
  

The People's Democratic Republic of Algeria 
Ministry of Higher Education and Scientific Research 

University of Ibn Khadloun-Tiaret, 2018 
Faculty of Material sciences 

 
 
 
 
 

  
A Dissertation 

Submitted in Partial Fulfillment of the Requirements for the 
LMD doctorate. 

The Study and modeling of nanoparticles’ interactions 

“ influence of physical, morphological, structural, textural and environment properties” 

applications to nanotechnology and environmental nanotoxicology 

Presented by 
 

DJAFRI YOUCEF 
  

Under the supervision of: 
Dr. TURKI Djamel 

  
 

Members of the jury: 
 

President M. BELARBI El-Habib Professor University of Tiaret 

Examiner 

M. BAGHDAD Rachid Professor University of Tiaret 

M.  YANALLAH Khelifa Professor University of Tiaret 

M. KHARROUBI Mohamed Professor University of Djelfa 

supervisor M. TURKI Djamel MCA University of Tiaret 

 
 

 
 
 

University of Ibn Khaldoun- Tiaret Algeria 
2018/2019 



 

 

 

 

 

 

 

 

 

To all those who made this 
possible  



 

 

 

 

AKNOWLEDGEMENTS 
 

 

I begin by thanking Allah whom have gave me everything, and whom without his 
Tawfik I would never made it. 

 

 

I thank Mr. TURKI Djamel, my supervisor for been patient and supportive 
throughout the years, and for been there in both difficult and clear days. His guidance 
and presence made this work possible in many ways. I also thank Mr. BELARBI Al-
Habib the head of " laboratoir de synthese et catalyse ' for his support and providing 
what was available in order to ease my work. 

I also thank the members of the jury; Mr. BAGHDAD Rachid, Mr. YANALLAH Khelifa 
and Mr. KHARROUBI Mohamed, whom have taken the time and effort to read and 
evaluate my modest work, and for their patience in correcting my inevitable mistakes. 
And I thank everyone who supported me with their discussions, encouragements, or 
even simply listening; friends, loved ones, colleagues and especially family.  

My dearest thanks also goes to Professor Fatah Nouria of “Ecole Nationale 
Supérieure de Chimie de Lille” whom have been of greatest help in the earliest stages 
of this work. And whom have privileged me with the great honour and opportunity to 
have an internship for 2 months in the “'Unité de Catalyse et Chimie du Solide 
(UCCS)”, that which was informative at the highest levels especially when it comes to 
powder technology. 

At last I thank my parents whom bared my problems and mistakes and concerns, and 
whom shown no less than a perfect love and support, they are the reason of my life and 
the key to my success.  



 
 
 
 
 
 
 

Abstract 
 

 
In the current work, dispersion interactions between nanoparticles and the effects 

different parameters (size, Geometry, interparticle distance, retardation and many body 
forces) were investigated. The effect of particles' geometry is studied by comparing three 
basic shapes: cubic, cylindrical and spherical. The results show that effect of geometry is 
significant for interparticle distances less than 20% of particles radius. The retarded van der 
Waals interaction energy is also investigated, and it was shown that this effect is highly 
dependent on particle' size and shape as well as the distance. A modified model is proposed 
for extremally small nanoparticles (R~ 10 nm). We used the coupled dipole method and then 
from the Trace formulism of this model we introduce a new algebraic formula of the 
interaction energy between identical nanoclusters. Furthermore, A novel representation 
using graph theory is also used to represent each mode of interaction derived from the new 
formulism. These graphs were used to derive the formula for m-body interaction energy in 
a form of a series which was proven to be equivalent to the results developed from more 
complicated methods such as perturbation theory in quantum mechanics. We also have 
studied the interaction between two chains of atoms, with two geometrical configurations 
parallel and colinear. When our result is compared to that which was calculated from the 
pairwise summation method, we find that many body interactions have a significant effect 
on the overall interaction.  
 

 

 Keywords: Dispersion interactions; van der Waals forces; many-body forces; Coupled 
Dipole Method; Nanoparticles. 
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INTRODUCTION 

 

One of the most promising aspects of modern material sciences and applied physics 
is that which involves the study of nanosystems that exhibit unique properties and 
surprising interdisciplinary applications. Nanoparticles been a simple nanosized 
material is similarly under the focus of many researchers for various fields, and their 
applications and presence in our daily lives is inevitable, whether as part of the products 
which we use or as hazardous unfortunate biproduct of natural phenomena or 
technological machinery. Therefore, and inspired by these facts, it is highly recognised 
in the scientific community that there is an urging need to study and understand the 
dynamics and interactions between nanoparticles and their environment, that is for the 
aim of better controlling and predicting how these interactions effect their behaviour. 

Thus, the first chapter of this dissertation would be dedicated for setting up a 
prospect on nanoparticles and their different aspects starting from their origins and their 
applications and their toxicological aspects, where we recognise that these aspects are 
all influenced by the interactions which take place between particles themselves and 
between them and the environment. These interactions are defined and classified in the 
end of this chapter. Since the only interaction mode which is considered in our work is 
dispersion or van der Waals forces, the second one is a theoretical study of dispersion 
interaction between molecules thus understanding the origins and different aspects of 
these forces which are the focus of our work. 

The third chapter is a study of these interactions between macroscopic bodies where 
we survey the existing modelling approaches, then use the simplest of those which is 
the pairwise summation approach to study the effect of geometry of particles on the 
intensity of these interactions, and study how the retardation effect is influenced by the 
different geometrical aspects of nano-particulate materials. And in the last chapter we 
start from the coupled dipole method and further continue with simple algebraic 
manipulations in order to develop a model that can help us to study many-body 
interactions individually and we also attempt to propose an innovative coupling 
between this physical model and the concepts of graph theory and develop a 
representation that can be used for both understanding the many-body interactions and 
calculating them, and study the many body forces for an example of linear chains using 
the developed model. And thus, complete this modest work with an intention of creating 
an elegant and meaningful work. We should also emphasise that this work -being a 
simple effort- presents an initiation to the subject on which other researches shall take 
place in the future. 
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CHAPTER 1 

Introduction to nanoparticles and nanoparticulate materials 

“What we have to discover is that there is no safety, 

that seeking is painful, and that when we imagine 

that we have found it, we don’t like it.”  

Alan Wilson Watts, The Wisdom of Insecurity: A 
Message for an Age of Anxiety. 

 

1. Definition of nanomaterials: 

 Nowadays, Nanomaterials is a highly recognized term which is defined by The International 
Organisation for Standardisation as a ‘material with any external dimensions in the nanoscale 
or having internal structure or surface structure in the nanoscale’. The term ‘nanoscale’ is 
defined as the size that ranges approximately from 1 nm to 100 nm (Fig.1.1) [1-3]. And the 
European Commission (EC) in 2011 defined it as “a natural, incidental or manufactured 
material containing particles, in an unbound state or as an aggregate or as an agglomerate and 
where, for 50 % or more of the particles in the number size distribution, one or more external 
dimensions is in the size range 1 nm-100 nm”. Yet since both definitions are either ambiguous 
or too elaborate to some sense, a more precise and concise definition would be as follows 
“Nanomaterials are materials having at least one characteristic length scale in the range 1–100 
nm, and with at least one property is considerably different from that of the bulk counterpart as 
a result of the nanoscale dimensions”, therefore focusing on the importance of the nanosized 
scale on changing some if not all of the material properties[1].  

 

Figure 1.1: The size of nanoparticles compared to biological entities with the definition of the 
range of “nano” and “micro” sizes [6]. 
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Nanomaterials come in different manifestations and types (bionanomaterials, nanostructured 
materials, nanoporous materials…), however if the dimensions of such objects are considered, 
three types are defined [1] : 

• Three-dimensional (3-D) nano-materials with all dimensions less than 100 nm 
are mainly called nano-particles or nano-pores if the object is nanoscaled pores 
embedded in a larger structure.  

• Two-dimensional (2-D) nano-materials where two of its dimensions are less 
than 100 nm (nanorods, nanowires, nanotubes). 

• One-dimensional (1-D) nano-materials that have only one dimension 
(thickness) less than 100 nm (eg. thin films, nanoplates). 

Since the focus of our work is the behaviour of nanoparticles which were defined above, we 
shall embark on a more elaborate survey on the different aspects and manifestations of these 
materials. Additionally, it should be stated clearly that; Although this type of materials is 
considered as a highlight of modern technology and research, yet nanoparticles have been used 
throughout the history back to the ninth century BC in Mesopotamia where they used similar 
materials to obtain the glittering effect on the surface of ceramic vessels [7].  

2. Classification of nanoparticles:  

There are many types of nanoparticles that can be recognized based on different criterions 
(Fig.1.2): 

1. Origin:  even though the term nanoparticles is currently attached mostly for 
nanoscale particles that have anthropogenic origins (synthesized in lab), there are 
many nanoparticles that come naturally from geological, cosmic or weather-
dependent phenomena, which produce fairly considerable amounts of particulate 
materials containing nanoscale particles. These nanosized particles are introduced 
into the ecosystem from volcanic eruptions [8], disintegrating  meteorites  ingoing 
earth’s atmosphere, gathering cosmic dust or particles boosted in the air by air 
currents generated by storms or strong winds [7]. 

2. Chemical composition: Where we recognize three major types: inorganic, 
organic and biological elements. There are also nanoparticles which are 
composed of different materials. moreover, Synthesized nanomaterials (including 
nanoparticles) can also be classified based on their composition into various 
classes including metals, metal oxides, carbon and semiconductors 
nanomaterials [9].  

3. Morphology: Where aspect ratio flatness and sphericity are the major 
characteristics which are considered to classify nanoparticles on the basis of their 
morphological character. They can be classified into two categories: high and low 
aspect ratio particles [9].  

4. Uniformity and agglomeration: Although nanoparticles are intended primarily 
to be dispersed and suspended in a gas or as colloidal particles, yet the chemical  
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and electromagnetic properties of some of these nanomaterials might lead to the formation of 
clusters and agglomerates due to the interaction forces exerted between particles [9-11]. For 
example, magnetic particles tend to form clusters due to their magnetic interaction. This 
characteristic of nanoparticles and particulate materials, in general, urges the study and 
understating of the interaction responsible for their agglomeration. 

3. The difference between bulk and nanoscale material characteristics: 

While bulk materials have size independent and constant physical/chemical properties, 
nanoparticles show a great different behaviour from its bulk counterpart, with properties more 
or less dependent on the size of the same material at the nanoscale [7]. There are two major 
causes behind these dramatic size-dependent changes[12]:  

1. Surface effects: Since the fraction of atoms at the surface of nanoparticles is 
higher when compared to it in bulk materials (Fig.1.3.a), and having a 
significantly larger surface area and higher number of particles per unit mass [7, 
9], for example a carbon microparticle of 60 μm diameter  and with a mass of 0.3 
μg has a surface area of 0.01 mm2, while the same mass of the same material 
consisting of nanoparticles of diameter of the order of 60nm has a surface area of 
11.3 mm2 along with 109 particles. This dramatic increase in contact surface area 
gives nanoparticles an interesting behaviour where we notice an increase in 
contact surface-dependent properties like chemical reactivity, optical, electrical 
and magnetic properties [9]. Moreover, it might lead to radical changes in some 
of these physical and chemical or mechanical characteristics in a way where we 
notice the emergence of new properties that did not exist before [9, 12].Fig.(1.3.b) 
shows the change/decrease of Gold melting temperature at the nanoscale[9].  

 

Figure 1.3 : (b) The variation of surface area per mass plotted in function of particles' 
diameter, (c) the variation of gold melting temperature with respect of particles’ diameter [9]. 

2. Quantum effects: Nanoparticles behave like molecules and atoms where due to 
quantum confinement in materials, they display discontinuous spontaneous 
physical characteristics [7, 9, 12], such as the discrete energy level structure 
noticed in the case nanocrystals in Fig.(1.4). 

a) b) 
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Moreover, It has been established repeatedly and conclusively that materials display 
different physio-chemical properties at the nanoscale then when they are bulk substances, at 
this nano-level, "it is fairly expectable to say that gold is not gold and platinum is not platinum" 
and any material is not what we know is [13, 14].  

Another remarkable example of the unique properties of nanoparticles which are originated 
from the quantum confinement effects is the innovative technology of quantum dots where it is 
remarkably noticed that the electronic behaviour is very similar to single atoms, thus having, 
for example, discrete quantized energy spectrum [9]. Quantum dots also might present the 
property of having a magnetic moment, even in materials that are not magnetic in bulk size, this 
quantum confinement effect also results in the quantification of electrical charge transfer 
(donate or accept) [12], and many other strange properties from the quantum world [13]. 

4. Synthesis methods of nanoparticles: 

Nanoparticles / Nonmaterial's synthesis can be realized using numerous techniques. 
Nonetheless, all those techniques have distinctively two approaches that have been used since 
the ancient times [15]; Top-Down and Bottom-up methods : 

 Although there are many different methods of synthesising nanoparticles, yet all those 
methods have the property of obeying certain conditions that should be present for the technique 
to be efficient. For example, there must be a considerable control of the size, size distribution 
and shape of produced particles also of crystal structure and composition distribution. lower 
impurities must be insured in the structure of synthesized particles. there must also be a careful 
control of the formation of aggregation and agglomerates. And a high mass production, scale-
up without forgetting the economical urge of having lower costs.  

4.1. Top – Down:  

Else know as breakdown method: where a solid is squashed by applying an external 
mechanical force that breaks it down to smaller particles [15]. Generally, mechanical size 
reduction methods such as grinding and milling (Fig.1.5) have been widely employed to 

Figure 1.4 : Evolution of the 
energy level structure from a 
hypothetical diatomic molecule 
to a bulk semiconductor. Where  
��
�� and ��

� indicate the energy 

gaps for a nanocrystal and a bulk 
material, respectively (CB = 
conduction band, VB = valence 
band). Reprinted from Ref.[4]  
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generate nanoparticles. These methods are the traditional approaches to produce fine particles 
and they have been able to generate nanoparticles from minerals such as clay, coal and metals. 
To avoid particle aggregation in the course of the size reduction process, the grinding and 
milling operations are often carried out with colloidal stabilizers [16, 17]. 

 
Figure 1.5: Schematic representation of the direct milling equipment: (a) attritor mill, (b) pan 

mill, and (c) roll mill (the figure is reprinted from [17]). 

4.2. Bottom-Up:  

Also called the build-up method: here nanoparticles are produced by atomic transformation 
or condensation of atoms of a fluid phase matter [15].  This approach includes various methods, 
for example, gas phase synthesis using flame pyrolysis (the mechanism of this method is 
demonstrated as an example case in Fig.(1.6), high-temperature evaporation, and plasma 
synthesis, microwave irradiation, physical and chemical vapour deposition processes; colloidal 
or liquid phase methods in which chemical reactions in solvents form colloidal particles, and  
molecular self-assembly [16] which is very interesting to our work since it is depends strongly 
on the intermolecular forces acting between molecules . 

    

Figure 1.6: Mechanism of nanoparticle production using vapour phase or liquid phase/ 
colloidal methods, where the starting molecules are generated respectively either by 

vaporization or by chemical reaction/precipitation. The resulting nanoparticles may form 
either agglomerate which can be re-dispersed or non-dispersible aggregate clusters[16]. 

Molecules  

Nuclei 

nanoparticles 

Agglomerate  

Aggregate  
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5. Applications of nanoparticles: 

Nanoparticles offer tremendously countless possibilities of application in various fields like 
electronics, biology, medicine, optics, photonics, communication and others [18], and that is 
due to the peculiar properties that these particles have  [18]. It might be impossible to track the 
entire spectrum on which the nanotechnology can be applied, yet we mention some of the 
promising fields of applications of nanoparticles: 

a. Nanoelectronics: nanoscaled/molecular electronics have the same role as 
conventional electronic devices yet with new features and extreme precision [18-
20]. an example of a nanoscale electronic device are nanosensors which principally 
can translate certain molecular properties into electrical signals. For this aim, many 
nanoscale materials have been investigated in order to hopefully be used to create 
novel nanosensors [18, 21, 22]. A very interesting example of nanoelectronic 
devices demonstrated within scientific literature in many research works is the 
application Single-wall nanotubes (SWNTs), and multiwall nanotubes (MWNTs) 
as basic construction blocks of gas, strain or thermal nanosensors [23-27]. 

b. Nanobots: since the publication of Eric Drexler’s book “Engines of Creation” in 
1986 this term nanobots signifying “ microscopic robot used in nanotechnology” as 
the Webster's New Millennium™ Dictionary of English defines it, this subjected 
became the highlight of academia, as well as a public debate [28]. The potential 
applications of these nanoparticles are limitless; as they can be used for the delivery 
purpose of therapeutic agents, early detectors of and perhaps protectors against 
diseases.  

c. application in biology and medicine: the relatively small size of nanoparticles 
compared to cellular size makes it theoretically suitable for use as probes of 
biological cellular machinery [29, 30]. And from the list of properties of 
nanoparticles, it is mostly the optical and magnetic properties that have been applied 
in biology and medicine [30]. 

6. Nanoparticulate materials: 

Nanoparticles as a discrete amount of matter do not exist individually for most of the cases, 
rather they exist as a collective ensemble of particles which we call nanoparticulate materials. 
This type of material can be defined as every material constituted by individual nanoparticles 
where the collection acts as a fluid in most of the case[31, 32]. 

