Figure III.03	L'opérateur 'OU', réalisé par la formulation de maximum	37
Figure III.04	Forme des fonctions d'appartenance usuelle	37
Figure III.05	Traitement flou (schéma globale)	40
Figure III.06	Schéma générale d'un système flou	40
Figure III.07	Fonction d'appartenance	41
Figure III.08	Schéma de simulation de diagnostique des défauts de MAS par	
	logique floue	43
Figure III.09	Le contrôleur flou proposé	44
Figure III.10	Fuzzification des entrées/sorties	45
Figure III.11	Présentation des règles d'inférence	47
Figure III.12	Exemple de defuzzification en cas de défaut de court-circuit entre	
	deux phases a et b.	47
Figure III.13	Exemple de defuzzification en cas de défaut de court-circuit entre	
	dans phases a et b.	48
Figure III.14	La sortie pour le cas de défaut de court-circuit dans la phase 'a'	48
Figure III.15	La sortie pour le cas de défaut de court-circuit dans la phase 'a' et	
	ʻb'	49