Liste des figures

Chapitre I: État de l'art sur le diagnostic de défaut de la machine asynchrone

Figure I.01: Constitution d'une machine asynchrone	03
Figure I.02: Photo du stator d'une machine asynchrone	04
Figure I.03: le rotor à cage d'une machine asynchrone	05
Figure I.04: Composantes de la surveillance industrielle	06
Figure I.05: Diagramme des différents concepts de maintenance	08
Figure I.06: Répartition des causes des défauts pour une machine asynchrone	09
Figure I.07: Statistiques des pannes	09
Figure I.08: a) Court-circuit entre spires (b) le courant de circulation (c) court-circuit	entre
deux faisceaux	10
Figure I.10 : Schéma descriptif d'une barre et une portion d'anneaux	11
Figure I.11: Rupture d'une et de deux portions d'anneaux	12
Figure I.11: Défauts d'excentricités statique, dynamique et mixte	12
Figure I.12: Différentes défaillances des roulements à billes et leurs dimensions	13
Figure I.13: Méthodes du diagnostic des défauts	15
Figure I.14: Principe de la surveillance par analyse spectrale	16
Figure I.15: Principe des méthodes de classification	17
Figure I.16: Principe de fonctionnement de la méthode du modèle	17

Chapitre II: Modélisation de la MAS à cage en présence de défaut

Figure II.01: Structure électrique du rotor	20
Figure II.02: Inductionmagnétique produite par une maille du rotor	20
Figure II.03: Induction produite par une maille du rotor de la phase statorique	21
Figure II.04: Schéma équivalant des mailles rotoriques	22
Figure II.05: Schéma équivalent de la cage rotorique avec une barre rompue	30
Figure II.06: (a) vitesse de rotation et (b) son zoom sous une charge de 7Nm(g=0.069)	32
Figure II.07:(a) le couple (c) le courant statorique,(b) (d)leurs zooms respective	ment
(e)Analyse spectrale du courant sous une charge de 7Nm(g=0.069)	33
Figure II.08: (a) vitesse de rotation (b) son zoom, sous une charge de 7Nm (g=0.095)	34
Figure II.09:(a) le couple (c) le courant statorique,(b) (d) leurs zooms respective	ment
(e)Analyse spectrale du courant, sous une charge de 7Nm(g=0.095%)	35

Chapitre III : Commande vectorielle par orientation du flux

rotorique

Figure III.01 :Orientation du flux (rotorique, statorique et d'entrefer)	38
Figure III.02: Equivalence entre la commande d'une MCCet la commande vectorielle d'	une
MAS	40
Figure III.03: Régulation de vitesse par la commande vectorielle indirecte (CV-OFRI)	43
Figure III.04: Description du couplage	44
Figure. III.05 : Découplage par addition des termes de compensation	46
Figure. III.06 : Boucle de régulation du courant	47
Figure. III.08 : Boucle définitive de régulation de vitesse	49
Figure III.09: Schéma de simulation	51
Figure III.10: (a) vitesse de rotation (c) le couple électromagnétique,(b) et (d) leurs z	ooms
respectivement sous une charge de 7Nm(g=0.00063),Wmec*=157rad/s	52
Figure III.11: (a) le courant Ids (b) le courant Iqs,(c)et (d)le courant statorique et leur z	zoom
(e) Analyse spectrale du courant sous une charge de 7Nm(g=0.00063)	53
Figure III.12: (a) vitesse de rotation (c) le couple électromagnétique,(b) (d)leursz	ooms
respectivement, sous une charge de 7Nm(g=0.00063),Wmec*=120rad/s	54
Figure III.13: (a) le courant Ids (b) le courant Iqs,(c)et (d)le courant statorique et leur zon	om
(e) Analyse spectrale duc courant sous une charge de $7Nm(g=0.00063)$	55
Figure III.14: (a) vitesse de rotation (c) le couple électromagnétique,(b) (d)leurs zooms	
respectivement sous une charge de 7Nm(g=0.03),machine avec défaut	56
Figure III.15: (a) le courant Ids (b) le courant Iqs,(c)et (d)le courant statorique et leur zon	om
(e) Analyse spectrale duc courant, sous une charge de 7Nm(g=0.03)	57

Chapitre IV : Contrôle par mode glissant

Figure VI.01: Différents modes de trajectoire dans le plan de phase60	
Figure IV.02: Commande équivalente U_{eq}	63
Figure.IV.03 : Définition de la fonctionsign	64
Figure.IV.04 : Démonstration du phénomène de réticence	65
Figure.IV.05 : Fonction sign de la commande avec un seul seuil	66
Figure IV.06: Fonction sign de la commande adoucie	67
Figure.IV.07 : Définition de la fonction intégrale	68
Figure.IV.08: Définition de la fonction Saturation(SAT)	69
FigureIV.09: vitesse de rotation (g=0.01)	72
Figure.IV.10: (a) vitesse de rotation (b) le couple électromagnétique	73
Figure.IV.11 : (a)vitesse mécanique, (b) courantias	73
Figure.IV.12 : courant statoriqueias	74
Figure.IV.13: (a)spectre de courant ias	74
Figure. IV.14: (a)vitesse mecanique,(b)surface de la vitesse	75