We shall consider the following classification which is based on two characteristics, the 
distance between particles and the medium in which these particles are dispersed, consequently 
we distinguish that there are three classes of particulate materials defined as follows: 

6.1. Nanopowders: 

Nano-powders are ultrafine powders which consist of nanoparticles with the distance 
between neighbouring particles is extremally small. This type of materials is currently receiving 
an increasing noteworthy attention in a wide spectrum of fields such as micro/nanoelectronics, 
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materials manufacturing, medicine and biotechnology, energy and the environment [33].  We 
distinct some of the important current applications found in daily life and they are as follows :  

• Catalysts 
• Solid Rocket Fuel 
• Magnetic tapes & fluid 
• Targeted drug delivery 

• Metallic paint 
• Sintering aids 
• Transparent polymers 
• Synthetic Bone 

 

6.2. Nano aerosols: 

An aerosol is a suspension of fine solid or liquid particles in a gas medium [34]. This type 
of materials is characterized by a relatively large distance between the constituent particles. 
Although the definition of aerosols includes liquid particles[34], leading to the 
generalization of the term nanoparticles to include both soft and hard matter, nonetheless in 
this work our focus would be mostly on hard nanoparticles. 

Aerosols are present in our daily lives whether naturally as dust clouds or as a 
misfortunate product of the human technological aspects like smoke coming from cars or 
generally combustion engines. Additionally, these materials have many important and 
surprising applications; the simplest of those is the application of nanoaerosols and aerosol-
science to study and develop drug inhalers which present a very widespread method of drug 
delivery [35, 36].  Another none evident application of these materials is that they are used by 
the military as a delivery mechanism of biological warfare agents, such as clouds of toxic dust. 
The other side of this application in the military is the urge to design filters which will protect 
military personnel against these toxic clouds of fine particles [34]. 

6.3. Nano colloid: 

The term nanocolloids is relatively recent where it seems to have surfaced in the scientific 
literature in mid-80s of the past century, with the first mention in a patent was in mid-90s [37].  
nanocolloids or Colloids on general can be define as every material that is in particulate form 
constituted by discrete entities of compounds in the amorphous or crystalline state, either 

 

Figure 1.7 : Aluminum Nano powder 
constituted by spherical nanoparticle with 
radius ranging from 40 to 60 nm (the picture 
is taken from www.ssnano.com as a product 
photo under the product number 0220XH). 
these powders are used mostly as energetic 
nanomaterials/Combustive catalyst [5]. 
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organic or inorganic, whereby these entities are dispersed/suspended within a fluid medium. 
This suspension is a result of the net repulsion forces that prevent a macroscopic phase 
separation (for example sedimentation) during a “practically useful” period of time [37].  

Since we are concerned only with materials inside the nano limits, another condition is added 
to the definition of nanocolloids, where the average particles size is characteristically in the 1-
100 nm range. This results in a huge surface-to-volume ratio of nanocolloids as stated before 
for nanoparticles in general, which ensures contact of a large percentage of the particle's 
constituent atoms with the surrounding liquid [37, 38]. 

This type of materials is widely used in various domains especially in pharmaceutics where 
we find many medical products in the form of colloidal suspensions. thud due to their 
importance, it is extremely necessary to understand and control the interactions between these 
particles which are responsible to the stability of such products, that is since these forces if not 
controlled might lead to the agglomeration of nanoparticles within the medium and thus 
jeopardizing the quality of these colloidal suspensions [37-40]. 

7. Nanotoxicology: 

Due to the widespread of nanoparticles implementation in every field of our daily life as 
much as in the research environment, this emerging type of materials became one of the biggest 
evolving research and economic domains in the modern world [41], which urge the scientific 
society to inspect  the environmental risks and hazard coming from the varying and developing 
exposure to nanoparticles [42].  

7.1. Exposure to nanoparticles: 

While nanomaterials embedded in other bulk materials have no considerable risk to be 
hazardous or even been exposed to at dangerous levels, except for bio-nanocomposites that 
have tendency towards degradation [43], which might ultimately lead to releasing the embedded 
nanoparticles into the environment. Accordingly, what is most interesting for nanotoxicological 
studies are free nanoparticles that have the ability to enter the human body and other ecological 
entities, and thus present a possible toxicological hazard to those biological systems [43] . 

The exposure to nanoparticles can either be in the industrial environment, as the works are 
exposed to these materials during the manufacturing process that they are involved in. also 
when these products are introduced to the consumers, they on their turn will be exposed to these 
dispersed particles in the environment, through air, water or food, the graph below shows 
different roots of exposure to nanoparticles [43]. 

When it comes to studying the toxic effects of nanoparticles, most of in vivo studies 
concentrate on studying mammalians, with a great focus on hazards arising from the exposure 
to inhaled particles through the respiratory system, yet there are other tracts that should be 
considered like the skin and the gastrointestinal (GI) tracts [44]. 
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Figure 1.8: Nanoparticles exposure channels from manufacturing to utilization [6, 7]. 

7.1.1. Exposure through the respiratory system: 

When particles are suspended in air they tend to take the easy way inside the human body 
and enter the respiratory system through mouth and nose [43]. So in the case of the toxicological 
studies, it is essential to have enough knowledge about the mechanisms and roots of deposition 
of these particles in the human corps when entering through this tract [44]. 

Nanoparticles behaviour in the respiratory tract can be summarized in two possibilities they 
either deposit in the system and thus presenting a hazard to be toxic and produce inflammation 
or pulmonary dysfunction [44], or they can reach the alveoli (Fig.1.9), thereafter the 
translocation to the respiratory system these particles would be transported to other organs in 
the human body via the bloodstream [43, 45]. another possibility is that these nano-scaled 
particles and through olfaction get transported directly to the brain [36, 46].   

The mechanisms of deposition of nanoparticles are poorly understood, yet we recognize that 
the main mechanism is originated from particles diffusion as they collide with air molecules 
[44]. These mechanisms can be studied using either experimental approach or complex 
computational simulations [47]. Modelling techniques are more preferable since they are non-
invasive, non-destructive and more important they are reproducible and can be replicated as 
many times as needed [47]. Analytical/numerical models can compute deposition efficiency at 
a total scale or by region [48-52]. Fig.(1.9) shows a simulation result regarding the deposition 
of particles of different sizes from micronic to nanoparticles, and it demonstrates that whilst 
large micronic particles tend to deposit the nasal, pharyngeal and laryngeal regions, 
nanoparticles on contrast are more likely to reach the alveolar capillary bed region and then to 
the bloodstream [44]. 

We should also recognise that the recent models are developed to study the flow of particles 
using the methods of two-phase fluid dynamics, in which the need to incorporate the 
interactions between particles is crucial to accomplishing more realistic simulations. 

worker 

Production 

Transport 

Storage 

Usage 

Waste 

Environment 

Air Water  Food 

Consumer 



CHAPTER 1:                                 Introduction to nanoparticles and nanoparticulate materials 

 

12 
 

 
Figure 1.9: Prediction of the deposition of nanoparticles in different parts of the respiratory 

system during inhalation through the nose [44]. 

7.1.2. Exposure through the skin and GI tract: 

 Although the respiratory system present the major source of nanoparticles exposure to the 
human corps [53], yet the properties of these particles give rise to the possibility that they can 
penetrate the skin into the internal organs, and thus presenting the likelihood of been hazardous 
[54, 55]. Although the skin with its composition presents a large defence organ yet several 
studies have shown a deep penetration of small nanoparticles that ultimately might get 
transported via translocation to other organs through blood [11]. 

Nanoparticles that reach the gastrointestinal tract either have the possibility of been 
originally injected by respiratory system clearance of these particles via mucociliary escalator 
[56], additionally they can reach the GI tract through water, food or they can be injected as part 
of drugs or as drug delivery devices [44]. 

7.2. Risk assessment: 

    When the toxic hazard of nanoparticles is inspected Different methods have been proposed 
and investigated in the course of nanotoxicological studies’ development, the most used in vitro 
method, is the study of the toxicity of nanomaterials in cell culture[9]. 
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7.3. The toxicology of nanoparticles:  

During the usage materials on general present a possibility of been toxic to the environment 
they are used in, the same possibility exists in the case of nanoparticles, yet nanoparticles and 
are dramatically different due to their specific features and ability to reach remotely inside the 
biological system then the bulk material can [10, 44]. These characteristics urge the scientific 
community motivated by environmental concerns to investigate thoroughly and carefully the 
toxicity of these new materials[10]. The investigation and assessment of the possible 
toxicological hazards of nanoparticles in the literature, is found to be generally done by 
grouping results into four categories based on the type of the material (Metals, Metal oxides, 
Carbon-based nanoparticles, Quantum dots)[57]. For demonstration, we shall only take two 
examples of these types. 

8.3.1. Metals: 

Because metallic nanoparticles present one of the most used classes of engineered 
nanomaterials, there an urging need to study and assess the presence of toxic risks and hazards 
when these particles interact with biological systems[6]. And although the mechanisms of this 
kind of interaction between nanoparticles and living organism are still poorly understood, yet 
the growth of such research trend is ever thriving, and every day more data are fed into the 
scientific corps concerning this subject [11]. 

As we find in literature the most studied nanomaterial in its class (metals) are gold 
nanoparticles, and although bulk gold has been considered always to be a safe material, yet due 
to the unexpected characteristics of these particles, many research groups undertook the task of 
investigating the cellular toxicity and uptake of these particles [9, 14, 58-61]. Gold 
nanoparticles have been found to be more taken up by cells when its diameter is in the range of 
50 nm , also nanospheres have been found to be more up taken then nano-rodes [62], while 
even when particles are taken up by cells, nanogold particles with different surface 
modifications present no toxic hazard [63], It was also noticed that particles aggregate outside 
and enter the cell as an aggregate, yet no toxicity observed even for a long exposure (48h). The 
same result has been stated by [58, 61, 63].  

Yet although a considerable number of research papers have stated the absence of gold 
nanoparticles toxicity, nevertheless we also find many articles which state the opposite, for 
example, these particles have been reported of been cytotoxic to the human carcinoma lung cell 
at specific particle concentrations [59].  Although we have found in a recent article a reference 
to the possible evidence of the extreme gold nanoparticles' toxicity for certain small particle 
sizes [60], nonetheless after examining literature on the subject we find that although there are 
certain  condition where these particles can be hazardous to health especially at high 
concentrations yet the evidence of the general nontoxicity of AuNPs is much more compelling 
although there are special instances where this case does not hold . 
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Piccinno et al. reported that Silver is the most produced metallic nanomaterial by the year 
2012, which urges to study their toxicity, moreover they demonstrated that a high-level 
exposure to these particles results in the medical condition known as argyria [64]. On the other 
hand  a low exposure leads these nanoparticles to deposit on the skin and other parts of the body 
which might for some people lead to rashes, swelling and inflammation [65], also the high level 
concentration of silver nanoparticles can cause breathing problems and other problems related 
to the respiratory and the digestive system. Additionally, it  has been  reported that among a 
group of different metallic and other elements, solely nano-silver and nano-copper particles 
presented in all tests a toxic behaviour in aquatic organisms [57, 65-67]  

8.3.2. Metal oxides: 

     Metal oxides are reported to be the most produced nanomaterials in the world [64]. They are 
used in a wide spectrum of applications, like the cosmetics industry, pharmaceutics and other 
aspects of human daily life. the widespread of these particles makes it necessary to investigate 
their toxicity, and assess the risks they present on the environment and especially on the human 
health [9]. 

   The uptake and toxicity of metal oxide nanoparticles have been investigated by several groups 
whom have demonstrated that TiO2 (2-5 nm) aggregate in the exposure room and then when 
they studied the lung response to the exposure of these aggregate, it was shown that they cause 
a minor inflammatory response in the necropsied with the possibility of recovery after 
exposure[9, 68]. TiO2 have been showed to produce an increased oxidative stress at higher 
concentrations [69]. the cytotoxicity of TiO2  has also been reported [70], with the creation of 
reactive oxygen species (ROS). 

A comparative study of the toxicity of bulk ZnO , ZnCl2 and ZnO nanoparticles have showed 
a comparable toxicity  with a concentration value near 60 μg Zn/L [71], also the toxicity of ZnO 
nanoparticles to various bacterial systems and human T lymphocytes, have been reported [72]. 
Moreover CuO particles have been established to be the most cytotoxic, as well as they produce 
DNA damage and oxidative lesions when compared to different metal oxides (TiO2, ZnO, 
CuZnFe2O4, Fe3O4, Fe2O3), and ZnO nanoparticles  have been found to produce a cytotoxic 
behaviour and DNA damage while other type of materials have shown no or at best lower 
toxicity[9]. another study demonstrated that nano-ZnO particles are more toxic when compared 
to TiO2, CeO2 nanoparticles [73]. 

A study done on 24 different nanoparticulate materials have been undertaking under similar 
conditions, and conveyed that copper and zinc-based materials were the most toxic among the 
tested materials, while other materials showed lower and no toxic behaviour [74]. However, 
research into the toxicology of nanoparticles is in its early stages compared to the broad subject 
of toxicity, and so much more work is needed before any generalised declarations can be made 
regarding nanotoxicology [75]. 
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8. Cohesion forces: 

When we come to study particulate materials, we recognize that the main agent that defines 
the features of their behaviour is the interparticle forces that exist between the individual 
constituents. By studying these forces we distinguish two classes  defined with respect to the 
distance range in which these forces take place [32], and they are as follows: 

• Contact forces exist due to direct contact of particles with each other, and 
they manifest in the form of torque in most cases[76]. 

• Non-contact forces act at a distance and they are differentiated into three 
types. dispersion, electrostatic and capillary forces [77].  

8.1. Dispersion forces:  

These interactions otherwise known as van der Waals or Casimir forces are an important and 
an interesting aspect of the intermolecular interactions due to their unique quantum origins and 
their presence between any two neutral objects. The discussion of their origins and some of the 
aspects of their modelling processes are the subjects of the following three chapters.   

8.2. The electrostatic forces:  

The electrostatic interactions between individual particles come to existence when handling 
particulate materials mainly due to three processes which end up with charging those particles 
electrically[78, 79]: 

• Friction between particles with what is called ‘triboelectrification’. 

• Contact charging. 
• Columbic interactions. 

The understanding of these interactions is interesting for many industrial applications like 
the pharmaceutical domain especially concerning the efficiency of dry powder inhalers [79], 
electro-photography [80] and others, yet these interaction forces can be disadvantageous, as 
they can be the origin of explosive behaviour of powders. 

There are two different manifestations of this type of force; the first is the formation of 
double layers in the case of colloidal particles [81]. Yet when we consider the case of dry 
particulate materials, the electrostatic interactions are mainly studied using the image charge 
model approximation [82]. However, the simplest model of the interaction of two particles with 

charges ��and �� at a distance d, is given by the conventional coulomb equation for the 

electrostatic force [79, 83-85]: 

 
	
 =

��. ��

4��. ��
 (1.1) 

Where � is the permittivity of material in which particles are immersed. 
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8.3. The Capillary forces:  

If the granular material contains a fair amount of a liquid phase this liquid inclines to 
accumulate in the spaces between the adjacent particles, where it would form what is known as 
liquid bridges [86]. This type of adhesion and cohesion force is very interesting since it can be 
controlled by regulating the amount of liquid present in the targeted granular material [76]. This 

force has two components [76]; the surface tension force 	� and the capillary pressure force 	�, 
which presents the product of the pressure difference and the liquid-vapor interface surface. the 
capillary force thus is given by the following relation [87] : 

 2 2 cosc p s m mF F F r P rπ γ α= + = ∆ +   (1.2) 

Where r is the radius of the meniscus, α is the deviation angle of the interface from the normal 
direction of this cross-section and  ∆P is the reduction in pressure within the bridge with respect 
to the pressure outside and it is given approximately with Laplace equation as follows [76, 87]: 

 

1 2

1 1
P

R R
γ
 

∆ = − 
 

  (1.3) 

Where �� is the out radius of the bridge curvature and �� is the inside radius as it is shown in 
Fig.(1 .9) . 

 

Figure 1.10: An idealized representation of liquid bridges between (a) two perfectly spherical 
particles, (b) a spherical particle and a flat surface [87]. 

 
Moreover, it is essential to notice that the manifestation of these different forces is very 

dissimilar, many studies have been conducted to compare the contribution of these forces to the 
total interaction [76, 82, 85, 88, 89], and it was noticed that for nanoparticles in dry 
environments (no capillary) the van der Waals forces are dominant. Since the focus of this study 
is the interactions of dry nanosized particulate materials, only dispersion forces are studied in 
this work. 
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10. Conclusions: 

In this chapter we have discussed the different aspects of the study and technology of 
nanoparticles, we have also reviewed some of the toxicological aspects of these materials which 
put the subject of our work in perspective, and we emphasised the importance of understanding 
the dynamics of the interactions between those particles in order to predict and control the 
behaviour of these particles for better applications and better safety controls. 
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CHAPTER 2: 

Dispersion interactions between molecules 

 

“Speak English!' said the Eaglet. 'I don't know the 

meaning of half those long words, and I don't believe 

you do either!”  

Lewis Carroll, Alice in Wonderland. 

 

1. Historical background  

As it is accustomed in scientific writing, the study of any subject must be proceeded by a 
historical account of the timeline on which this subject had evolved. The origin and nature of 
intermolecular forces have been investigated since the atomic hypothesis was first introduced 
into the corpus of scientific inquiry. within this picture of the material world, it is stated that the 
nature of bulk matter can be explained returning to its microscopic constituents namely 
molecules and atoms. When such an approach is applied to explain experimental data collected 
on materials and more importantly on gases, the need for a better understanding of 
intermolecular forces was strongly recognized and emphasized. kinetic theory in its prime days 
was formulated by regarding molecules as hard objects without considering any long-range 
interaction between them. This model was fairly successful in explaining some simple 
properties of gases, Boyle's and Charles' laws, and even viscosity and thermal conductivity. Yet 
when this model was used to explain the detailed behaviour of real gases, especially when it 
came to the critical problem of why real gases did not obey the ideal gas law. Thus It was 
recognized that a need for a more realistic model was crucial and this it should involve the 
existence of a force field between the constituent molecules whose range is greater than their 
dimensions [2]. 

The Dutch physicist J. D. van der Waals (1837–1923) attempted to solve this problem by 
considering the effect of an attractive force between molecules when modelling the behaviour 
of real gases [1]. And In 1873 he arrived at his well-known equation of state for gases and 
liquids (Eq.2.1). in this model, b is subtracted from the total volume to account for the finite 
size of molecules, and correction term a/V2 is added to the pressure P to account for the 
attractive intermolecular forces which now we recognise and name as the as van der Waals 
forces [2-4]: 
 ( )( )2

GP a V V b R T+ − =  (2.1) 
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At Columbia University, influenced by the suggestion of Debye, S.C. Wang [5] used the at 
that moment new wave mechanics, and thus proposing a simple model of a pair of hydrogen 
atoms as the two electrons of the atoms oscillate within the same plane [6]. he found using this 
approach that there is undeniably an attractive force at large distances compared to atomic size, 
with a potential energy that varies as the inverse-sixth power of distance, where r is the atomic 
separation. the model proposed thus is found to be written in the following general form [2]:  

 6
6U C r −= − ⋅  (2.2) 

Although his predictions offered no real interpretation of the phenomenon, however the 
result which he obtained was crucially important since it has for the first time demonstrated, 
that according to the new quantum mechanics two neutral atoms (with no permanent dipoles) 
exert an attractive force on each other [2].  

The simplest theoretical description of this force was proposed soon later by London [5]. It 
was based on a model of an atom or molecule that act as a Drude oscillator, the oscillation of 
electrons generate instantaneous dipoles along with higher multipoles, where the London 
dispersion energy is only the first term of this multipole expansion series of the attraction energy 
demonstrated as follows [2, 6]: 
 6 8 10

6 8 10

C C C
E

r r r
= − − − ⋅ ⋅ ⋅  (2.3) 

Later these forces started to be approached for macroscopic bodies, aiming at calculating 
these forces at a macroscopic scale. The famous and most cited model was that which was 
proposed by H.C. Hamaker in 1937 [7]. In his model he integrated over all the inverse sixth-
power potentials of each two-body interaction, this method is what is known now as the 
pairwise summation method  [2, 3, 7]. After further inquiries, J.Th.G. Overbeek concluded 
intuitively that the dispersion force between macroscopic particles was much weaker than that 
calculated by Hamaker. He hypothesised that the dispersion force was not an instantaneous 
interaction and that it is transmitted at the speed of light, so as a result of this assumption this 
force is weakened at large distances. H.B.G. Casimir and D. Polder after corresponding with 
their Overbeek who passed to them his remarks on this retardation effect, they confirmed 
theoretically that his conjecture was correct [8], demonstrating in their calculations that for 
distance larger than the characteristic frequency start to fall as r-7 [2]. 

After a remark from Bohr regarding the relation between the early finding of Casimir with 
polder and the concept of zero-point energy. Casimir later studied the variation of zero-point 
energy in a system of two perfectly conducting parallel plates in vacuum (Fig.2.1), and he 
demonstrated that there is a pressure generated on the plates due to quantum vacuum 
fluctuations leading to an attractive force pushing these plates closer to each other[9]. This 
effect is now known as the Casimir effect [10-12]. 

Although Casimir was successful in encompassing the retardation in the theory of dispersion 
forces between macroscopic bodies along with demonstrating the physical effect of vacuum 
fluctuations, yet a more realistic model had to be developed in order to study real materials with 
dielectric properties. This was accomplished by E.M. Lifshitz in Moscow in 1954 [13], where 
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he considered electrical fluctuations in bulk continuum matter without referring to its molecular 
constituents  [2]. This theory was a great success since it accounted for all many-body 
interactions, as well as retardation [14]. Later Lifshitz along with his colleagues Dzyaloshinskii 
and Pitaevskii (DLP) generalized his model by including the existence of a third material 
dielectric medium between the interacting objects [15, 16].  

 

Figure 2.1: Key manifestations of dispersion forces; (a) London model of an instantaneous 

dipole ��⃗� generating a field inducing a dipole ��⃗� simultaneously leading to non retarded 
dispersion attraction, (b) The effect of retardation is considered by introducing the finite speed 
of light into the interaction, (c) When macroscopic objects are involved, dispersion forces rise 

in the form of a Casimir pressure. 

Many surprising and critical findings were discovered within this theoretical approach  
(Dzyaloshinskii, Lifshitz and Pitaevskii theory), the most important of them is the existence of 
a repulsive along with the known attractive force between objects, that is depending on the 
nature of the medium [16]. 

2. Classification of intermolecular forces 

When we study the interaction between molecules/atoms we distinguish two major types of 
attraction and repulsion forces; short-range and long-range interactions. short-range forces are 
primarily occurring as a result of the overlap the electronic charge clouds associated with each 
nucleus [6, 17, 18].  This is a repulsive force arising from electronic repulsions which can also 
be explained in the language of quantum theory by the tendency of the wavefunction to adapt 
the state as to maintain the Pauli antisymmetric requirement1 [6].   

                                                 
1  Or otherwise know in theoretical physics as Exclusion Principle, where it stated that in a quantum 
system, two or more fermions of the same kind cannot be in the same (pure) quantum state. 

 p 
  

Retarded vdW interaction Casimir interaction 

  

Van der Waals non-retarded interactions  

  

  

  

��⃗� 
��⃗� 

 

(a) 

(b) (c) Retarded van der Waals interactions  
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Table 2.1: different types of intermolecular forces classified into two categories.  

 

On other hand, as for the case of the long-range interactions, we distinguish three kinds: the 
first is the electrostatic forces, which arise from the classical static interactions between 
molecules' charge distributions which can be either repulsive or attractive, and these are strictly 
pairwise additive and can be attractive or repulsive [3, 17].  

2.1. Van der Waals forces: 

The long-range forces manifested in the induction and dispersion interactions fall in the 
category of known van der Waals forces Fig.(2.2), and in this category, we recognise three 
know types of forces that have been identified and modelled and proved to have the same 
mathematical form as the one proposed for the intermolecular forces following the work of 
wang [2]. These forces are as follows: 

• Keesom interactions: this force is purely electrostatic with it happening between 
excited molecules with permanent dipoles. 

 

Figure 2.2: classification of van der Waals forces. 
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• Debye interactions: the induction force named after Peter J.W. Debye is the force 
that rises due to the existence of an excited permanent dipole which induces a 
neutral molecule at proximity producing another dipole. 

• London interactions: or dispersion forces occurs from the interactions of 
instantaneous dipoles rising from the quantum fluctuations of electronic clouds in 
molecules/atoms which means that these forces are purely quantum mechanical 
and universal meaning that it happens between any two atoms at close sufficient 
distance to each other. 

For most of the cases, the dispersion forces are the dominant contribution to the total van der 
Waals interactions, except in the case of highly polar materials in which other contributions 
become crucially important. Due to this fact, in most situations where the van der Waals forces 
are modelled, Keesom's and Debye's forces are neglected to focus thus only on dispersion 
London interactions. the table below shows some examples of the contribution of dispersion 
forces to the overall interaction [3].  

Table 2.2:  contribution of dispersion London forces to the intermolecular interaction, for 
different molecules with different polarity [3]. 

Interacting species 
The contribution of London forces to the vdW 

forces in (%) 

Ne-Ne 100 

HBr-HBr 96 

HCl-HCl 86 

NH3-NH3 57 

H2O-H2O 24 

3. Quantum mechanical discerption: 

In order to model the interaction between atoms or molecules, we introduce here in this 
chapter a quantum mechanical approach which hopefully would give the reader the sufficient 
and coherent knowledge about the nature of these forces and their origins. 

3.1. The Born–Oppenheimer approximation: 

As it is known from basic quantum theory, The behaviour of a system of non-relativistic 
particles in time independent potentials is governed by the time-independent Schrödinger 
equation [17, 19]: 

 H EΨ = Ψ  (2.4) 
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Where H is the Hamiltonian operator and E is the energy the eigenvalue of the operator and Ψ 
is the wave function of the system under consideration. The Hamiltonian operator can be given 
as follows [17, 20, 21]: 

 

2
2 2

1 1

2

, 1 1 1 , 10

1 1

2 2

1

4

N n

i j
i ji e

N N n n
i i i

i i i j j ji i j i j j
i i j j
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M m

Z Z Ze

R R r R r rπε

= =

′

′ ′= = = =′ ′
′ ′> >

= − ∇ − ∇

 
 + − +
 − − − 
 

 

  

� �ℏ ℏ

 

(2.5) 
 

Where Z is the charge of the nucleus "i", e is the charge of the proton, and ∇��⃗ �
� and ∇��⃗ �

� are the 

Laplacians which operate on nuclear and electronic coordinates, respectively [20]. The physical 
interpretation of the terms of this Hamiltonian is well defined, and by that, it can be rewritten 
in a simplistic form as follows [20]: 

 ˆ ˆ ˆ ˆ ˆ
e n ee nn enH T T V V V= + + + +  (2.6) 

Where the first two terms 	
� and 	
� are the kinetic energies of the nucleus and electrons 

respectively, �
�� is the potential energy of the repulsions between the nuclei and �
�� is that 

between the electrons, and the last term �
�� is the coulomb potential of the attractive force 
between electrons and nuclei. 

The Schrödinger equation generally cannot be solved analytically, thus several 
approximations are needed to find a satisfactory solution. One of such methods is stated so that 
the heavy nuclei which have smaller velocities compared to that of the electrons, is then 
considered to be perceived by electrons as fixed in space. in such a picture the Schrödinger 
equation can be separated into two distinctive parts, where each one describes the electronic 
and nuclear wave functions respectively. By using this method which is known as the Born–
Oppenheimer approximation, the problem is reduced to solving the electronic Schrödinger 
equation [17, 20]: 

 ( )el nuc el elH V Eψ ψ+ =  (2.7) 

With the Hamiltonian assigned to describe the motion of the electrons is given as : 

 2 2 2
2

1 1 1 , 10 0

1

2 4 4

n N n n
i

el j
j j i j je ji jj

j j

Ze e
H

m r rπε πε ′= = = = ′
′>

= − ∇ − +  
�ℏ

 (2.8) 

The electronic energy includes the contribution from internuclear repulsion, meaning that 
even though the nuclear-nuclear repulsion potential does not affect the solution of the 
Schrodinger equation but rather shift its eigenvalues [17, 22]: 

 
el nucE E V= +  (2.9) 
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V can be neglected in Eq.(2.7) which leaves us with the electronic Schrödinger equation: 

 
el el el elH Eψ ψ=  (2.10) 

The eigenfunction of the is problem is the electronic wavefunction which describes the 
motion of electrons. Although this wavefunction is independent of the momenta of the nuclei, 
it has a parametric dependence on their positions.  

 { }( ),el el j ir Rψ ψ=
��

 (2.11) 

The Schrödinger equation is then solved for different nuclear configurations where each of 
them corresponds to a different molecular electronic state. The same assumptions can be set for 
the case of nuclear motion, where we consider that as the nuclei move, the electronic energy 
changes smoothly as a function of Ri. Hence, have the nuclear Schrödinger Equation: 

 
nuc nuc m ol nucH Eψ ψ=  (2.12) 

Where the is the potential energy for nuclear motion in the average field of the electrons, and 
the nuclear Hamiltonian is written as follows: 

 { }
2

2

1

1

2

N

nuc i i
i i

H E R
M=

 = − ∇ +
 

� �ℏ
 (2.13) 

The general approximation of the molecular wavefunction appearing in Eq.(2.1) can be 
written thus to be as follows [17] : 

 { }( ) { }( ) { }( ), ,j i el j i nuc ir R r R Rψ ψΨ =
� � �� �

 (2.14) 

Since the electronic energy Eel is a function of nuclear coordinates, it may be used to define 
the concept of an intermolecular potential or an interaction energy which is the case we are 
interested about in this work. Solving this wave equation is not evident and difficult to solve, 
and this difficulty is mainly due to The Coulombic repulsion term in the Hamiltonian of this 
problem since it makes it impossible separated the Hamiltonian into distinct components for 
each electron [17, 22]. 

3.2. Perturbation theory approximation: 

When we have a time-independent Schrodinger equation the solution can be approximated 
using time-independent perturbation theory which alters SE to be written as follows [19, 22]: 

 ( )0 int iH H Eλ ψ ψ+ =  (2.15) 

Where the parameter λ is a number that changes from 0 to 1. At the end of calculations, this 
parameter is eliminated by setting it equal to 1, which corresponds to the case where the 
perturbation is acting fully. When λ=0, Eq.(2.15) is reduced to the unperturbed problem stated 
in following eigenvalue equation [17, 22]: 
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 ( ) ( ) ( )0 0 0
0 iH Eψ ψ=  (2.16) 

Where �� is the unperturbed Hamiltonian, ��is the energy of the unperturbed system. Thus, the 
state of this quantum system in this approach is approximated by a series that is written in power 
of λ as follows: 

 (0) (1) 2 (2)ψ ψ λ ψ λ ψ= + + +⋅⋅⋅  (2.17) 

And similarly, the energy of the system is written as: 

 (0) (1) (2)
i i i iE E E E= + + + ⋅⋅⋅  (2.18) 

Where ��(�)�, ��(�)�, … and �(�), �(�), …are perturbative corrections to the unperturbed 

wavefunction ��(�)� and energy �(�), respectively. We have the formulas for these series in 

terms of the unperturbed state (Eq.2.19) and energy (Eq.2.20), and they are given as 
follows[17]: 
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≠
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−  (2.19) 

And  
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i i i i
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≠
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−  (2.20) 

The solution then is reduced to the problem of finding the ground unperturbed state and then 
derive the corrections through the formulas proposed within the perturbative framework. 

3.3. The interaction of two molecules: 

For a system of two interacting atoms we can present the unperturbed Hamiltonian of this 
system as the sum of molecular Hamiltonians of the two species [17]: 

 
0 0 0

A BH H H= +  (2.21) 

The eigenstates of this Hamiltonian are product wavefunctions ��
� ��

� , and its eigenenergy 
is given as the sum: 
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 CHAPTER 2                                                            Dispersion interactions between molecules 

29 
 

 
Figure 2.3: model case used to calculate dispersion interactions between two hydrogen atoms 

A and B with electrons 1 and 2 respectively   

For this system of two isolated molecules and from perturbation theory presented above the 
energy can be written with respect to the interaction potential �(�, �) as follows: 
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 (2.23) 

Where the energy and the wavefunctions of the isolated molecules are ��
� , ��

� and ��
�, ��

�, 
respectively. 

The perturbation is defined as the interaction potential V (A, B) which defines the 
electrostatic interaction between the particles α (electrons and nuclei) constituting molecule A 
and those from B. This potential is defined as the sum of all those interactions, and it is written 
as follows [6, 17]: 

 

0

1
( , )

4

A B

A B

e e
V A B

r
α β

α β αβπε ∈ ∈

=   
(2.24) 

Where !"
� and !#

� are the charges of the interacting constituent particles of molecules A and B 

respectively, and $"# is the distance between these particles. this potential can be rewritten with 

respect to charge distribution by introducing a mathematical formula including delta function. 
A more detailed of this transformation is thoroughly found in stone (2013) [6]. 

The charge distribution of  particles can be expanded as a Taylor series and so be expressed 
it in terms of electric multipole moments, this expansion produces the perturbation operator 
which is written as follows [6, 17, 23]: 
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(2.25) 

The terms of this series express the monopole-monopole, charge-dipole, dipole-dipole 
interactions [17]. Following stone (2013)[6], we present a tensorial representation of the 
gradient operators developed from the multipole expansion which is presented in the general 
formula as follows: 

 1
ij i jT

rζ ζ⋅⋅⋅ = ∇ ∇ ⋅⋅⋅∇
� � �

 (2.26) 

For neutral atoms /molecules the terms with charge contribution vanishes, which leads to the 
series to be written as follows [17] : 
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 (2.27) 

 From the definition of the gradients, the tensor elements are expressed as follows: 

These tensorial gradient elements are very important since they play a key role in the 
calculations of the atomistic approach which is studied and formulated in chapter 4 in this 
dissertation. 

3.4. Deriving long-range forces: 

When the perturbation operator is introduced to the perturbed energy written in the series in 
Eq.(2.25) we end up with this operator acting on each order of perturbation separately, through 
calculation we recognise that each order presents a type of interaction, with the first order 
perturbation, is the origin of electrostatic interactions and the second order contains both 
induction and dispersion forces. Thus, the total interaction energy results from subtracting the 
energies of the molecules from the total perturbed energy which leaves us with the energy 
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associated from long range interactions to be written as the sum of the different types of these 
forces as follows [17, 24]: 

 
lo n g ran g e e le lc tro s tatic in d u c tio n d is p e rs io nE E E E= + +  (2.31) 

Since we are interested in this work only about the interaction between electrically neutral 
bodies the first term vanishes, leaving us with only the second order perturbation term. The 
second-order describes both induction and dispersion energies. To demonstrate this, we 
consider separately the terms in the sum for only one molecule is excited and the other is in its 
ground state which presents the induction interactions, and the terms where both of them are 
excited  [6]. The second-order correction can thus be written as the sum of the contributions to 
the intermolecular interaction energy arising from those three terms [17]. 

 
( )2 A B

ind ind dispE E E E= + +  (2.32) 

Giving each contribution is calculated in the perturbative approach as follows [6, 17]: 
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The induction energy �'�( can be simplistically understood as a classical electrostatic 
interaction between a permanent multipole moments of one monomer with the induced 
multipole moments of the second [3, 25]. To further simplify the situation we consider that the 
interaction does not involve any polar species (i.e. no permanent dipoles), therefore the only 
contribution that survives and exists for all cases is that of dispersion interactions [3]. 

4. Dispersion forces: 

These forces are relatively weak, which makes perturbation theory as the most suitable 
method to calculate them [6], the first assumption to be introduced to simplify the calculations 
of dispersion energy is to ignore the overlap of the wave functions by considering the distance 
is much bigger than molecules dimensions[17]. Although in practice this overlap is never null, 
yet this approximation hold since we consider that the error decreases rapidly with increasing 
distances, and even in fairly short distances the error is marginal and this overlap can be 
excluded from the theory [6].  

There are two main approaches that we can take to study and calculate the interaction 
between molecules/ atoms, the first one is the quantum mechanical perturbative approach which 
we have set its theoretical basics above, and it is the one first used by London to evaluate the 
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full theory that describes dispersion forces between molecules [5, 6]. This can be accomplished 
by substituting the perturbation potential operator within the formula derived for dispersion 
energy from the second order correction terms. A simple form would be by considering only 
the first term of the operator which describes the dipole-dipole interaction and disregard higher 
multipole interactions [17, 26]. Using the tensorial representation presented above we find that 
the dipole-dipole energy is written as follows, Where the states |0⟩, |,⟩, |0′⟩ and |.⟩ symbolize 
|��

�⟩, |��
� ⟩, |��

�⟩ and |��
�⟩[5, 6]: 
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The first term of tensor product produces energy dependence on the distance by a factor $/0, 
the last term can be developed using Uns12 ld or average-energy approximation, following 
London (1937) [5, 6, 27]. Nevertheless even though with this approximation it is still impossible 
to evaluate the exact value of the energy a more detailed discussion of these calculations would 
be found to be sufficient in  [6]. Going on with further simplifications of this model lead us to 
the famous formula proposed by London [5, 28, 29]: 
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Where ℏ is the reduced Planck constant, 4� and 4� are the characteristic frequencies of the two 
species, and 5� and 5� are the static polarizabilities of those species and r is the distance 
between the centre points of the interacting atoms/molecules [3, 26, 30]. The first term inside 
the bracket is the constant 60 which is related to the nature of the interacting species, which 
leads us to the formula stated before for the dispersion energy between molecules (Eq.2.3). 

The other method is the Drude model which was also used by London in his paper [5], and 
in this approach constituents of matter (atoms/molecules) are replaced by harmonic dipole 
oscillators [4] in which the electron cloud is attached to the nucleus by a harmonic potential. 
The atomic dipole is proportional x the displacement of electrons from the centre of the nucleus, 
and the interaction energy of two adjacent dipoles is proportional to the product their moments. 
Accordingly, the Hamiltonian for the system is written in the form [6]: 

 ( ) ( )2 2 2 21 1
2

2 2A B A B A BH p p k x cx x
m

= + + + +  (2.38) 

where c is a coupling constant, m is the mass of the electronic cloud and k is the force constant. 
This equation can be separated into two uncoupled oscillators [6]: 
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Therefore, the normal mode frequencies 4± can be written as  4�√1 ± 9, where 4� is the 
frequency of an isolated oscillator which is related to the zero-point energy2 that is known to be 
equal to ℏ 24�⁄  [5, 11]. The lowest energy of this coupled system is given as follows [6]: 

 ( )0

1

2
E ω ω+ −= +ℏ  (2.40) 

By substituting the normal mode frequencies with their relation stated above and expand 
the square root; the energy is found to be given as [6]: 
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The first term of this series presents simply the self-energy of the coupled system when this 
energy is subtracted from the total energy we are left with the other terms presenting the 
dispersion energy with the first surviving term is equivalent to the result found from 
perturbation theory for a system of identical particles [5] : 
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4dispE
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 (2.42) 

Table 2.3: Strength of Dispersion Interaction between Quasi-Spherical Nonpolar Molecules 
of Increasing Size [3]. 

   London Constant "C6" 
(10-79 Jm6) 

Molecules Molecular 
Diameter (nm) 

Polarizability 
5� 4<=�⁄  (10-30 m3) 

Theoretical Measurement 

Ne-Ne 0.308 0.39 3.9 3.8 

Ar-Ar 0.376 1.63 50 45 

CH4-CH4 0.400 2.60 102c 101c 

Xe-Xe 0.432 4.01 233 225 

CCl4-CCl4 0.550 10.5 1520 2960 

5. The Axilrod-Teller-Muto (ATM) potential 

For a system of more than three neutral molecules interacting between them, if the 
perturbation calculation is pursued to the third order, interactions between triplets of atoms 
appear [31]. In these calculations, induction forces are neglected and many-body repulsion and 

                                                 
2 Zero-point energy is the lowest level of energy a quantum system has, this force is also known to be 
related to quantum fluctuations of vacuum which are used to calculate the interaction between 
macroscopic bodies as Casimir did in the case of conducting plates. They can be explained as the energy 
related to creation and annihilation of virtual particles in the quantum vacuum state.   
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dispersion terms are included (ElrodandSaykally1994). The formula for this interaction from 
the perturbative approach is written as follows [6, 17, 31, 32] : 

 

( )( )
(3) int int int

0 0 0 0

000 0 0 0 0 000AB BC CA

A B A C
m n l m n m

V mn mn V m m V
E

E E E E
=

∆ + ∆ ∆ + ∆
ℓ

ℓ ℓ  (2.43) 

where V is the interaction Hamiltonian between any two molecules. The bra/kets that express 
the state of the system is the product of the states of the three interacting molecules A, B and C 
in order, where 0 indicates the ground state of that wavefunction and m, n, and l are the excited 
states of these molecules respectively [6]. The result is the Axilrod–Teller–Muto triple-dipole 
dispersion interaction, which was first given independently by Axilrod and Teller (1943) and 
by Muto (1943): 
 ( )(3)

9 3 3 3

1 3cos cos cosA B C

AB BC AC

E C
r r r

θ θ θ+
=  (2.44) 

For a linear triplet of interacting dipoles, which means the angles are  >� ? >@ ? 0° and 
>� ? 180, the formula of the interaction energy becomes as follows [31] : 

 (3)
9 3 3 3

2

AB BC AC

E C
r r r

= −  (2.45) 

Where the constant C9 is written in terms of complex dynamic polarizabilities of the three 
interacting molecules as follows [6]: 

 ( ) ( ) ( )9 0

3 A B CC i i i dα ω α ω α ω ω
π

∞
= 
ℏ

 (2.46) 

 

If we consider the interacting molecules are identical, A simpler formula is given in terms 
of the static polarizabilities as follows [33]: 

$�� 

$�@ 

$�@ 

B 

A 

C 

>� 

>� 

>@ 

 

Figure 2.4 : The case model proposed first 
by Axilrod and Teller (1943) for a system 
of three neutral non-polar atoms (A, B and 
C) interacting with dispersion forces. 
Where the arbitrary geometrical 
configuration depends on $��, $�@ and $@� 
the distances between these atoms and the 
angles >@, >@ and >@, which they produce 
with respect to each other. 

 

 



 CHAPTER 2                                                            Dispersion interactions between molecules 

35 
 

 3
9 0

9

16
C ω α= ℏ   (2.47) 

The geometrical factor which depends on the angles makes this potential different from 
ordinary dipole-dipole dispersion interaction derived by London because as a result of this 
trigonometric dependence on the geometrical configuration of the triplet under consideration, 
the force can thus be repulsive  for certain geometries, whereas the London interaction is always 
attractive [6] 

6. Retardation effect: 

6.1. Theoretical developments: 

In the previous sections we introduced the calculation of dispersion forces by means of 
perturbative quantum theory, yet these calculations assume the instantaneity of the interaction, 
and do not hold any information about the delay in the interaction that results from the limited 
speed of electromagnetic waves transmitted from and to the involved molecules [4, 6].  The 
picture depicted within this approach is presented graphically in Fig.(2.5) using the rules of 
Feynman diagrams where we notice that the interaction potential does not evolve in time 
meaning the interaction is instantaneous. 

When the Schrodinger formalism stated earlier in this chapter is adopted, the problem 
becomes more difficult to solve including retardation. this is due to the fact that this approach 
is non-relativistic and does not include the propagation of fields assuming thus static interaction 
potentials between electrons [17].  

 

A realistic relativistic picture would involve this retardation, where the virtual photons which 
are transmitted from molecule A take at the time $�� 9⁄  to reach and polarize the other molecule 
B, then this latter molecule reacts and responds by another photon which also takes the same 
amount of time leading to an overall delay of about $�� 9⁄ . at large separations, This effect leads 
to a weaker correlation and ultimately to the decrease of the intensity of the dispersion 
interaction between molecules [4, 17, 28]. 

  

  

  A B 

0 

0 

0 

0 

m n 

V(A,B) 

V(A,B) 

 

Figure 2.5: 

The Feynman diagram representing the Contribution of 
static dipole-dipole interaction to dispersion potential at 
second-order of perturbation theory.  The solid vertical 
lines represent  the state of the interacting species , time 
flows upward, and the dashed horizontal lines depicts the 
instantaneous interaction [1]. 
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Figure 2.6: Two examples of the twelve time-ordered Feynman diagrams used for calculating 
the retarded dispersion potential where the two molecules exchange two photons with the 

modes C⃗D, =′ and C⃗, = [17, 34]. 

The inclusion of this effect to the Schrodinger formalism is possible using the same concept 
used in the retarded oscillator model [4]. Consequently, it is essential to introduce time-
dependent interaction potentials and this can be achieved by using diagrammatic time-
dependent perturbation theory to introduce time into the calculations and thus introduce 
retardation to the state of the system [35]. As it was inferred earlier in this section, dispersion 
interactions are understood as a result of the exchange of virtual photons between the coupled 
molecules. Therefore, for two nonpolar neutral molecules A and B, where both are in their 
electronic ground states, the total Hamiltonian for the system is given by [17]. 

 
0 intH H H= +  (2.48) 

Where the ground state Hamiltonian �� includes the molecular Hamiltonians �� and �� of the 
both interacting species A and B respectively, and the contribution ��E( from the radiation field 
Hamiltonian. Additionally, the interaction Hamiltonian can be also written as the sum of the 
interaction Hamiltonians of individual molecules[17, 34]: 

 
int int int( ) ( )H H A H B= +  (2.49) 

Going through the tedious calculation of the different approaches proposed to solve the 
problem we find the same result demonstrated by Casimir and polder [8] which states that the 
interaction between two neutral atoms at short distances is proportional to $/0, a similar result 
to that of London’s non-retarded model. However, when the distance between the interacting 
species becomes very large, the retardation becomes significant leading the forces to decay 
faster proportional to $/F [8]. And the formula for the ratardid dispersion interaction energy is 
given as follows: 

  

  

  A B 
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0 
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C⃗D, =′ 

  

  

  A B 

0 

0 

0 

0 

m 

n 

(a) (b) 

�'�G(�) 

�'�G(�) 

C⃗D, =′ 

C⃗, = 
�H.I(�) 

�H.I(�) 

�H.I(�) 

�H.I(�) 

�H.I(�) 



 CHAPTER 2                                                            Dispersion interactions between molecules 

37 
 

 ( ) 1 2
7

23

4
E r c

r

α αλ
π

= − ⋅≫ ℏ  (2.50) 

Where c is the speed of light, ℏ is the reduced Planck constant,5�and 5� are the static 
polarizabilities of the tow species and r is the distance between their centre points. 

6.2. Correction function approximation: 

When attempting to produce a single model that expresses both regimes retarded and non-
retarded, dispersion interaction energy between two molecules �($), is approximated by 
introducing a correction factor J(C) to the London non-retarded dispersion energy [36, 37]: 

 ( ) ( )6
6

C
E r f p

r
= −  (2.51) 

Where J(C) depends on  p (the dimensionless reduced distance) which is given by C ? 2<$ K⁄ , 
With λ is the Characteristic wavelength which is generally set with the value 100 nm [36, 37].  

These correction factors are derived numerically using interpolation and data fitting 
techniques to produce simple function from the exact data calculated by the means of quantum 
electrodynamical techniques used by Casimir. The earliest Overbeek approximation was 
proposed by Overbeek and Kruyt [38],  their model was expressed by an empirical function of 
two parts, where each part is valid within a certain range of the distance or in this case the 
reduced distance: 
 

( )
] [
] [2

1.10 0.14 0;3

2.45/ 2.04/ 3;

p for p
f p

p p for p

 − ∈=
− ∈ ∞

 (2.52) 

A second-hand approximation of Overbeek's expressions was later introduced by Schenkel 
and Kitchener [39]. their model was written in a single relation written as follows : 

 ( ) 2 32.45 / 2.17 / 0.59 / pf p p p= − +  (2.53) 

The approximation was under the condition that the reduced energy is bigger than 0.5. 
nevertheless, when This equation is compared to Overbeek’s model gave a discrepancy less 
than 15%  for large distances [37, 39]. A better expression of the correction function J(C) which 
was derived from numerically from Casimir's calculations was proposed by Nandarajah and 
Chen [40]. Their formula was fairly accurate when compared to the data from Casimir's model, 
giving thus an error less than 10%, which makes it the most precise approximation found in the 
terature to date. 
 ( ) b

f p
p b

=
+

 (2.54) 

Where b=3.1 

These models are compared graphically in Fig.(2.7), where we show that for distance larger 
than the characteristic wavelength (i.e. larger than 100 nm ) these models coincide giving close 
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results with the discrepancy decreasing with larger distances. However, we notice that for small 
distances the model proposed by Schenkel and Kitchener produces extremely erroneous results 
with an error reaching 103 % for close proximities nevertheless the other functions still give 
close results which reasonably describe the effect of retardation. 

 
Figure 2.7: comparison between the three correction functions for increasing distances. 

Although these approximations are crude, yet they have been very useful for developing 
models of the interaction between macroscopic bodies which include the effect of retardation 
Their application and resulting models are demonstrated in the next chapter. 

7. conclusions: 

We have surveyed and built the basic theoretical formulation of dispersion interactions 
between molecules and atoms, where we used for this approach the quantum theory 
concentrating on the application of perturbation theory to describe the origins and behaviour of 
these interactions between nonpolar particles. the effect of retardation is also explained and the 
basic physical interpretation of this phenomena is demonstrated in a simple way. In the end, a 
semiclassical method which was used also in literature is demonstrated, where the retardation 
is approximated by a correction function added to the formula of non-retarded dispersion forces 
which was demonstrated earlier by London. This chapter is a keystone for any initiation into 
the subject of dispersion interactions. And a building block for the subsequent chapters.  
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CHAPTER 3 

Dispersion forces between macroscopic objects 

“After years in utter darkness, I force my eyes 

into the light. For I must retain my sight, that I 

might view the wholeness of the void, objectively.”  

Justin K. McFarlane Beau  

 

1. Defining terminology:  

Dispersion forces defined in the first chapter as simply the force acting between neutral 
bodies, they have a macroscopic manifestation making in them a macroscopic quantum 
phenomenon. The study of these forces at a microscopic level was as early as the first 
formulation of the quantum wave mechanics in the 30's, yet still until now there are remarkable 
problems with calculating them for certain cases of minute sizes or arbitrary geometries.   
Before we embark on our discussion of the different techniques used to model macroscopic 
dispersion interactions, we introduce a convention of the terms (Fig.3.1) which is more or less 
used in a great portion of published papers in the domain, although this convention can be 
discussed critically, we will consider it for being the most appealing and less problematic.  

 

Figure 3.1:  The three basic aspects of dispersion forces. 
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The term van der Waals forces although is the sum of induction orientation and dispersion 
forces, as it has been established in the previous chapter, it is reserved to indicate solely the 
dispersion forces between individual atoms or molecules, this term is also used when the models 
under question are atomistic models where the force is derived from the interactions between 
constituting molecular/atomic individuals [1-3]. The interaction between single atoms and 
macroscopic bodies we use the term Casimir polder interaction after the first retarded 
calculation of this type of interaction by Casimir and polder [4]. The term Casimir interaction 
is reserved for the force acting between macroscopic bodies. And These types of forces acting 
at different levels are termed as dispersion forces in general [2]. 

2. Modelling techniques  

2.1. The pairwise summation approach (Hamaker) 

Starting from the acting dispersion forces which exist between two symmetrical and 
electrically neutral atoms. As it was stated and demonstrated briefly in chapter 2, the potential 
interaction energy is given by the following formula [1]:  

 6
6A

C
E

r
= −  (3.1) 

Where C6 is a constant that depends on the characteristics of the molecule and r is the distance 
between centre points of the two molecules.  

To calculate dispersion interaction forces between two macroscopic objects, Hamaker 
assumed that these forces are additive and thus the total interaction energy can be calculated by 
summing all the interactions of individual pairs of molecules or atoms [2, 5]: 

 

1 2

3 3 6
1 2 6

v v

C
E dr dr

r
ρ ρ=    (3.2) 

where ��, �� are the number of molecules per unit volume in the two bodies, v1 and v2 are their 
volumes. When considering a system of two interacting infinite half spaces as shown in the 
Fig.(3.2), Hamaker demonstrated using the integral in Eq.(3.2) that the free dispersion energy 
�∥
�� for a surface unit is given by [5]: 

Where the Hamaker constant is defined primarily in the pairwise summation approach as 
� =
π���λ, and d is the distance between these surfaces. Similarly, Hamaker obtained the 
interaction energy for dissimilar spherical particles [5]:  
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 (3.4) 

Where �� and �� the radii of the two interacting particles and r is the distance between their 
centers.  

 ( ) 2

1

12
HA

E d
dπ

= − ⋅
�  (3.3) 
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Figure 3.2: The Van der Waals interactions between two spheres, and between two parallel 
half-spaces. 

when the particles are at close proximity ( �� 
�� � ���⁄ �⟶1), Eq.(3.4) is simplified 
mathematically to the well-known formula of the dispersion interaction energy [5, 6] : 

 

( )
1 2

1 2

1
( )

6
H

s s

A R R
E d R

R R d− = −
+

≪  (3.5) 

This model has been and still is used to calculate dispersion forces between particulate 
materials, especially in Powder sciences and technologies [7-12]. 

Additionally, it should be noticed that the Hamaker constant is given approximately for an 
interaction between two different materials in the air as [8, 13, 14] : 

 A�� = �A��A�� (3.6) 

Where A�� and A�� are Hamaker constants for the two material constituting the particles [13]. 
Moreover, if we considered the presence of a third material between the two bodies; this 
constant is given by introducing the contribution of the medium to the formula as follows [14]: 

 A��� = ��A�� � �A�����A�� � �A��� (3.7) 

Since its first proposal by Hamaker, the pairwise summation approach was popular for 
decades due to its utility, yet only basic geometries have been studied due to the rigid 
mathematics faced when attempting to calculate these forces for non-symmetrical arbitrary 
shapes. The different models for the basic shapes studied can be found to be reviewed 
sufficiently in the literature [1, 15-17]. There are though some papers that attempted at 
calculating these forces between non-traditional geometrical configurations [17], the most 
interesting one is the model developed for the interaction between two torus-shaped particles 
[18], this study is of such significance due to its possible applications in hemodynamics, as it 
can be used to calculate the contribution of dispersion forces to the cohesion of blood cells [18]. 
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The table below shows the interaction energy for basic geometries at close proximity, where all 
these models are derived by going through the Hamaker integration process.  

Table 1.1: the VdW interaction force models proposed for different geometries [15, 19]. 

Geometry Interaction energy 

Parallel half-spaces � =



12!"� 

Sphere with radius R and half space � =

�
6"

 

Two identical spheres of radius R � =

�
12"

 

Cylinder with radius R and half space � =

√�

12√2"�/�
 

Two identical parallel cylinders � =

√�

24"�/� 

Two perpendicular cylinders � =

�
6"

 

Using the pairwise summation approach with a different technique by introducing a weight 
function to the calculations [16], derived a simple elegant model where the interaction energy 
between similar and highly symmetrical basic geometries ( i.e. spherical, cylindrical and cubic 
) is given in a single formula [16, 20]: 

 [ ] ( ) ( )1 /2 1 /2( ) 2 1 / 2
m mm

m H effE d A R m L dπ − − += − ⋅ Γ +  (3.8) 

Where m = 0, 1, 2 for spheres, cylinders and cubes respectively, Γ is The gamma function, L 
the length of the particle, and the effective radius�'(( is given for perfectly spherical objects 

and cylinders as follows: 

 ( )
( )

1 2 1 2

1 2 1 2

; 0

; 1
eff

R R R R m
R

R R R R m

 + == 
+ =

  
(3.9) 

2.2. The Proximity-Force approximation:  

Proximity-Force Approximation (PFA) theorem (also known as The Derjaguin 
approximation) is a mathematical technique used to derive the interaction force between curved 
objects at very close proximities from the interaction energy between paralleled surfaces [1, 
21]. The general form of this method is widely used in calculating different adhesion and 
cohesion surface related forces [22-25]. This method is also used in other theoretical domains 
such as nuclear physics. 

The dispersion interaction energy �)*+ between two objects at vicinity is given by the  
general formula of the PFA theorem which states [22, 24, 26] :  
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( ) ( )2PFA eff

d

E d R E r drπ
∞

= ⋅ �  (3.10) 

With �∥ is the free interaction energy between two semi-infinite plates, and the effective radius 

�'(( is chosen with respect to the geometry of the interacting objects. For spherical particles, 

the result of this method agrees with Hamaker's simple equation which also share the condition 
of a small distance compared to particle's dimensions, thus proving how powerful is this 
method. nevertheless, it should be emphasized that although the condition on which this 
approximation is established, limits its applicability, yet this method is fairly accurate in 
studying cohesion and adhesion for large systems.  

 

There have been some attempts to generalize the PFA method with the attention of 
overcoming the geometrical restrictions of this approach. The surface element integration [27] 
and the Surface Integration Approximation [28], thus have been proposed. These modelling 
techniques have been introduced for calculating van der Waals forces between colloidal 
particles. moreover, even though these two approaches are constructed upon different 
assumptions, still, they produce the same result [29]. 

In the Surface element integration method (SEI), the interaction energy between two objects 
of arbitrary geometries is calculated by taking the interaction energy per unit area between two 
infinite flat plates �
�� , and then double-integrate it over the planes on which the surface of 
these objects are projected [27, 30] , the general formula for this technique is given as follows 
[31]: 

 1 1
2 2

1 1

( ) ( )
S

n k
E r n k E r dS

n k

⋅= ⋅
⋅ �  (3.11) 

With ,�and ,�are the unit normal vectors pointing outward the surface of objects under 
consideration, .� and .� present the unit vectors pointing in the direction of the z axes which is 
considered in both objects' coordinate system to face each other. 

 

  

Figure 3.3 : Scheme of the Derjaguin 
approximation for spherical particles 
with radii R1 and R2 at close proximity 
(distance d << R1 ,R2), where the 
interaction force between the two 
spheres is calculated by summing 
(integrating) the forces between small 
circular sections of the particles [1]. 
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The SEI method has been used primarily to calculate the interaction between an infinite half-
space with a particle of arbitrary shape [27], and with a particle of a randomly generated rough 
surface [30]. Another recent work used the same method to calculate the adhesion force 
between colloidal cylindrical and spherical particles [31]. 

2.3. Retardation in Macroscopic Bodies: 

A simple approach to calculating the retarded dispersion forces between macroscopic bodies 
would be by introducing in the integrand in Eq.(3.2) the correction functions previously stated 
in Chapter 2. Henceforth, within the framework of Hamaker's pairwise summation method, 
several models have been proposed in the literature for calculating the retarded dispersion 
energy between macroscopic bodies. Accordingly, and by using the two expressions for the 
retarded interaction energy between two atoms (Eq.2.52), Overbeek [32] developed a two-part 
model which was a modification of Hamaker's formula for the interaction energy between flat 
surfaces.  

Moreover, through a full Hamaker integration and based on the two-part Overbeek's 
correction function, Clayfield et al.[33] calculated a complete expression for the retarded 
dispersion interaction energy between dissimilar spherical particles with different radii, as well 
as between a spherical particle and a flat surface. Yet from a practical prospect, the 
implementation of this model in a program presents a tedious procedure. Thereby, Gregory [23] 
proposed a single expression which agreed fairly well with Overbeek’s calculations [34]. 
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Where the value of b is chosen to be 5.32. furthermore , Gregory proposed an expression to 
calculate the retarded interaction energy [34]. However, this model is still restricted by the 
geometrical condition 
" ≪ �� inherited from his usage of the Derjaguin approximation to 
obtain his formula: 
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Ho and Higuchi [35] proposed a model to calculate the retarded interaction energy for 
spherical particles of different radii. However, this model is only valid for distances larger than 
8 nm and for particle radius greater than 2 μm : 
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 (3.14) 

Using their correction function, and through a full Hamaker integration scheme, Chen and 
Anandarajah [36] also calculated the interaction energy and force between dissimilar spherical 
particles, and between a sphere and a plane surface. It should be noticed that the terms in 
brackets in Eq.(3.12-14), is the correction to the nonretarded energy, where this correction term 
will be used in this chapter to study the effect of retardation from each model in the section 
dedicated to results and discussions.  
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2.4. The Casimir effect: 

After the investigation of the effect of retardation on the van der Waals forces that Casimir 
and polar [4] have conducted leading to the result stated above (Eq.2.50), Casimir has 
discovered a relation between these forces and the zero point energy variation , a relation with 
which he pursued in studying the effect of these forces at a macroscopic scale [37] , and 
fortunately, this pursue proved to be fruitful at the highest level. Casimir calculated that in the 
case of two perfectly neutral conducting infinite plates at proximity, an attractive force 
(pressure) is exercised on the plates, and the intensity of this force was found to be written as 
follows [38, 39]: 
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 (3.15) 

This form shows no dependency on anything except the topological boundaries originated 
from the presence of plates [40], a result which is inherited from the fact that the objects are 
considered to be perfect conductors. Moreover, the constant c (speed of light) is incorporated 
in the model as a result of the relativistic contribution to the interaction energy between these 
objects. 

 

This force is pure quantum mechanical Since the force acting between two conducting plates 
in a vacuum is zero when considering the classical electromagnetic theory [40]. The 
significance of demonstrating the existence of such effect lies in the physical implications 
derived from the theory of Casimir interaction of perfect mirrors/conducting plates. The theory 
states that as the vacuum is effected by the presence of an object which enforces boundary 
conditions on the quantum fluctuations existing in the vacuum state, the zero-point energy is 
altered [40]. in the case of two parallel plates, the quantum fluctuations are limited between 
these objects, a pressure rises due to the energy difference (Eq.3.16) between the total allowed 

 

 

 

Figure 3.4: the Casimir pressure 
between two parallel perfectly 
conducting plates due to quantum 
vacuum fluctuations [38]. 
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modes inside the boundary (between the plates) and the modes outside the boundary [20, 39, 
41-43]: 

 ( ) ( )( )
2 i i

i

E z z zω ω= − → ∞  
ℏ

 (3.16) 

Where 01
2� are the allowed mode satisfying the applied Boundary condition for two planes 
separated by a distance 
2� , and 01
2 → ∞� are those of the unbounded vacuum  space [39, 
41]. To calculate the Casimir effect between curved surfaces a simple way to do it would be by 
using the Derjaguin (PFA) approximation stated above with the interaction Casimir energy for 
parallel planes is given as: 
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2.4.1. Worldline calculations of the Casimir effect: 

The worldline approach is a novel method inspired by new developments in string theory 
combined with Monte Carol algorithms [44, 45]. The main usage of this technique is studied 
numerically fluctuating scalar fields under Dirichlet boundary conditions, that is without going 
through the tedious complex theoretical calculations [44, 46, 47]. therefore, this method 
presents a promising technique for calculating the Casimir force between macroscopic bodies 
without going through the cumbersome mathematical developments of the classically used 
Quantum electrodynamical methods [48]. 

This formalism of the Casimir effect problem has surfaced 15 years as H.Gies et al. [44] 
proposed this technique to overcome some of the theoretical problems encountered in 
calculating the Casimir interaction between nonplanar objects [44]. And since then, this method 
has been applied to many geometries which are relevant to the experimental measurements of 
this effect, such as the case of sphere-plane or cylinder-plane configurations [44].  

The results calculated through this method were compared with that which were derived 
using the proximity force approximation, consequently, the scheme of the worldline 
calculations has been proven to coincide perfectly with the results of the PFA method for 
distances at which the latter is fully functional and fairly accurate [22, 49]. Moreover, this 
technique has the feature of been applicable to arbitrary distances making this approach to go 
beyond the geometrical restrictions of the PFA theorem [22]. 

The effect of edge on the Casimir interactions is noticed to be studied for the first in literature 
– to the best of our knowledge - using this method, where the cases studied were the interaction 
between a half-plane and an infinite plane  for a perpendicular arrangement [46], and a parallel 
one [48]. This method is still new and poorly used in literature, yet it gives some prospect 
insight for been applicable to study numerically the effect of geometrical conditions of the 
interacting objects such as curvature and roughness, thus we emphasise the importance and the 
interest of exploring the worldline research direction to study these effects. 
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2.4.2. The macroscopic theory of Van der Waals forces (DLP method): 

Although the result of Casimir is elegant in its form, yet a more realistic model had to be 
developed for real materials which exhibit dielectric properties. Therefore, Lifshitz generalized 
the findings of Casimir to real materials by developing a macroscopic phenomenological theory 
that unifies all earlier theories in one model which encompasses all contributing physical 
effects. He proposed that regard dispersion interactions to be occurring through the fluctuating 
electromagnetic field, which is always existing inside the adsorbing medium and extending 
outside partly as radiated travelling waves from the object in  the form of standing waves that 
disappear exponentially as we move away from the surface of that object [50], the keystone of 
this approach is to start from the optical properties of objects and calculate the van der Waals 
forces from the full optical spectrum  [13, 50]. 

 
Lifshitz idea was generalized later by him and collaborators from Mosco by considering the 

existence of third dielectric medium filling the space between the interacting objects [51], this 
was the general DLP (after Dzyaloshinskii, Lifshitz and Pitaeskii) theory of the Casimir effect 
.to explore the result of this model , let us consider a system of two half-spaces separated by  a 
material medium as it is shown in Fig.(3.5), where all the three parts of space has different 
dielectric constants which are  stated as follows [43]: 
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The non-retarded interaction energy between two half-spaces separated by a distance 
"� is 
given at finite temperature to be [51, 52]: 
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With k is the transverse wavenumber of the fluctuating electromagnetic field. ∆�� 6," ∆�� and 
are given with the general formula [52-54]: 

78 79 7: 

; 

 

Figure 3.5 : The model-case proposed by 

Dzyaloshinskii, Lifshitz and Pitaeskii to 

calculate the Van der Waals interactions 

for parallel half-filled spaces separated by 

a third medium [1]. 

 



CHAPTER 3                                                     Dispersion forces between macroscopic objects 

 

50 
 

 ( ) ( )
( ) ( )

j n k n
jk

j n k n

i i

i i

ε ω ε ω
ε ω ε ω

−
∆ =

+  (3.20) 

Additionally, The dielectric permittivity of the materials along the imaginary frequency axis 
can be calculated using the Kronig-Kramers relations [13, 54] : 
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Where <" is the imaginary part of the dielectric frequency dependent function <
0� =
<>
0� � <"
0�. This relation poses a problem since for the result to be obtained the integration 
must be over the entire optical spectrum which is not always available. Therefore,  a more 
simplified formula for the dielectric permittivity is proposed by Ninham and Persegian (1970) 
[54, 55]: 
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Where 0? , 0@ , 0A are respectively the characteristic microwave, infrared, and ultraviolet 
absorption frequencies and ,B  is the refractive index in the visible range. Furthermore, and 
with simple mathematical developments, the DLP model for the Casimir interaction energy (per 
unit area) between real dielectric materials is found to be written as follows [13]: 
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It is clearly noticed that this formula is of the same form as the one calculated by Hamaker 
from the pairwise summation approach (Eq.3.2), with one difference, the formula of Hamaker 
constant is changed to a one that incorporates wholly the optical spectrum of the interacting 
materials, and it should also be emphasized that for the retarded regime the effect of retardation 
is incorporated within this constant in contrast to the pairwise retarded approximation's stated 
earlier in this chapter. Moreover, this constant is now given within the framework of DLP 
theory as follows [52]: 
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For planar geometries, it is satisfactory to use this formula to evaluate the value of the 
Hamaker constant. Nevertheless, it has been demonstrated that there are some geometrical 
configurations for which the form of  ∆1C  is changed [56]. Which proves that the geometry of 

particles can be a significant factor that determines and differentiates Hamaker constant. 
Another more simple and practical equation for the Hamaker constant is proposed  [6]: 
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With ,1 are the refraction indices for medium 1,2 and 3. 

Furthermore, The Casimir effect for perfectly conducting plates can be obtained from the 
DLP model by taking the limiting case for <�, <� ⟶ ∞  and for the intermedium to be a vacuum 
state with <� = 1 [57]. The interaction energy as given by the previous models suffer from a 
divergence and infinite outcome as the separation distance goes to zero 
" ⟶ 0�, this problem 
is overcome by considering a minimum distance beyond which the objects cannot approach due 
to the finite size of atoms constituting their surfaces. therefore, by introducing this cut-off 
distance "B to the model, the interaction Casimir energy is given as[52, 54]: 
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In this equation the third medium separating the interacting planes is considered to be 
vacuum; thus replacing  <� in Hamaker constant with 1.   

Although the DLP approach incorporates in its calculations all major effects characterising 
dispersion interactions between the macroscopic object (Fig.3.6), still its complexity hinders its 
applications to random arbitrary geometries. A problem which is faced in all approaches 
proposed in literature, and although there are some propositions to overcome this set back such 
as that proposed in by Roman Velazquez and Bo (2008) [42] or the latter paper by  which uses 
the scattering T-matrix technique [58], yet there are still more inherited problems in these 
approaches to overcome. It should be also emphasised that the approach based on the scattering 
T-matrix is a very promising one that ought to be investigated and developed[59]. So due as a 
consequence of the challenging mathematical calculations faced within this modelling 
framework, most of the papers have considered only simple geometries, focusing on those 
related to experimental settings used to measure these forces, namely the following 
configurations; sphere-infinite half-space [60-63], cylinder-plate [64] and sphere-sphere [65-
67] which had no experimental verifications till lately [68].  A simpler approach for calculating 
the interaction between curved surfaces would be, as proposed earlier, the application of the 
proximity force theorem using the result stated previously for half spaces. 

 
Figure 3.6: Physical effects that must be incorporated in a complete theory of dispersion 

forces. 
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3. Results and discussions: 

3.1. The effect of particles’ geometry 

In this section, we shall investigate the effect of particles’ geometry on the van der Waals 
interactions between macroscopic particles for different sizes. This is done with the aim to study 
the effect of geometry at a basic level for nanoparticles compared to the larger one. Moreover, 
we shall consider in our study three basic geometries; cubic, spherical and parallel cylindrical 
particles (Fig.3.7). the model used in our calculations is that which is introduced earlier in 
Eq.(3.8). 

 

Figure 3.7: Layout of the three studied geometries. 

We consider the particles to be of the same material which excludes the effect of its 
properties incorporated within Hamaker constant, and this is done by introducing the energy in 
the dimensionless form (EvdW/AH). additionally, to exclude the effect of weight in the 
calculations the mass of particles is considered to be constant which is translated 
mathematically into a constant volume, thus particles are considered to have the same volume 
V as a model sphere of a radius R*.  

Thus, the interaction energy which modelled by Eq.(3.8) is reformulated to new expressions 
dependent only on particles’ volume. This can be attained by substituting Reff and L with their 
counterparts' expressions related to R shown in Tab. (3.2), and R is replaced by expressions 
related to the volume V as shown in the third column of Tab. (3.2). this leads to the attended 
formulas of the interaction energy which variates only with respect to particles' volume, which 
help us to investigate the effect of geometry separately from all other effects. 

Tab. (3.2) illustrates the geometrical parameters used for cylindrical particles depending on 
the value of n. For a constant volume, when n increases the cylindrical particle becomes more 
like a long thin wire. Alternatively, when n decreases less than 1, the cylinder becomes more 
similar to a thin disc, in this work, the condition L>R is assumed, thus, n will be chosen to have 
three values greater than 1 En = 2,10,100G. 
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Table 3.2: Parameters used to calculate the interaction energy and force. 

Geometrical parameters L effR
 R  

P
ar

tic
le

s’
 

ge
om

et
ry

 Cubic 2 R⋅  ------ 
H��/� 2⁄  

Spherical ------ / 2R  
3H 4!⁄ ��/� 

Cylindrical n R⋅  2R  
H ,!⁄ ��/� 

Fig. (3.8) show the effect of geometry on the van der Waals interactions energy groups of 
particles: Nanoparticles; where we choose a model particle size with R* =10 nm (Fig.3.8.a). 
And with R*= 100 nm (Fig.3.8.b). And Sub-micronic particles which are used for comparison 
(Fig.3.8.c), where we choose the radius of the model particle to be 500nm. We emphasize the 
fact that even for micronic particles when we introduce the size of the model particle into the 
cylindrical particle calculations for the higher value of n, the resulting shape is still considered 
in the nanosized limit because the volume would be mainly distributed along the length of 
particle producing the shape of a nanowire. 

For nanoparticles, by the comparison between the three shapes, we notice that the effect of 
geometry is more recognizable for small distances less than 5 % of particle's size. When the 
distance increases the interaction energy of the geometries converges, which means that the 
effect of geometry is becoming less influential. It should be stated that the interaction energy 
for cylinders increases with n  because there is a relation between n and the area of proximal 
surface of particles, since the van der Waals energy is mainly related to the surface  [6]. The 
increase in the area of the surface at proximity between particles leads to an increase of 
interacting surface atoms, which in its turn increases the interaction energy.  

For distances of the same order as the size, the curvature of the particle’s surface becomes 
less influential. This means that the interacting atoms on the surface at these distances look at 
the same distance for each other, even for curved surfaces. These results and interpretations are 
valid only for cubic particles and spherical particles due to the similarity in their geometry. 
Moreover, for small distances, cubic particles give a high value of energy then spheres because 
the curvature of particles surface plays a significant role and interacting surface atoms at 
proximity interact with a strong correlation to the bending of the surface. Therefore, a high 
bending of the surface leads to a lower total interaction and a flat surface as in the case of cubic 
particles gives the highest value of the interaction energy. 

By extrapolation from the inter-crossings of the graphs, parametric expressions are proposed 
to determine the relation between the geometries. These relations demonstrate the cases where 
the geometries give nearly the same value of the energy. 

Table 3.3: derived parametric relations for the intersection points of different energy graphs. 

Geometries Cube-cylinder Sphere-cylinder 

Parametric relations 
�∗

" ∙ ,
≈

2
100

 
, ∙ �∗

"
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Figure 3.8: effect of geometry of particles on the van der Waals interaction energy. 
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3.2. The effect of retardation  

To investigate the effect of retardation on the vdW interaction energy. This effect is 
calculated using the expressions of Ho and Higuchi (Eq.3.14), and of Gregory (Eq.3.13). These 
models are compared with the simple expression proposed by Hamaker (Eq.3.4) for the non-
retarded energy between spherical particles. More importantly, the full exact results of Clayfield 
et al. [33] are also included in the comparison.  

The dispersion interaction energies calculated from these models are illustrated in Fig. (3.9) 
with respect to particle radius for an intermediate distance of 10 nm. These models are analysed 
to investigate the influence of different parameters (size, distance and shape) on the dispersion 
interactions of macroscopic bodies. Since the result of Clayfield include the effect of 
temperature and to exclude this effect we consider that Hamaker constant takes the same value 
chosen by Clayfield 
AM = 25kT�, where k is the Boltzmann constant and T is the temperature. 
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Figure 3.9: The retarded dispersion interaction energy compared for different models plotted 

against the particle's radius for a distances d=10nm. 

We notice from Fig.(3.9) that the retardation is found constant when calculated with the 
model of Ho and Higuchi and that of Gregory, thus showing no dependence on particle's size, 
yet the result of Clayfield shows a dramatically different behaviour since they show that this 
effect is higher for nanoparticle, and only give similar results (With a slight discrepancy) as 
those of the other models when particle's size is larger than 100 nm. 

 Fig.(3.10) shows the same comparison for different distance with particle's size fixed at 100 
nm.  We notice that the three models give similar results up to a distance of 10nm, and for the 
larger distance, we notice the effect of retardation calculated with Clayfield's model is bigger. 
Since the effect of dispersion forces is not strongly effective at extremely large distances 
compared to the size of particles, the discrepancy between the full exact result of Clayfield and 
those of other models can be excluded although it is somewhat noticeable. 

^ 
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Figure 3.10: The van der Waals interaction energy with particle radius (R=100 nm). 

Furthermore, we use results obtained from the model proposed by Clayfield in his 
cumbersome two-page long formula. the three particle sizes are chosen so as to include the 
limits of nanosized particles where R is 20 nm for extremely small nanoparticles and R= 100 
for the limit which presents the changing point to the nano-regime as indicated in chapter 1. For 
comparison, we also include micronic particles R=1μm. Thus the effect of retardation Tclay (in 
percentage %) calculated from Clayfield's results is presented in Fig.(3.11). 
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Figure 3.11: The effect of retardation calculated from Clayfield’s model [69]. 
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Fig.(3.11) display a very interesting result, where we notice that for particle's radius larger 
than 100 nm the effect of retardation behaves the same, showing thus no dependence on 
particle's size. However, for extremally small nanoparticles the effect is shown to be more 
dramatic and consequently leading to a rapid decay of the interaction energy. Thus, we conclude 
from these remarks that there is a strong dependence of retardation on particles size at the 
nanoscale, meaning that nanoparticles behave differently as expected when it comes to the 
effect of retardation on dispersion interactions. 

Since the model of Clayfield is hard to manipulate and cumbersome when it comes to the 
programming process, we propose that the model of Ho and Higuchi be modified by introducing 
different values of the constant B in the following generalised relation of Ho and Higuchi's 
formula: 

 1

12 1 /
Rt H
Ho

A
E R

d d λ
 = −  +Β 

 (3.27) 

The chosen of the value of B which Ho and Higuchi[35] have used is taken assumed for the 
instance of particles' size near 100 nm. Nonetheless, for other cases of different sizes and 
interparticle distances, this value must be changed in order for the model to coincide perfectly 
with the result obtained from Clayfields.  we propose in the table below we propose different 
values of the constant B that can be used for different particle's size and distance, where we 
notice that for large particles (R ≥100 nm) almost all calculated values are close relatively, 
however, the case of small nanoparticles is quite different with this constant having bigger 
values than those calculated for larger particles.  

Table 3.4: calculated values of the constant B.  

Distance in A° 
 Particle radius (A°)  

100 1000 10000 

1 93,14 20,09 ///// 

10 76 19,72 14,14 

100 168,25 8,83 11,82 

1000 //// 82,34 16,24 

Furthermore, to examine the influence of particle’s size and geometry on the retardation 
effect, the retarded van der Waals interaction for two interacting atoms is compared with that 
of macroscopic bodies, where spheres and flat surfaces are chosen in our case. The retardation 
of the energy between atoms is calculated using the (Eq.2.54) proposed by Nandarajah and 
Chen (1995)[70]. For microscopic bodies, the retardation of the energy between flat surfaces is 
calculated using the correction function proposed by Gregory (Eq.3.12), and for spherical 
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particles, we use the models of Ho and Higuchi, and of Clayfield. Thus Fig.(3.11) shows the 
comparison between the retardation effect for all these different cases. 

 
Figure 3.12: The retardation effect on the van der Waals interaction energy for different 

objects. 

Fig.(3.12) demonstrates the previous results when the interparticle distance d exceeds 10 
nm, the interaction energy is shown to decrease to less than 50% of its non-retarded value. 
Additionally, when this effect is calculated using the model of Gregory or Ho et Higuchi, 
particle’s size is verified easily to not be involved to the retardation term in the models proposed 
for the van der Waals interaction energy. Since these models were developed approximately 
without any consideration to the effect of particle’s size, as shown in the previous section of 
this chapter.  

Moreover, this energy is shown to decay faster for spherical particles than for surfaces, 
where the discrepancy between the two is up to 30 %. Therefore, it can be stated that retardation 
is related to particle’s shape. The effect of retardation is also demonstrated to be more 
significant for macroscopic particles than for single coupled atoms. Thus, from all previous 
results, we can conclude that this effect is not only dependent on the distance between particles 
but also on particles’ size and geometry, especially in the case of nanoparticles.  

3.3. The retardation effect (an atomistic pairwise approach): 

The van der Waals interaction energy between atomic nano-clusters can be calculated in the 
simplest form using the pairwise summation approach proposed by Hamaker [5]. The total van 
der Waals interaction energy ST
E� is given as the sum of all the interactions between 
individual atoms as shown in Eq.(3.2): 
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Where rWX respectively is the distance between the i-th dipole and the j-th dipole in clusters 1 

and 2. The retarded van der Waals interaction energy is also given in the following formula: 
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To study the correction factor of the interaction energy between large groups of atoms we 
consider the ratio illustrated in Eq.(3.30) between the global retarded and non-retarded 
dispersion energies: 
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The geometrical configuration chosen for this study is a 2-D rectangular cluster of atoms. 

The distance between atoms is taken to be 1
Y for most of our calculations. Fig.(3.12) 
demonstrates the chosen orientations of these clusters with respect to each other. A comparison 
between the two configurations aligned (Fig.3.13.a) and parallel (Fig.3.13.b) would 
demonstrate the effect of atomic distribution in space (cluster geometry) on the global 
retardation of the van der Waals interaction energy between two symmetrical nano-clusters. 
The dimensions are expressed by the number of atoms per dimension, and Since the clusters 
are chosen to be rectangular, a single number ‘n’ is considered, this number ranges from 1 to 
104. The calculations also would be calculated using a code in FORTRAN , and the flow chart 
of the algorithm used here is given in “appendix I”, where this flow chart can be used for 
arbitrary geometries. 

 

Figure 3.13: The configurations of the atomic clusters studied. 

The reduced retarded interaction energy between clusters is compared with the non-retarded 
one as illustrated in Fig.(3.13). For the comparison to be significant, the number ‘n’ is chosen 
as the highest value fixed in this work, which corresponds to (n=104). The retarded interaction 
energy is shown to give smaller value than that of the non-retarded case. The difference between 
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the two cases is shown to increase with increasing distances, which means that the effect of 
retardation rises with respect to the distance. 
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Figure 3.14: The reduced energy compared for the retarded and non-retarded cases. 

Eq.(3.31) shows the discrepancy S
%� between the retardation effect for clusters \
�� and 
for single atom ]
��. This value is calculated to illustrate the effect of the number n on the 
retardation of the interaction energy between clusters. 
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Figure 3.15: The discrepancy behaviour with respect to the distance for different value of ‘n’. 
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Figure 3.16: The evolution of the maximum value of S. 

Fig.(3.16) shows that the discrepancy S increases with the number n. S is also shown to have 
an upper limit (≅10 %). These results demonstrate that there is a minor impact of the number 
of atoms on the retardation effect on the interaction of clusters, and this effect does not exceed 
10 % discrepancy from the retardation for a single atom. A positive value of S shows that the 
effect of retardation is always greater for clusters than for single atoms. The behaviour of the 
value of S can be easily verified to be the same for both configurations. However, when S is 
compared for short distances as illustrated in Fig.(3.17), parallel 2-D clusters give smaller 
results. This means that in this case, the effect of retardation is smaller at short distances. The 
result demonstrates that the distribution of atoms in space effects retardation on small distances. 
In other words, the retardation effect is strongly related to cluster geometry at short distances. 
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Figure 3.17:  The discrepancy S compared for aligned and parallel clusters for n=104. 
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To study the effect of geometry on the retardation of the interaction energy, S is investigated 
by the same method as the correction functions f and T. The value ∆S is calculated in percentage 
using Eq.(3.32), with the indices ‘para’ and ‘align’ indicating respectively parallel clusters and 
aligned clusters: 

 
% 100 para align

align

S S
S

S

−
∆ = ×  (3.32) 
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Figure 3.18: ∆S plotted with respect to the distance for different value of n. 

The difference ∆S is shown to be higher for distances smaller than the number (r << n), 
which supports and generally) these the previous results. As the distance increases ∆S 
decreases, indicating that the geometry becomes less significant for larger distances of the same 
order of clusters’ dimensions.  For extremely large distances (r0 >> n), ∆S increases again. These 
results show that the effect of these forces is only noticeable at short distances though no value 
was integrated practically, however it is valuable for a global understanding of these forces 
behaviour. 

Additionally, it should be remarked that for small clusters (n<100), the effect of geometry is 
significant even for all distances E∀�B; ∆c ≥ 50%G. This result is very important since it implies 
a necessity to consider the effect of geometry when modelling the retarded dispersion 
interactions between nano-clusters. The same result stated earlier using the other models which 
were developed from Hamaker's integration. This problem was solved empirically by 
introducing a modified version of Schenkel's model in Eq.(3.27) with new values of the 
parameter B given for nanoparticles in Tab. (3.4). and Although this modified model is not 
based on a more fundamental calculations such as Quantum electrodynamic methods, yet it is 
excepted to be sufficiently more accurate the widely used Hamaker's model. 

Since this modified model is a better approximation to dispersion forces, it can thus be 
incorporated within the study of the dynamics of nanoparticulate materials. In the case of 
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nanocolloids, we can use this model to better predict the stability of the colloid suspension, 
which is crucial for certain delicate applications of such materials specially in pharmaceutics 
and biomedicine. Additionally, when simulating nano-aerosols deposition in the environment 
and within the human respiratory system, using this model to account for the interactions 
between these particles would lead for a more realistic and accurate simulations of these 
processes which would lead for a better understanding of the risk involved with handling and 
exposure of this type of materials, and ultimately for better security measurements.  

4. Conclusions: 

We have reviewed in this chapter the basic models of dispersion interactions between 
macroscopic objects, where the theoretical limitations of those models were briefly stated. We 
then use some of the proposed models to study the effect of the geometry of particles by 
comparing three basic shapes: cubic, cylindrical and spherical. The results show that the effect 
of geometry is significant for interparticle distances less than 20% of particles' radius, with 
parametric relations proposed to relate between the interaction energy for different geometries. 
The retarded vdW interactions are also investigated, where it was demonstrated that the effect 
of retardation is highly dependent on particle size and shape as well as the distance. And hence 
a need for a new model for the retarded van der Waals interactions between nanoparticles was 
emphasized. the influence of cluster dimensions and geometry on the retardation effect of 
dispersion energy is also investigated. Two basic configurations of 2D symmetrical 
(rectangular) clusters are investigated (parallel and aligned). The impact of the number of atoms 
on the retardation effect on the interaction of clusters is shown to be less than 10 % of 
discrepancy when compared to the retardation for two interacting atoms. The distribution of 
atoms in space (geometry) is also shown to have a strong significance at small distances. This 
result implies a dependency of retardation on the geometry of clusters. 
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CHAPTER 4 

Dispersion Many body interactions a Coupled dipole method 

“Physics is really nothing more than a search 

for ultimate simplicity, but so far all we have is a 

kind of elegant messiness.”  

 Bill Bryson, A Short History of Nearly Everything 

 

1. Many-body affects and dispersion interactions:  

In a complex system of many particles the interaction is not simple or pairwise summable, 
since the existence of other particles screens the interaction between the pairs and thereby 
effecting the total energy [1]. Therefore, in the discrete microscopic point of view of dispersion 
forces and for a complete theory, these many body screening effects have to be included within 
the corpus of the developed models. Accordingly, The total van der Waals interaction energy 

between a collection of molecules is given as the sum of all m-body contributions ���� [2, 3]: 
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(4.1) 

If the total energy is assumed to be convergent and the higher m-body contribution terms are 
excluded, only the 2-body interactions survives and the interaction between macroscopic bodies 
is considered to be a result of the sum of two body interactions. This reduces the many body 
problem to the discrete pairwise summation formula proposed by Hamaker and studied in the 
previous chapter  [2]: 

 ' '
(2)

6
1 1 1 1

( , )
N N N N

i j
i j i j ij

E E r r
r

λ
= = = =

= =   (4.2) 

However, this approach is clearly not complete or exact due to the serious limitations upon 
which it was built [4]. And although Lifshitz has solved this problem in his theory yet assuming 
the material to be continuum has proven also to be problematic if complex geometries are 
involved or extremely small nanoparticles or nanoclusters are studied, where the discrete 
morphology of matter is evident and influential.  
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A simple example is chosen from literature demonstrating the important contribution of 
many body effects to the total dispersion interaction energy between nanoparticles; the Axilrod-
Teller-Muto potential has been used to incorporate 3-body interactions when calculating the 
vdW forces between silica spherical noncolloidal particles with the number of constituent atoms 
is 619 atoms[5]. And they found that this contributions accounts for 20% of the total interaction 
energy demonstrating thus the importance of many body interactions and their critical 
contribution to dispersion forces between nanoparticles [5]. Similar results are demonstrated 
throughout literature[6-11], thus urging researchers to develop a microscopic theory that 
includes all effects, mostly many body interactions and retardation. Accordingly, the Coupled 
dipole method was proposed and is developed. 

2. The Coupled Dipole Method: 

The first appearance of the coupled dipole method (CDM) was in a successive three articles 
by Bij Renne and Nijboer [12-14]. Lately this approach had resurfaced and reintroduced with 
applications to the interaction between spherical nanoparticles and the calculation of static 
polarizabilities of nanoclusters [11, 15, 16]. The CDM is an atomistic approach which has the 
unique property of accounting for all many body interactions contributing to the dispersion 
energy between two objects [11, 16]. This model has been used to demonstrate the limitation 
of the pairwise summation approach as well as the DLP theory especially for extremely small 
nanoparticles [11].  

Till now, The CDM has been applied for certain limited cases such as the interaction of two 
identical nano-spheres [16], other applications are also demonstrated in literature for the case 
of graphitic nanostructures such as nanotubes, nanoribbon [9] and nanowiggles [17]. The CDM 
has been developed only for the non-retarded regime, yet a further enhancement of this method 
would make it the most suitable and accurate method for nanostructures and nanoclusters, 
especially those with complex geometrical arrangements [18].  

There also some other applications demonstrated in literature of the same approach with 
slight differences[19-22],yet we shall not go through them since they were intended to study 
the interactions between molecules or incorporate dispersion forces within the process of 
modeling the structure and properties of materials[4, 23, 24].  

2.1. Quantum theoretical basics of the theory: 

Within the CDM framework each atom is replaced by a three-dimensional harmonic 
Quantum Drude Oscillator with the nucleus is placed at the center [19, 25], which means that 
at a basic level we have replaced Fermi statistics with Boltzmann statistics since the QDOs are 
distinguishable. In this model particles interact through long range Coulombic forces, and each 
of those particles is characterized by its mass, frequency, and charge��, �, ��[19]. The particle 
possesses an instantaneous dipole moment proportional to the oscillator displacement from 
equilibrium 	
. The Coupled Dipole Method Hamiltonian for an N-particle system is written as 
follows [8, 12, 19, 25]: 
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The first terms of the Hamiltonian present the kinetic and potential energy of the Harmonic 
oscillators, and the last terms defines the coupling between these oscillators by the dipole-dipole 
interaction tensor �
�, where 

 represents the linear momentum of the ith particle [19, 25]. 

Therefore the vdW interaction energy for the full system of interacting clusters is calculated as 
the difference between the zero-point energies of the coupled and uncoupled oscillators [19]: 

 3
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= −    (4.4) 

Where �
 are the matrix eigenvalues of the interaction Hamiltonian.  

2.2. Formulation of the model: 

To demonstrate the formulism of this approach let us consider two interacting clusters (1) 
and (2) with the number of atoms in each one is N and N’ respectively. The interaction energy 
between these two clusters can be calculated by taking the total energy of the system of 
combined interacting particles and subtract the self-energies of each individual system when 
considered at large distance where the interaction vanishes [3, 18]:  

 ( )vdW N N N NV V V V′ ′+= − +  (4.5) 

The related energies of the interacting systems are calculated from the eigenvalue problems 
developed using the CDM framework. Initially, Each atom is considered as an instantaneous 

dipole 

 induced by a local electrical field ��⃗ �����⃗
�, with its dipole moment �
is given as 
follows [16, 18, 26]: 

 ( )i i loc ip E xα= ⋅
�� �

 (4.6) 

The local electric field ��⃗ �����⃗
� is given as the sum of all instantaneous electric fields 
generated from instantaneously induced dipole moments of other atoms in the system [27]: 
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The static dipole field tensor is given as it was demonstrated in chapter 2 within the 
multipolar expansion of the electrostatic potential of the interaction between molecules [15, 27, 
28]: 
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Where I is the identity matrix, �
� is the unit vector and �
�is the distance between the centers 

of atoms i and j. The oscillator model is employed for non-retarded vdW interaction energy the 
dynamic atomic polarizability of a Drude harmonic oscillator is[25]: 
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To use this formula, we need the value of 0α and 0ω  which can be calculated from the 

continuum theory using the clausius-mossotti relation [18] : 
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By substituting Eq.(4.7) in Eq.(4.6) we find a system of equations where each one is designated 
for a single atom in the system: 
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 Furthermore, by introducing the isotropic atomic polarizability of the Drude model [9, 11, 
27], we then get an eigenvalue problem which is stated as follows: 
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This can then be written as: 
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For a system of identical atoms ���
 = �� ;  ��
 = ���, the problem can be rewritten as [18]: 
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Where 
�⃗  is a 3N column vector, I is 3N×3N identity matrix, and � = −� ∙ � is also a 3N×3N 
matrix. and since frequency contributes a ground state energy of 2kωℏ  . the total energy of a 

system of N-Drude oscillators is then given to be [25]: 

 3

12

N

N k
k

V ω
=

= 
ℏ

 (4.15) 
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The eigenvalue problem will be written so that the eigenvalues are � ��⁄  and not �� " ��"⁄ �, 
which makes it possible to solve the problem straightforwardly using standard diagonalization 
algorithms[18]: 

 
( )1/2

0

I Q P P
ω
ω
 

+ ⋅ = ⋅ 
 

� �
 (4.16) 

The total van der Waals energy of the system is given thus as: 

 
( )

3
1/2

1 0 0 2

N
k N

k

V
Tr I Q

ω
ω ω=

  + = =    


ℏ
 (4.17) 

If the case of two interacting nonpolar atoms is taken, the problem can be solved with few 
lines of calculations to give a solution of six eigenvalues which are written as follows: 

 ( ) ( )1/2 1/2

0 01 2 ; 1z x yω ω γ ω ω ω γ± ± ±= ± = = ±   (4.18) 

Where for a system of identical particles such as the one is considered here in this work, we 
have  # = �� �$⁄  with r is distance between the center points of the atoms, and the x and y 
eigenmodes are degenerate due to symmetry, the eigenmodes and their corresponding 
eigenvalues are demonstrated in the Tab.(4.1) below .  

Table 4.1: eigenmodes and corresponding Eigenvalues in a system of two interacting non-
polar atoms 

Eigenmodes eigenvalues 

 
( )1/2

0 1 2zω ω γ+ = +  

 
( )1/2

0 1xω ω γ+ = +  

 
( )1/2

0 1yω ω γ+ = +  

 
( )1/2

0 1 2zω ω γ− = −  

 
( )1/2

0 1xω ω γ− = −  

 
( )1/2

0 1yω ω γ− = −  
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For the total system of (N+N’) particles, the eigenvalue problem is found to be as follows [18]: 

 2P PλΩ ⋅ = ⋅
� �

 (4.19) 

With Ω is the (3N + 3N’) × (3N + 3N’) interaction matrix, and its eigenvalues are the squared 
eigen-frequencies �" = �� ��⁄ �". Ω is given in the following form [11]:  

 I Q M

M I Q

+ 
Ω =  ′ ′+ 

 (4.20) 

It should be recognized that � and  �% are the interaction matrices for particles of the same 
object (inter-interactions), also & and  &%are matrices presenting the interactions between 
atoms of different systems (intra-interactions)[18]. With Q is a 3N×3N traceless matrix, made 
of dimensionless dipole tensors connecting each two atoms within cluster (1), Q’ is the 3N×3N 
matrix related to interactions between atoms of cluster (2). M is a 3N×3N’ matrix representing 

the dipole interaction tensors '&
�( connecting one atom in cluster (1) to another in (2), and M’ 

is the transpose matrix of M representing the dipole tensor connecting an atom from cluster (2) 
to another in cluster (1). These matrices are defined in the following table with each element is 
an interaction tensor between two atoms. For the following calculations we take as a convention 
the labels �), *� in T to present indices of atoms of the same system (cluster), on contrast the 
labels �+, �� in the kmM  elements are indices of atoms of different system. 

Table 4.1 : The interaction matrices defined with each element is a 3×3 matrix defining the 
interaction between atoms from the same cluster for � and  �%, and atoms of different clusters 

for & and  &% . 
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From the eigenvalue problems for both single system (Eq.4.16) and the total combined 
system (Eq.4.19), we can demonstrate using TCDM that the total exact dimensionless non-
retarded dispersion energy vdwW  is given in the following form: 

 ( ) ( ){ }1/2 1/21/2

0 2
vdW

vdw

V
W Tr Tr I Q Tr I Q

ω
   ′ = = Ω − + − +     ℏ

 (4.21) 

Where the term ℏ�� 2⁄  comes from the fact that each normal mode frequency contributes with 
an energy equals to the value of this term [18]. It should be noted as well that the assumption 
of isotropic atomic polarizability made here is purely for computational reasons and the general 
form of anisotropic atomic polarizability can be implemented within the CDM approach. 

The various methods which are used for computing van der Waals forces and the exact CDM 
method developed in this chapter were compared [29]. The comparison was made for two 
identical spheres with the number of particles in each one is N=2340 atoms. And the spheres 
diameters is taken to equal 5.88 nm in order to be introduced into the continuum methods. Due 
to the discrete placement of the atoms within the cluster, analytical methods (e.g. DLP, 
Hamaker) far over-estimate the result for small gaps. The two-body sum approaches the exact 
CDM value at far distances, since multi-body effects mostly disappear. At much larger 
separations than shown on Fig.(4.1) the CDM and Lifshitz theory converge to the same result, 
as expected. Results from the Derjaguin approximation are remotely off even at large distances 
[29]. 

 

Figure 4.1: a comparison between the CDM approach and other methods for identical 
spherical nanoparticles with radius 5.88 nm (reprinted from ref.[29]) 
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2.3. The Trace Coupled Dipole Method (TCDM): 

Since the calculation of the trace of the square root of a matrix is a hard problem which 
involves computationally expensive calculations, the terms of this equation can be each 
developed using a binomial expansion to series of powered matrices. We start by writing the 
first term as follows [18]: 

 1/2

1/2 0

0

I Q M
Tr Tr

I M Q

     
  Ω = +      ′ ′      

 (4.22) 

We have the mathematical formula of the binomial expansion which states that: 

 
( )1/2

0

1 n
n

n

A c A
∞

=

+ =   (4.23) 

Where the coefficients ./ are given as follows: 

 
0

1

1

3
1 0

2n n

c

c c for n
n−

=

  = − ≠ 

 

 (4.24) 

By introducing the of all terms, the total interaction energy than can be written as [18]: 

 

( )
0 0 0

n
nn

vdW n n n
n n n

Q M
W c Tr c Tr Q c Tr Q

M Q

∞ ∞ ∞

= = =

     ′ = − −       ′ ′     
    (4.25) 

The vdW interaction energy thus can be written as a sum of a series of (n) contributions:  

 

0

n
vdW

n

W W
∞

=

=  (4.26) 

With the n-th order contribution to the interaction energy is given as [18]:  

 

( )
n

nn n
n

Q M
W c Tr Tr Q Tr Q

M Q

     ′ = − −       ′ ′     
 (4.27) 

These contributions should not be mistaken for n-body interactions, a general demonstration 
of this statement will be thoroughly presented in this paper. This approach was verified to give 
about 99% the same result as the exact CDM approach for n=10, and with calculation time far 
less than that needed to solve the eigenvalue problem demonstrated in Eq.(4.27). this method 
is very efficient in the case where the eigenvalues of the single atoms are not needed which is 
the case of systems of identical particles as adopted in this work henceforth. 
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3. New algebraic model derived from the TCDM 

Although the application of the trace coupled dipole method to calculate the interaction 
energy is somewhat straightforward computationally, yet we shall further continue with the aim 
to present a model that does not only calculates the final interaction energy with less 
computational burden but also presents a general understanding of the interaction process. 
Therefore, we write the first term of Eq.(4.27) as the sum of two matrices: 

 0 0

0 0

nn
Q M Q M

M Q Q M

      
= +      ′ ′ ′ ′      

 (4.28) 

Now the matrix can be expanded as series using the binomial expansion given as follows: 

 
( ) ( ), ,k
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!

! !

n
n n n k

n k n
k

n
A B c A B with c

k n k
−

=

+ = =
−  (4.29) 

Denoting the matrices, A and B such that: 

 0 0
;

0 0

Q M
A B

Q M

   
= =   ′ ′   

 (4.30) 

Although the product of matrices A and B is not commutative�01 ≠ 10� for the general 
case, we assume the trace of their product to be constant for any permutation. This assumption 
holds completely for identical clusters due to the consequent inherited commutatively of A and 
B, a further inspection of the validity of this assumption for different atomic configurations and 
different cluster sizes can be investigated separately. Since the main aim is to study the 
interaction between identical clusters, we thus further continue our calculations upon this 
assumption. Therefore, the trace of this matrix can then be written as the sum of traces of the 
single terms of the series: 

 
( )

0 0

n n
n k n k k n k

k k

n n
Tr A B Tr A B Tr A B

k k
− −

= =

       + = =            
   (4.31) 

Now when we take the last term of the series for �+ = �� and develop its trace, we find :  

 
( )0

0

n
nn nQ

Tr A Tr Tr Q Tr Q
Q

    ′   = = +       ′   
 (4.32) 

Going back to the general equation of the n-th contribution to the vdW interaction energy 
between two clusters as demonstrated in Eq.(4.27), combined with the binomial (Eq.4.31) and 
the result found for the last term (Eq.4.32). The contribution of the self-energies of the 
individual clusters is found to vanish with the last term of the binomial series. The n-th order 
contribution to the total vdW energy is thus found to be: 
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=

 
   = +    

 
  (4.33) 

The energy is thus resulting either from the pure interaction between atoms of different 
clusters (2nd term) or from the coupling of inter-interactions with intra-interactions which are 
expressed by the first terms of Eq.(4.33). The trace of the last term is found to vanish ���31/4 = 0� for odd value of n due to the tracelessnes of the matrix in this case, and for even 
value of n the trace is found as follows: 

 ( ) ( )/2 /2n nnTr B Tr MM M M ′ ′  = +     (4.34) 

The first term is a series of k-th order. The trace of each term of this series has four possible 
outcomes related to the value of k and n, for n and k both are even or odd the trace of the matrix 
is given in Eq.(23). For n and k being out of order, (i.e. one is odd and the other is even) the 
matrix becomes traceless. 

 ( )( ) ( ) ( )( )/2 /2n k k n kk n k kTr A B Tr Q MM Tr Q M M
− −−    ′ ′ ′  = +     

 (4.35) 

Since the clusters are identical, and from symmetry we have �&% = &� and ��% = ��. 
Considering this assumption and by substituting Eq.(4.35) and Eq.(4.34) into Eq.(4.33), the n-
th contribution to the vdW interaction energy is reduced into the following formula: 

 ( ){ }2n
n n nW c Z n= × Χ + ×Κ  (4.36) 

Where: 

 
( )

1

, ,
1

n

n n k n k
k

c Z n k
−

=

Χ = − × Χ  (4.37) 

With Z is a mathematical object proposed to include all vanishing terms in the general equation 
as contributions of zeros, this mathematical function is defined as follows:  

 
( ) 0 2 1

1 2

for n k k
n

for n k k

= + ∀ ∈
Ζ =  = ∀ ∈

ℕ

ℕ
 (4.38) 

The last term 6/ presents the interactions between atoms of the two clusters (intra-
interactions), this term when calculated for a couple of atoms presents the results of London. 
The first series of terms presents the coupling between the interactions between atoms of the 
same cluster (inter-interactions) and the interactions between atoms of different clusters, with 
n is the total number of contributions and k is number of contributions inside the cluster. From 
the multiplication of matrices, we can deduce easily the formulas of the explicit formulas of the 
contributing K8and W8 terms involved in Eq.(4.36) and Eq.(4.37). 
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(4.40) 

The model is now straightforward and informative as it was intended to be, and we can 
derive the possible many body contributions easily without going through the tedious 
calculations.  

3.1. Presentation of possible interaction modes: 

When examining the terms 6/ , we notice that the path of the interaction is cyclic and that 
the number of atoms is even due to the vanishing odd terms owing to the tracelessness of the 

involved matrices '&
�(.  To simplify the graphical representation of the interaction modes,  a 

schematic representation (Fig.4.2) can be given in an innovative way using the concept of 
isomorphism of graphs from graph theory [30]. 

 

Figure 4.2 : The transformation from ordinary representation to the graph-theory based 
representation using the isomorphism of graphs. 

The representation proposed does not consider distances or boundaries of objects. Only 

atoms presented by points (vertices) and the interaction matrix '&
� , �
�( expressing the 

interaction between each two atoms are represented as lines (edges); we distinguish between 
particles by assigning a different color for particles (vertices) of different clusters (in our case 
blue and red for the two interacting clusters). Fig.(4.3) shows all possible modes for the second 
term 6/ of Eq.(4.36) for 2, 4,6n = . Fig.(4.4) shows the modes that occur due to the first terms �:/� of the equations of the n-th order contributions to the total interaction energy �;/�. the 
inner interactions of atoms of the same object (cluster), which are expressed in terms of the 

matrices '�
�(, are presented as edges with different color than that presenting matrices '&
�(. 
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Figure 4.3: Graphical representations of the interaction modes involved in the first 6/ terms. 

 

Figure 4.4: Graphical representations of the interaction modes involved in the first :/terms. 
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This method of representing the interaction between particles will allow us to find 
graphically all possible modes of interaction for each n-th order contribution. This investigation 
of the possible modes would be achieved by conserving the size of the graph (the number of 
edges; n) and reduce the order of the graph (‘m’ the number of vertices) by relating non-
neighbored vertices of the same color. The operation of graph-reduction is a map �Π� from the 
set �=>� of graphs ?�>, @� with order 'm' to the set �=>AB� of graphs ?�> − B, @� with order 
'm-1' . This operation is repeated until the graph is irreducible. 

 [ ] [ ]1: (m,n) (m 1,n)m mE G E G−Π → −  (4.41) 

This type of transformation (Eq.4.41) is due to the permutation of labels �)/�, where this 
permutation allows for cases where two labels coincide, which reduces the number of atoms 
(n) contributing to interaction and thus reduces the graph. The rules used to produce the graphs 
of all possible modes exemplified in Fig.(4.3) and Fig.(4.4), are inherited from the properties 
of the equations that these graphs present.  For the case of the 6/ term, we notice that all modes 
are reduced to a two-body interaction; the sum of the terms associated to these graphs can be 
easily demonstrated to be the same as the result calculated from perturbation theory as will be 
shown later in this thesis. 

3.2. Deriving m-body interaction energy: 

To calculate m-body interaction energies separately using the model proposed in this work, 
the representative graphs are used. Each graph is associated with the energy of the interaction 
which it is representing, thus the m-body interaction energy can be calculated from the sum of 
the energies of all possible graphs of order (m).  

 

Figure 4.5: Graphical representations of 2-body and 3-body interaction modes. 

A simple example would be to deduce the 2-body effect contribution from the model 
proposed. as can be seen in Fig.(4.5), the 2-body interaction energy is represented by a group 
of graphs which can be algebraically interpreted as a power series of the form: 
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 (4.42) 

By feeding the values of the dipole-dipole tensor elements into the matrices M and Γ, we have 
these matrices for identical atoms to be given as follows [18]: 

 &
� = �
� = D�� �
�⁄ 0 00 �� �
�⁄ 00 0 −2�� �
�⁄ E (4.43) 

After introducing Eq.(4.42) into the derived formula (Eq.4.41), the 2-body interactions for 
identical particles is therefore found to be given as follows: 
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∞
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 (4.44) 

Where the dispersion coefficients FG
 are defined for identical atoms to be given as: 

 ( )( )2 22 0
6 02 2

2
i ii

i

c
C

ω α= + −ℏ
 (4.45) 

We notice that the first term of the series (Eq.4.44) is exactly the same as the formula 
proposed by London for 2-body interactions using perturbation theory [31, 32]. We should also 
recognize that this term is equivalent to the first contribution ;" to the total interaction energy. 
This result demonstrates how powerful is this approach in calculating non-retarded dispersion 
forces.  Moreover, from our calculations, the general formula of all dispersion coefficients for 
identical particles, is found to be written as follows: 
 

( )( )0
3 02 2 2,3,..,

2
i ii

i

c
C with i n

ω α= + − =ℏ
 

(4.46) 

The 3-body interaction energy is derived from the graphical presentation also in the same 
manner, and it is given as follows: 
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 (4.47) 

The first term of this series presents the Axilrod-Teller-Muto (ATM) potential of the 3-body 
dispersion interaction energy, where the coefficient FH can be calculated from Eq.(4.37) and 
given as 9ℏ����$ 16⁄ . This term can be calculated in a simple form by considering a system of 
only three atoms which leaves the interaction matrices Γ and M to be identical, and by taking 
the first term of sum, we get the following formula which also presents the first graph of the 
series of graphs given in Fig.(4.5): 
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By substituting the dipole-dipole tensor elements within this formula we get the energy for 
identical particles to be: 
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  (4.49) 

Since we know from basic trigonometry the relation between the scalar product of unit 

vectors and the angles between those vectors, which are given generally as '�L
� ∙ �L� ( =− cos P�. The formula of the 3-body potential energy can be developed and simplified with few 

lines of trigonometric calculations into the Axilrod-Teller-Muto (ATM) formula: 

 ( )3
(3) 0 0

3 3 3

1 3cos cos cos9

16
i j k

ij jk ki

E
r r r

θ θ θω α +
= ℏ  (4.50) 

It should be recognized that this term �QRS�$�  is equivalent to the second contribution ;$. 

Using the same method, the series of all n-body interactions can be developed. The model 
developed here is thus demonstrated to be very efficient in calculating the contributions of n-
body interactions separately. 

 Another aspect of the graphical representation proposed in this is that we can use adjacency 
matrices to determine the power indices, however in order to accomplish that a whole theory of 
the dynamics of the proposed graphs have to be developed within the framework of graph 
theory, a task which is not found in the corpus of this theory and is under construction by us. 
This unique feature of this representation makes it highly promising more than the 
diagrammatic representation which was proposed by Jones (2013)[33] although a coupling 
between the two is needed in future works.  

4. Results and discussions  

To demonstrate the behavior of many body effects in dispersion interactions between 
nanoclusters, we study the interaction between two similar chains of atoms. Two configurations 
are used parallel and collinear with the number of atoms in the chains ranges from 2 atoms to 
10 atoms per cluster. Fig. (4.6) shows the interaction energy calculated from our model 
compared with that calculated using the pairwise summation method. We notice that the 
pairwise summation method underestimates the interaction for small distances and the 
difference decreases with increasing distance. The difference between the energy calculated 
from both approaches is far greater for a parallel configuration than that for a collinear one. The 
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calculations are coded in our own FORTRAN  code for which the general flow chart is given 
in “Appendix II ”. 
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Figure 4.6: The interaction energy between two decamers; a comparison between the results 
calculated from the pairwise summation approach and that calculated from the TCDM using 

our derived algebraic formula of the model. 

The model proposed is used and the contributions of the two terms �6, :� of this model are 
compared. Fig.(4.7) and Fig.(4.8) show the percentage of the contribution of the terms K8 to 
the total interaction energy for the selected configurations ; parallel and colinear respectively. 
This study is a preliminary study in which we try to derive some key results concerning the 
effect of many body interactions on the dispersion energy between identical nanoclusters. 
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Figure 4.7: The contribution of 6 (in %) to the total interaction for an interaction between 
two parallel chains. 

^ ^ 
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Figure 8: The contribution of 6 (in %) to the total interaction for an interaction between two 
collinear chains. 

For both geometrical configurations, we notice that the contribution of the 6/ terms 
increases with the increase in the number of atoms constituting the chains, this increase is faster 

for small distances near the limit of 5 0T. for larger distance the contribution of these terms 
decreases which means that the many body effects written in the second term :/ have a strong 
effect on the total interaction energy for these distances (about 50 % of the overall energy). We 
also recognize that, with increasing distances, there is a difference in the evolution of 6/ 
between the studied configurations. The decrease of the contribution of 6/ terms is faster for 
parallel configuration (Fig.4.7) as opposed to the collinear one where this contribution 
decreases slowly with increasing distances (Fig.4.8). This result demonstrates that the effect of 
many body interactions is far greater in the case of parallel chains of atoms. The amount each 
contribution ;/ is contributing to the system is also studied separately, taking the first three 
terms ;" , ;$ and ;U. 
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Figure 4.9 : The first three contributions ;",;$ and ;U compared for different distances and 
different cluster sizes (V ∈ 32; 104) in the case of collinear configuration. 

^ ^ ^ 



CHAPTER 4:                                    Dispersion Many body interactions a Coupled dipole method 

83 

 

We notice that for both configurations; parallel (Fig.4.9) and collinear (Fig.4.10), the first 
term of the series ;" is the most dominant for distance less than a nanometer. This result when 
compared with which was demonstrated from Fig.(4.7) and Fig.(4.8), thus we conclude that 6" 
which is equivalent to ;", is the dominant contribution in the second term K. We also notice 
that for both configurations except for a system of two atoms, the first two contributions ;" 
and ;$ are the dominant terms, other terms (;U and higher) vanish with increasing number of 
atoms. Nevertheless, we also notice clearly for parallel configuration that the rate of vanishing 
of the third term ;" decreases slightly with increasing distances, this means that the 
contribution of this term increases for large distances compared to chain size. As the distance 
increases, we remark slight differences in the behavior of dispersion forces, where the second 
term ;$ is much more influential on the behavior of the interaction between parallel chains, 
than it is for collinear ones.  
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Figure 4.10 : The first three contributions ;",;$and ;U compared for different distances 
and different cluster sizes (V ∈ 32; 104) in the case of a parallel configuration. 

The results stated above demonstrates some key findings about the many body effects on 
dispersion interactions between 1-D nanocluster. These key points are stated as follows: 

• Many body interactions have stronger effect for distances larger than clusters 
dimensions. This result is very interesting since it is not found in literature with 
this statement, where for most of cases these effects are considered to vanish and 
only two body interaction are those that survive and effect the interaction between 
particles. Due to this contrast a more detailed study on the many body effects for 
long ranges is needed to be conducted at a basic theoretical level using mainly 
Quantum electrodynamic approaches to either verify or refute the statement 
claimed here. 

• The geometry (configuration in this case) of the interacting clusters has a strong 
influence on the behavior of many body effects and their contribution to 
dispersion interactions. Which is found to be stated with various methods in 
literature [6, 8, 16, 25, 29] although a thorough study on this effect using many 
body physics is also needed for better understanding of the interactions between 
nanoparticles. 

• For small distances compared to clusters' size, the first two terms are the dominant 
contributions to the interaction energy. 

^ ^ ^ 
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• Since ;" and ;$ are equivalent respectively to London's formula for 2-body 
interactions and the ATM potential for 3-body interactions, we thus conclude that, 
at close proximities, the dominant many body contributions are the 2-body and 3-
body interactions. 

This model is very promising although needs more work to be complete, the future prospects 
of developing this model would be to concentrate on incorporating the retardation effect within 
this framework and also to include higher multipole interactions. This can be accomplished in 
our view by examining some of the new features of tensor eigenvalue problem solving theories 
which are proposed in modern mathematics in the recent years. For this purpose and to develop 
future works we encourage the exploration of some of the aspects of this side of mathematical 
methods in order to find a way which we shall investigate to enhance the model. We also 
propose to follow another line of research in which the CDM method can be coupled with other 
continuous methods such as the scattering T- Operator theory which is extremely promising 
[34-37]. This line of research has not been until now investigated which makes it the most 
interesting prospect of our suggestions. 

5. Conclusions: 

In this chapter we have revisited the coupled dipole method, and used the trace-based 
approach of CDM for solving the problem of dispersion forces between nanoclusters, we further 
continued with simple algebraic manipulations to derive the explicit formula for the interaction 
energy between identical nanoclusters. Further, using some concepts of graph theory, we 
introduced a novel representation of the equations derived. These graphs were used to derive 
the formula for each m-body contribution in a form of a series which was proven to be 
equivalent to the results derived from more complicated methods such as perturbation theory 
in quantum mechanics. We also have studied the interaction between two chains of atoms, with 
two geometrical configurations parallel and colinear. We have demonstrated that for the studied 
cases many body interactions have strong effect on dispersion forces at shorter distances, with 
the dominant contributions are those of 2-body and 3-body interactions. The effect of geometry 
is also shown to be significant on the behavior of many-body forces and their contribution to 
dispersion interactions.  
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Conclusions  

 

We have examined in this work dispersion forces between nanoparticles and 
demonstrated the basic concepts of the theoretical modelling process of these Quantum 
interactions between both microscopic particles (molecules/atoms) and macroscopic 
objects, focusing on nanosized particles. At first, we have used models developed using 
the pairwise summation approach of Hamaker to study the effect of geometry using 
three basic geometries (cubic, cylindrical and spherical) and demonstrated that the 
effect of geometry is crucial at small distances, generally less than 20 % of particles' 
size. 

Regarding the retardation effect, similarly, we have used this method both by 
comparing the existing models or by numerical atomic calculations, and we established 
that, for nanoparticles, this effect is crucially dependent on particle size and shape as 
well as the distance, and propose a correction to an existing model in order to be applied 
for the case of such particles this modified model can be used to incorporate dispersion 
interactions in studying the behaviour of nanoparticles in order to predict the formation 
of agglomeration, which is a critical factor in assessing the toxicology of these particles 
to the human body or the behaviour of nanoparticulate materials such as powders 
aerosols and colloids. Nevertheless, we urge the need for developing a new model based 
on a more complete theory which can predict and calculate accurately and efficiently 
the magnitude and behaviour of these interactions at the nanoscale. 

For the purpose of developed a model of nanosized particles, in the last segment of 
this work we have studied and formulate the Coupled Dipole Method in its simplest 
forms, and used and demonstrated the Trace-based approach of the CDM to the 
problem. We further continued our calculations in the same mathematical spirit of the 
TCDM by applying some algebraic manipulations, and thus we derived the solution to 
the CDM problem, and demonstrated the explicit formula of the interaction energy 
between identical nanoclusters.  

Further, we used the concepts of graph theory coupled with the derived model and 
introduced a novel representation of those equations, where these graphs generate all 
possible modes using simple logical rules, and each of them can be retranslated into a 
mathematical formula of the corresponding interaction energy of those modes. 
Therefore, these each m-body contribution we derived from all graphs of m degree, and 
the interaction energy was written thus in a form of a series which was confirmed to be 
equivalent to the results derived from perturbation theory. We thus emphasize the need 
to further pursue and develop this graphical representation and its mathematical theory, 
since it can offer a new aspect of many body physics that can lead for many applications 
and simplifications of the existing theories and models. 
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 Additionally, using our model, we have studied these interactions between two 
(parallel and colinear) chains of atoms, and demonstrated that many body interactions 
have critical effect on dispersion forces at shorter distances, with the dominant 
contributions are the 2-body and 3-body interactions. The effect of geometry is also 
shown to be noteworthy on the magnitude of contribution of many-body forces to the 
total interaction.  

The Coupled Dipole method is very promising approach as demonstrated in this 
work and others, nevertheless there are more work that has to be done in order for this 
model to be complete. For this purpose, we propose that the future work on the subject 
should concentrate on incorporating the retardation effect within this framework and 
also to include higher multipole interactions and solve the problem using the new tensor 
eigenvalue problem solving techniques or others, depending on the problem at hand 
when incorporating these contributions. We also propose the coupling of this method 
with other methods such as the scattering T- matrix approach which is extremely 
promising, or even many-body Quantum electrodynamics. 

It should be recognized that this work and the efforts of modeling the interactions 
between nanoparticles and nanoclusters which has been undertaken by us or other 
researchers, are very important to better predict the magnitude of dispersion forces 
acting between these materials, which in turn would lead to a better understanding of 
the behavior and ultimately the control of that behavior of nanoparticles used for 
technological applications such as those stated in Chapter 1. 

In the end, we reemphasize the importance of this work both as a slightly different 
representation and study of the problem of dispersion interactions between 
nanoparticles, and also as an initiation of the author to the subject with many potentials 
of future works, which opens the door for a life work in both theoretical and applied 
side of physics. 
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Appendix I: Flow chart for calculating the retardation using the atomistic method. 
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Appendix II : flow chart of the model derived from the CDM approach. 
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Résumé : 

Dans ce travail, les interactions de dispersion entre les nanoparticules et les effets de 
différents paramètres (taille, géométrie, distance, retardation et l'effets à N-corps) ont été 
étudiés. L'effet de la géométrie des particules est étudié en comparant trois formes de base: 
cubique, cylindrique et sphérique. Les résultats montrent que l'effet de la géométrie est 
significante pour des distances inter-particulaires inférieures à 20% du rayon des particules. 
L'énergie d'interaction retardée de van der Waals est également étudiée et il a été montré que 
cet effet dépend fortement de la taille et de la forme des particules, ainsi que de la distance. 
Un modèle modifié est proposé pour les nanoparticules extrêmement petites (R ~ 10 nm). 
Nous avons utilisé la méthode des dipôles couplés puis, à partir du formalisme de Trace de 
ce modèle, nous avons introduit une nouvelle formule algébrique de l'énergie d'interaction 
entre des nano-clusters identiques. En outre, une nouvelle représentation utilisant la théorie 
des graphes est également utilisée pour représenter chaque mode d'interaction dérivé du 
nouveau formalisme. Ces graphiques ont été utilisés pour calculer la formule de l'énergie 
d'interaction m-corps sous la forme d'une série qui s'est avérée équivalente aux résultats 
développés à partir de méthodes plus complexes telles que la théorie des perturbations en 
mécanique quantique. Nous avons également étudié l'interaction entre deux chaînes 
d'atomes, avec deux configurations géométriques parallèle et colinéaire. Lorsque nous 
comparons notre résultat à celui qui a été calculé à partir de la méthode de sommation par 
paire, nous constatons que de nombreuses interactions corporelles ont un effet significatif 
sur l’interaction globale. 

Mots clés: Interactions de dispersion; forces van der Waals; forces à plusieurs corps; 
Méthode dipolaire couplée; Nanoparticules 

 

 : ملخص

الحالي ، تم التحقيق في تفاعلات التشتت بين الجسيمات النانوية والتأثيرات المختلفة للمعايير (الحجم ، الهندسة في العمل 
). يتم دراسة تأثير هندسة الجسيمات عن طريق مقارنة ثلاثة و تأثير الأجسام المتعددة ، المسافة بين الجسيمات ، التخلف

لمسافات بين الجسيمات أقل من ا في حالة مهمر النتائج أن تأثير الهندسة أشكال أساسية: مكعب ، أسطواني وكروي. تظه
٪ من نصف قطر الجسيمات. كما تم التحقق من طاقة تفاعل فان دير فالز المتخلفة، وتبين أن هذا التأثير يعتمد بشكل 20

  الصغيرة  كبير على حجم وشكل الجسيمات وكذلك المسافة. تم اقتراح نموذج معدل للجسيمات النانوية
استخدمنا الأسلوب ثنائي القطب المزدوج ثم من الصيغة التصحيحية لهذا النموذج، نقدم صيغة  .� �R ~ 10نانومتر

نظرية الرسم  بتطبيقمتطابقة. علاوة على ذلك، يستخدم التمثيل الجديد ال النانوية عناقيدال جبرية جديدة للطاقة التفاعل بين
البياني لتمثيل كل طريقة تفاعل مشتقة من الصيغة الجديدة. تم استخدام هذه الرسوم البيانية لاشتقاق صيغة طاقة تفاعل 

في شكل سلسلة أثبتت أنها مكافئة للنتائج التي تم تطويرها من طرق أكثر تعقيداً مثل نظرية الاضطراب في ميكانيكا   الجسم
ا التفاعل بين سلسلتين من الذرات ، مع تكوينين هندسيين متوازيين وخطين. عند مقارنة نتائجنا بما الكم. لقد درسنا أيضً 

 .لها تأثير كبير على التفاعل الكلي الأجسام المتعددةتم حسابه من طريقة الجمع الزوجي ، نجد أن العديد من تفاعلات 
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